
Learning to Select Actions for Resource-bounded Information Extraction

Submitted for Blind Review

Abstract—Given a database with missing or uncertain in-
formation, our goal is to extract specific information from a
large corpus such as the Web under limited resources. We
cast the information gathering task as a series of alternative,
resource-consuming actions to choose from and propose a new
algorithm for learning to select the best action to perform at
each time step. The function that selects these actions is trained
using an online, error-driven algorithm called SampleRank. We
present a system that finds the faculty directory pages of top
Computer Science departments in the U.S. and show that the
learning-based approach accomplishes this task very efficiently
under a limited action budget, obtaining approximately 90%
of the overall F1 using less than 2% of actions. If we apply
our method to the task of filling missing values in a large scale
database with millions of rows and a large number of columns,
the system can obtain just the required information from the
Web very efficiently.

Keywords-Resource-bounded Information Extraction, Active
Information Acquisition, Learning Value Function, Missing
Data, SampleRank

I. INTRODUCTION

Resource-bounded Information Extraction (RBIE) is the

process of searching for and extracting specific pieces of

information from an external information source under a

limited budget of resources, such as computational time,

network bandwidth, and storage space[?]. In many scenarios,

we have a partial database and we need to fill in its missing

values. Under such scenarios, it is undesirable, even compu-

tationally intractable to use traditional information extraction

methods on the entirety of a vast, external, unstructured or

semistructured corpus. For example, it is clearly not feasible

to run an information extraction pipeline on the entire Web,

in order to obtain the values of a single column in a database.

The approach of RBIE framework for obtaining the required

information is to automatically issue appropriate queries to

the external source, such as a search API, select a subset of

retrieved documents and extract the specified field.

Consider the following example of a real world RBIE task.

Given a database of top Computer Science departments in

the United States (Table ??). Such a database may compile

a lot of relevant information about the departments, such as

location, admission and course information, statistics about

the faculty and student body, etc. The faculty directory on

the department websites are often a useful resource to obtain

more information about the faculty, and it is desirable to

be able to point the users of such a database directly to

this page. It would also be a very useful starting point for

automatic extraction of more detailed information about the

faculty (such as the number of faculty, research interests,

etc).

One way to obtain this information is to find the home

pages of the departments and crawl the entire site to find the

faculty directory pages. However, most department websites

are large and complex, requiring us to process thousands of

documents. Even though this particular case might not be

computationally intractable, it does use significant resources

in terms of computational time for crawling and processing

documents, storage for all the crawled documents and the

corresponding network bandwidth. Can we accomplish the

same task using a much smaller fraction of these resources?

The information missing in the database is available on

a finite, and relatively small number of pages on the web.

We need to examine those web pages in order to obtain the

required information. Before we can examine and extract

information from these web pages, we need to download

them to our computing devices. But before we can do that,

we need to know where these relevant documents are located

on the Web. The search interface of a large scale search

engine, such as Google can help. We can issue queries that

are driven by relevant information already available in the

database to the search interface, obtain the location of web

documents that potentially contain the information we need,

download them, extract the required piece of information,

and fill in the missing values in the database. This approach

would use significantly limited resources.

Kanani et al.[?] introduced the Resource-bounded In-

formation Extraction framework, which takes the focused

information gathering approach of issuing queries to a

search API, instead of crawling. They use existing, relevant

information in the database and combine it with user defined

keywords to generate queries. In most cases, there are several

different queries to try for finding one piece of information,

and some queries work better than the others. In the faculty

directory example, a query could be formed by combin-

ing name of the university with keywords like “faculty

directory”, or a more sophisticated query could be “faculty

inurl:department homepage url”. The latter query looks for

the key word “faculty” in the URL of the corresponding

department homepage. Also, in many cases, it might be

better to attempt finding one piece of information before

another. For example, if the department home page URLs

are also missing, it might be important to fill that column

before attempting to fill the faculty directory column. In

order to make the best use of available resources, we need

to issue the most effective queries first.



University Name Grad. Student Count Fall App. Deadline Dept Homepage Faculty Dir Page Faculty Count

Stanford University 550 December 13, 2011 http://www.cs.stanford.edu/ ? ?

Massachusetts Institute of Technology 890 December 15, 2011 http://www.eecs.mit.edu/ ? ?

Princeton University 100 December 15, 2010 http://www.cs.princeton.edu/ ? ?

University of California-Berkeley 222 December 16, 2010 http://www.cs.berkeley.edu/ ? ?

Carnegie Mellon University ? December 15 http://www.cs.cmu.edu/ ? ?

Table I
EXAMPLE DATABASE OF TOP COMPUTER SCIENCE DEPARTMENTS

In most scenarios, one only need process a subset of

the documents returned by the queries. We need to know

which of the search results are most likely to contain the

information we are looking for. Information returned in the

search result snippet can be exploited to decide if a web

page is worth downloading. Similarly, some preliminary

observation of the downloaded document can be useful to

decide if it is worth passing through an expensive extraction

pipeline.

Unlike the previous work, which viewed RBIE as select-

ing a subset of documents to be processed, we cast the

Information-gathering task as a series of resource-consuming

actions, along with a mechanism to select the best action to

perform at each time step. This leads to a reformulation of

the Resource-bounded Information Extraction framework.

We consider the information available in the database at

each time step as a state, and any act that helps obtain

information as an action, such that performing an action

on one state leads to a new state. The RBIE process then, is

to select the best action from all available ones at each time

step, so as to obtain most information under the given budget

of actions. In the RBIE from the Web context, the actions

are - issuing query to an external source, downloading a

web document, or extracting a specific piece of information

from a document. However, this method can be extended to

other actions. In the Computer Science department database

example, another action could be deciding if a piece of

information is stale and needs to be refreshed, like the

application deadline. In Table ??, these dates are obtained

from the department webpages on the same day, but only

some of them need to be updated.

This setup is similar to Markov Decision Processes, in that

we start with an initial state of the database with missing

values, perform an action, which can result in a different

state of the database, and we can define a reward function

that depends on the action as well as its outcome.

In this paper, we propose a new method for learning

to select the best action from a set of alternative actions,

given a certain state of the database. The function takes into

account the properties of the action itself, the properties

of the context in the database, as well as the context of

results of all the previous actions and assigns a score to each

candidate action. The action with the highest score assigned

by this value function is then performed.

We use SampleRank[?], [?], which is an online, error-

driven learning approach proposed by Culotta et al to train

this function. It has shown to perform very well on various

different learning tasks, leading to faster training and more

accurate results[?]. As we shall see later, the online nature of

SampleRank also helps learning by sampling and exploring

the state space.

We build a system that applies our method to the task

of finding faculty directories. Using SampleRank, we learn

a value function the evaluates each state action pair, which

can then be used to select the best action at each time step.

We show that the learning-based approach accomplishes this

task efficiently under a limited action budget, and we obtain

around 90% of the overall F1 using a budget of less than

just 2% of the actions. Our method is much more broadly

applicable than previous work, since the training framework

can be implemented for any database whose missing values

can be filled from the web.

II. RESOURCE-BOUNDED INFORMATION EXTRACTION

A. General Problem Definition

The general problem of Resource-bounded Information

Extraction (RBIE) is as follows. We are given a database

with some missing information and a set of possible actions

that can help acquire that information from an external

source, such as the web. At each time point, we need to

select the best action from the set of alternative actions

available, so as to acquire most information with least

number of actions.

Let St be the state of database DB at time t and Rt be the

result of all actions up to time t. Let F (St) be the function

that selects action at to be performed at time t and θ(St) be

the objective function defined over the state of the database.

Our goal is to optimize F for θ with a budget on t.

B. Resource-bounded Information Extraction From the Web

For RBIE from the Web, we consider three different

types of actions - query actions, download actions, and

extract actions. Queries are formed using information from

an input entry in the database and a set of keywords. A

query action is issuing a single query to a web search API

and obtaining a set of search results. A download action is

downloading the web page corresponding to a single search

result. Finally, an extract action is performing an extraction



task on the downloaded webpage to obtain the required piece

of information and using it to fill the slot in the original

database.

We assume that we are given an existing model, Me

for extracting the required pieces of information from a

single web page. We also assume that this model provides

a confidence score for each value predicted. This score can

be used to determine whether or not an existing entry in the

database should be updated by the newly extracted value.

Note that in the case of RBIE from the Web, the query

actions can be initialized at the beginning of the task because

they are fixed, but download actions and extract actions are

generated dynamically and added to the list of available

actions. For e.g., after a query action is performed, the

download action corresponding to each of the search result

is generated. Similarly, after a web page is downloaded,

the corresponding extract action is generated. At each time

point, only the actions that have been created can be con-

sidered as alternative actions to perform.

Before selecting an action to perform at each time step,

we need to consider several factors. We need to take into

account the current state of the database, such as the number

of slots filled and the uncertainty about them. We need to

take into account the context provided by the results of all

the actions so far, such as the results of the queries, pages

that are not yet downloaded and processed. Even if this

context is not yet in the database, it can provide valuable

information for deciding which action to select. Finally,

we also need to consider the properties of the candidate

action itself, before selecting it. We can summarize all this

information as a value function, V , that takes as an input the

context of the database, the context of intermediate results,

and properties of the action, and assigns a score to each

candidate action. Using this value function, the best action

to select at each time step is:

at+1 = arg max
a

V (DBt, Rt, R
′

t, a) (1)

Where, DBt is the state of the database that contains filled

and missing entries, Rt is the intermediate URL results,

which contains a list of search results obtained from queries

issued up to time t, and R′

t is the intermediate page results,

which contains a list of web pages downloaded up to time

t. In Section ??, we describe how we can learn the value

function V from data.

Algorithm ?? summarizes the RBIE for Web framework

for filling missing information in a database.

III. LEARNING ACTION SELECTION FUNCTION

We can represent a state, St in the RBIE for Web

framework as a triplet < DBt, Rt, R
′

t >, which consists of

state of the database at a time t, intermediate URL results, R

and intermediate page results, R′. We also denote new states

as results of an action, i.e., St+1 = at+1(St). Learning to

Algorithm 1 Resource-bounded Information Extraction for

the Web
Input:

Database DB with missing entries, Ei

Learned value function V (DBt, Rt, R
′

t, a)
Learned extraction model, Me

Time budget, b

Initialize all queries using keywords

Set all ci = 0, confidence in the value of Ei

t = 0
while t <= b do

at+1 = arg maxa V (DBt, Rt, R
′

t, a)
if at+1 is a query action then

Issue query to a web search API

Update Rt with the new URLs

Enqueue corresponding download actions

else if at+1 is a download action then

Download the web page

Update R′

t with new web page

Enqueue corresponding extract action

else if at+1 is an extract action then

E′

i
= information extracted by Me

c′
i

= prediction confidence of Me

if c′
i
> ci then

Ei = E′

i

ci = c′
i

end if

end if

t = t + 1
end while

select actions in this framework is equivalent to learning a

value function V (S, a)⇒ ℜ. In order to learn this function

from training data, we first assume that its functional form

is as follows:

V (DB, R, R′, a) = exp(
∑

k

λkΦk(DB, R, R′, a)) (2)

Where, λk are model parameters and Φk are feature

functions, defined over the the database context, the current

action, and the results of all previous actions.

A. Using SampleRank to Learn Value Function, V

We propose a new method to learn this function, us-

ing an online, error driven learning algorithm, called

SampleRank[?], [?]. The online nature of SampleRank lets

us update the parameters for each new sampled state during

the training process without the need to perform inference

between each step. SampleRank also allows us to define

a custom objective function, θ(S), which enforces ranking

constraints between pairs of samples.

We start training with state S0, that represents the original

state of the database. We consider all available actions at this



point, and sample from states that result from these actions.

In the most general version of these algorithm, we can use

multiple samples at each time step to update the parameters.

In our version, we choose the state S∗, which is the result of

the best action a∗, predicted by V , and the state S′, which

is the best state predicted by θ. Table ?? shows the notation

for a quick reference.

B. Parameter Update

SampleRank is an error driven learning algorithm, which

lets us update parameters when the function learned up to

this point makes a mistake. We say the ranking is in error

if the function learned so far assigns a higher score to the

sample with the lower objective, i.e.:

[(VΛ(S∗) > VΛ(S′)) ∧ (θ(S∗) < θ(S′))] ∨ [(VΛ(S∗) <

VΛ(S′)) ∧ (θ(S∗) > θ(S′))]

When this condition is true, we update the parameters, Λ
using perceptron update. Note that there are also other op-

tions available for the functional form of parameter update,

which are not explored here. The perceptron update we use

is shown at Line ?? in Algorithm ??, where η is the learning

rate used to temper the parameter updates.

We now choose the next best action according to function

with the new parameters and perform it to get to the next

state. Note that we can use different exploration techniques

in the state space to choose the next state. We continue this

process for the specified number of training iterations to

obtain the final parameters of the learned value function.

Algorithm 2 describes how we learn the parameters λk,

given training data.

C. Objective Function

Under the RBIE from the Web setting, we can compute

a custom objective function after performing action at+1

on St =< DBt, Rt, R
′

t > as a weighted sum of correct,

incorrect and total number of filled values and intermediate

results.

θt(St+1) = Cn∗n+Cd∗d+Cr∗r+Cr′∗r′−Cd̄∗d̄−Cr̄∗r̄−Cr̄′∗r̄′

(3)

Where, n is the number of slots filled in the database, d is

the number of slots filled correctly, d̄ is the number of slots

filled incorrectly, r is the number of correct URLs in the

intermediate URL results, r̄ is the number of incorrect URLs

in the intermediate URL results, r′ is the number of correct

web pages downloaded in the intermediate page results and

r̄′ is the number of incorrect web pages downloaded in the

intermediate page results.

V Value Function

Λ, λk Parameters

Φ Feature Functions

θ Objective Function

η Learning Rate

Table II
NOTATION

Algorithm 2 SampleRank Estimation

1: Input: Training database DB

Initial parameters Λ
Value Function VΛ(S, a)
Objective Function θ(S)

2: S0 ← Initial State of DB

3: for t← 1 to number of iterations T do

4: a∗

t = arg maxa VΛt−1(St−1, a)
5: S∗

t = a∗

t (St−1)
6: select sample from all states S reachable from St−1:

S′

t = arg maxS(θ(S))
a′

t = Action that led to S′

t

7: if Ranks of S′

t and S∗

t assigned by VΛt−1 and θ are

inconsistent then

8: Update Λt ⇐ Λt−1 + η(Φ(S′

t, a
′

t)− Φ(S∗

t , a∗

t ))
9: end if

10: at = arg maxa VΛt(St−1, a) //perform best action

11: St = at(St−1)
12: end for

IV. RELATED WORK

A. Resource-bounded Reasoning

Our work reformulates the Resource-bounded Informa-

tion Extraction framework proposed by Kanani et al. [?].

Their main approach is selecting a subset of documents

to process, whereas, we propose the state-action model

and present a general method to train an action selection

function. Knoblock et al. [?] did some of the early work

in planning for information gathering, followed by more

Resource-bounded Reasoning work by Zilberstein et al. [?],

[?].

B. Information Extraction From the Web

In the traditional information extraction settings, we are

usually given a database schema, and a set of unstructured

or semi-structured documents. The goal of the system is to

automatically extract records from these documents, and fill

in the values in the given database. These databases are then

used for search, decision support and data mining. In recent

years, there has been much work in developing sophisticated

methods for performing information extraction over a closed

collection of documents. Several different approaches have

been proposed for different phases of information extraction

task, such as segmentation, classification, association and



coreference. Most of these proposed approaches make ex-

tensive use of statistical machine learning algorithms, which

have improved significantly over the years. However, only

some of these methods remain computationally tractable as

the size of the document corpus grows. In fact, very few

systems are designed to scale over a corpus as large as, say,

the Web [?].

There are some large scale systems that extract informa-

tion from the web. Among these are KnowItAll [?], InfoS-

leuth [?] and Kylin [?]. The goal of the KnowItAll system

is a related, but different task called, “Open Information

Extraction”. In Open IE, the relations of interest are not

known in advance, and the emphasis is on discovering new

relations and new records through extensive web access. In

contrast, in our task, what we are looking for is very specific

and the corresponding schema is known. The emphasis is

mostly on filling the missing fields in known records, using

resource-bounded web querying. Hence, KnowItAll and

RBIE frameworks have very different application domains.

InfoSleuth focuses on gathering information from given

sources, and Kylin focuses only on Wikipedia articles.

The Information Retrieval community is rich with work

in document relevance (TREC). However, traditional infor-

mation retrieval solutions can not directly be used, since we

first need to automate the query formulation for our task.

Also, most search engine APIs return full documents or text

snippets, rather than specific feature values.

A family of methods closely related to RBIE, is question

answering systems [?]. These systems do retrieve a subset

of relevant documents from the web, along with extracting a

specific piece of information. However, they target a single

piece of information requested by the user, whereas we

target multiple, interdependent fields of a relational database.

They formulate queries by interpreting a natural language

question, whereas we formulate and rank them based on

the utility of information within the database. They do not

address the problem of selecting and prioritizing instances or

a subset of fields to query. This is why, even though some of

the components in our system may appear similar to that of

QA systems, their functionalities differ. The semantic web

community has been working on similar problems, but their

focus is not targeted information extraction.

C. Active Information Acquisition

Learning and acquiring information under resource con-

straints has been studied in various forms. Consider these

different scenarios at training time: active learning selects

the best instances to label from a set of unlabeled instances;

active feature acquisition [?] explores the problem of

learning models from incomplete instances by acquiring

additional features; budgeted learning [?] identifies the best

set of acquisitions, given a fixed cost for acquisitions. At

test time, the two common scenarios are selecting a subset

of features to acquire, e.g. [?], and selecting the subset of

instances for which to acquire features [?].

V. EXPERIMENTS

We start with a list of top 125 Computer Science de-

partments in the United States, as per the 2006 ranking1

by Computer Research Association. We split the existing

data by 70%-30% into training set and testing test. We use

Google Search API to issue queries.

Our goal is to find URL of the faculty directory home

page for each of these departments. This is a non-trivial

task to perform in an automated fashion. Faculty directory

pages of different departments have drastically different

formats. They may or may not contain images and contact

informations of faculties. It is also easy for an automated

system to confuse the faculty directory page with other

related pages like the faculty hiring (both types of pages

almost always contain the word “faculty” in the URL) or

even the home page of a particular faculty. A faculty home

page may contain many names of co-authors of papers

listed, contact information, as well as the word “faculty”

somewhere in the URL, all of which could contribute to the

mix up.

Furthermore, results of web queries are very noisy. Some

of them may contain faculty directory of another university

with similar name. They also tend to return the home

pages of popular faculties in the department, along with

some commercial websites that rank universities, and so on.

Hence, we need a sophisticated model to identify faculty

directory pages among all the web pages that the search

interface returns.

As a precursor to our task of finding faculty directories,

we find the URLs of the department home pages. This is a

fairly easy task. We combine the name of the university, with

keywords “computer science” to form a query and examine

the top hit. In almost all cases, this returns the correct

value of the department home page. We fill the department

homepage column with the returned URL.

For the faculty directory finding task, we formulate four

different types of queries per university, as shown in Table

??, and consider top 20 hits returned by the search API. As-

suming that we are not operating under resource-constraints,

i.e., we perform all possible actions available, we get the

dataset as described by Table ??.

A. Building Extraction Model, Me

Since we are looking for only the URL of the faculty

directory page, rather than some other information contained

within the webpage, we cast the extraction problem as a

classification problem. Hence, we build a Maximum Entropy

based classification model, Me to classify each web page as

a faculty directory or not. Furthermore, we use the posterior

1http://www.cs.iit.edu/ĩraicu/rankings/CRA-CS-Rankings-1993-
2006.htm



of this classifier as the confidence value for each filled entry

in the database. We use mallet [?] toolkit for building this

model, and Stanford NER model for the NER features[?].

Table ?? describes all the features used for this model.

One of the difficulties in building this model is that there

are multiple correct values of faculty directory pages. This is

because pages are redirected, or web sites have multiple host

names. Since it is difficult to manually label all web pages

in the search results (> 8000 documents), we label at most

one URL from the results as the true value. Availability of

more labeling resources would help improve accuracy of the

model. This is because some actually correct URL could get

labeled as false during the training and testing phase of the

classifier and might adversely affect its performance. Note

that in some cases, none of the URLs returned by the search

API are correct. In such cases, we manually find one correct

URL for the faculty directory page from the web and use

that as the true label. There were 17 departments for which

the faculty directory page URL was not returned at all.

Let us first study the performance of the classifier, in

isolation of the Resource-bounded Information Extraction

task. Any inaccuracy in this model, will not only result in

poor accuracy during the RBIE process, but also mis-guide

it due to inaccurate confidence prediction.

Table ?? shows the classification performance of Me. We

also show results on the training data to show the degree of

fitting of the model. Note that F1 is the geometric mean of

Precision and Recall. The main reasons of relatively lower

F1 values on this model are the missing true URLs as well

as the potentially inaccurate labeling as described above.

B. The Resource-bounded Information Extraction Process

At test time, we start with a database that contains

the university names and the home page URLs of their

computer science departments. All the faculty directory

URL entries are empty. We consider this as time, t = 0.

We assume that each action takes one time unit. The

action selection scheme that we are testing selects one of

the available actions, which is performed as described in

Algorithm ??. The action is then marked as completed and

removed from all available actions. If an extraction action

is selected, it may affect the database by filling a slot and

altering the confidence value associated with that slot. We

evaluate the results on the database at the end of a given

budget, b, or if we run out of actions. We use the following

definitions of evaluation metrics for our task (Note the

distinction between accuracy and precision):

Recall = No. of Filled Entries in the Database
No. of Test Entries in the Database

Precision =
No. of Correctly Filled Entries in the Database

No. of Filled Entries in the Database

Accuracy =
No. of Correctly Filled Entries in the Database

No. of Test Entries in the Database

Features related to queries

The type of query used
Hit value in the search result

Features related to URL

The document is HTML like
Words like “faculty”, “directory” and “people” found

Words like “job”, “hire”, “recruit”, or “employ” found
A tilda sign found (might indicate a user homepage)

First or last name found in non-host part of URL
URL host is dot com (not a university)

Same as department website
Same host as department website host

Features related to Web page title

Words related to bad request found
Words like “faculty”, “directory” and “people” found

Words like “job”, “hire”, “recruit”, or “employ” found

Features related to Web page body

Reasonable size
Phrase “bad request” or “error” found

Words like “faculty”, “directory”, or “people” found
Words like “phone”, “email”, “office”, or “professor” found

Word “publications” found
Count of Named Entities found

Count of email pattern matches found
Count of “PhD” pattern matches found

Features related to Web page layout

Count of images found
Count of tables and cells found

Table V
FEATURES OF THE WEB PAGE CLASSIFICATION MODEL

Measure Training Set Testing Set

Accuracy 98.38 98.07

Yes Precision 82.14 77.27

Yes Recall 72.52 61.44

Yes F1 77.03 68.45

No Precision 98.93 98.65

No Recall 99.38 99.36

No F1 99.16 99.00

Table VI
PERFORMANCE OF THE WEB PAGE CLASSIFICATION MODEL

F1 = 2∗Precision∗Recall
(Precision+Recall)

C. Baselines

We use two baselines for our experiments : random and

strawman. At each time step, the random approach selects

an action randomly from all available actions. The strawman

approach works as follows. From our initial analysis of the

results of the queries, we found that queries can be sorted by

their coverage values as Q03, Q02, Q04, and Q01. Coverage

of a query is the proportion of all faculty directory URLs

that are contained in that query’s results. This means that the

first query in this order is most likely to return the correct

URL. Note that this pre-processing analysis provides a huge

advantage to the strawman method. The action selection

order is as follows :

• The query with the highest coverage value is issued for



Query Type Query String

Q01 “University Name + computer science + faculty directory”

Q02 “University Name + computer science + inurl:faculty”

Q03 “University Name + computer science + faculty site:departmentSite”

Q04 “University Name + computer science + site:departmentSite + inurl:faculty”

Table III
TYPES OF QUERIES

Dataset Number of Universities Number of Queries Number of Documents Total Actions

Training Set 88 352 5941 12234

Testing Set 37 148 2437 5022

Total 125 500 8378 17256

Table IV
DATASETS

each test instance

• The first hit from the search result for each test instance

is downloaded

• The first hit from the search result for each test instance

is processed for extraction (classification)

• Subsequent hits from the search result for each test

instance are downloaded and processed

• Subsequent queries are issued in the descending order

of their coverage value, followed by their corresponding

download and extract actions.

Note that this approach would quickly fill up the slots

with the top hits of potentially effective queries, making it a

very strong baseline to test our SampleRank method against.

D. Learning Value Function From Data

We now describe how parameters Λ for value function

VΛ(S, a) are learned using training data. Table ?? describes

the features used. Note that at train time, we do not impose

resource constraints. That is, training is performed till more

actions are available. However, we only run SampleRank

for a given number of iterations, which acts as a type of

budget. We determine the number of iterations and learning

rate empirically.

Similar to the test time, we start with a database with

the faculty directory URL column empty. We initialize

the parameters to zero. At each time step, we explore all

possible actions, sample the states and update the parameters

as described in Algorithm ??. We then choose the next

action to perform as per the updated parameters and proceed

similarly for the specified number of iterations. In our early

experiments, we tried the technique of parameter averaging,

which is recommended in SampleRank literature, but in our

case it did not prove to be very useful, since different types

of actions lead to the update of different parameters.

We use the following objective function for training.

Please refer to Equation ?? for explanation of terms. We

choose these particular coefficients because of their empha-

sis on recall, along with balancing precision.

Features related to counts

Counts of Filled Entried
Counts of Intermediate Results

Word ’Faculty’ inside intermediate results

Features related to corresponding entry

Corresponding entry is empty
Confidence value of the entry (binned)

Features related to query action

Type of query

Features related to download action

Type of the corresponding query
Hit value in the search result

URL and Title contains keywords
URL and Title contains job related keywords

The host is “.com”
Same host as department website

Same as department website

Features related to extract action

Type of the corresponding query
Hit of the corresponding result

URL and Title contains keywords
URL and Title contains job related keywords

Appropriate Size
Bad request code found

Table VII
FEATURES FOR LEARNING VALUE FUNCTION

θt(St+1) = n∗300+d∗100+r∗10+r′∗10−d̄∗200−r̄∗0.5−r̄′∗0.5
(4)

E. Results And Discussion

We now compare the test-time performance of the two

baselines and the learned value function on selecting actions

at each time steps. We evaluate performance after each 1000

actions from 0 to 6000. Since the the initial performance of

RBIE systems is the most crucial, we zoom into the first

1000 actions, and look at the performance at each 100 action

interval. The most effective action selection scheme is the

one that is fastest in achieving high values of evaluation

metrics.



Figure 1. RBIE Using an Oracle : F1 (Figure on the right zooms to the first 1000 actions)

1) RBIE Using an Oracle: We first evaluate performance

of the three action selection schemes in the presence of an

oracle that perfectly classifies each webpage as a faculty

directory page or not with infinite confidence. We do this

to isolate the effect of inaccuracies in the classification

model, Me, which can severely misguide the RBIE system

with wrong confidence values. For e.g., even if the action

selection scheme selects a good web page for extraction,

Me can assign a very low confidence value to it and

hence discourage updating the value in the corresponding

slot. Similarly, a wrong URL with a high confidence could

replace a correct one in the database slot. Table ?? shows

that the F1 value for ‘yes’ label in the classifier is only

68.45, which may not be high enough to avoid some of

these problems. The experiments with an oracle allow us to

evaluate how well does the value function learn to select

potentially useful actions early on.

Figure 1. shows the F1 values during the RBIE process for

the three action selection schemes. We ran 2000 iterations

of SampleRank training with a learning rate of 0.5 for this

experiment. Figure 5. shows plots for the corresponding pre-

cision, recall and accuracy values. We see that SampleRank

outperforms both the baselines at each budget interval in the

first 1000 actions. The precision curve shows a value of one,

because, the oracle always returns the correct answer with

infinite confidence. Hence, we know that each entry filled in

the table is correct, and the scheme that obtains higher recall

first has been successful in identifying the best webpages to

process early on.

2) RBIE Using Classification Model Me: We now study

the performance of our proposed method using an actual

classification model, Me. In this case, each action selection

strategy needs to balance both precision and recall. We ran

2000 iterations of SampleRank training with a learning rate

of 1.0. Figure 2. shows that the strawman approach is better

at achieving high recall early on, but SampleRank is better

at selecting more useful web pages to be able to fill the

slots more accurately. This lets SampleRank to obtain most

of the F1 value within the first 100 actions, and outperform

the baselines in the first, crucial 400 actions. The drop in

precision later on is due to inaccuracies in the confidence

values predicted by Me, which leads to a correct entry being

replaced by an incorrect one.

SampleRank is able to obtain approximately 90% of the

best F1 value it can achieve using all available actions,

within the first 100 actions (which is less than 2% of

all actions). In contrast, the strawman method takes 400

actions (approx. 7% of all actions) and the random method

takes 4000 actions (approx. 67% of all actions) to reach

their best F1 values. This demonstrates the effectiveness

of the learning-based approach in selecting good actions

for information gathering task. We believe that with more

accurate labeling and a better classifier, SampleRank method

can be shown to be even more efficient.

VI. CONCLUSION AND FUTURE WORK

We propose a method for learning to select the most effi-

cient actions for Resource-bounded Information Extraction.

We formulate the RBIE problem as a state-action model and

train a value function using an online, error-driven training

method called SampleRank. This is the most important

contribution of our paper. We also use a challenging, real

world task of finding faculty directory URLs as a test bed

for our algorithm. We demonstrate that the learning-based

approach for selecting information-gathering actions consis-

tently outperforms both, a random and a strong strawman

baselines. By only using less than 2% of all available actions,

the proposed method can achieve approximately 90% of the

best F1 value it can achieve using all available actions.

On the experimental front, more variations of SampleR-

ank can be tested, such as different sampling strategies,

parameter update strategies and state exploration strategies.

However, we can also explore a completely different method

for learning the value function proposed in this paper. The

general idea of state-action formulation and learning to select

actions can be used for any RBIE for Web task, and can be

applied to filling missing values in a large scale database

efficiently.



Figure 2. RBIE Using the classification model, Me : F1 (Figure on the right zooms to the first 1000 actions)

Figure 3. RBIE Using the classification model (Time reflects the number
of actions performed)

Figure 4. RBIE Using the classification model(Zoomed In to the first 1000
actions)



Figure 5. RBIE Using an Oracle (Time reflects the number of actions
performed)

VII. ACKNOWLEDGEMENTS

This research draws on data provided by the University

Research Program for Google Search, a service provided

by Google to promote a greater common understanding

of the web. We are thankful to Michael Wick for useful

discussions, and Laura Dietz for reviewing the initial draft.

This work was supported in part by the Center for Intelligent

Information Retrieval and in part by The Central Intelligence

Agency, the National Security Agency and National Science

Foundation under NSF grant #IIS-0326249 . Any opinions,

findings and conclusions or recommendations expressed in

this material are those of the authors and do not necessarily

reflect those of the sponsor.

REFERENCES

[1] Jenny Rose Finkel, Trond Grenager, and Christopher Manning.
2005. Incorporating Non-local Information into Information
Extraction Systems by Gibbs Sampling. Proceedings of the
43nd Annual Meeting of the Association for Computational
Linguistics (ACL 2005), pp. 363-370.

[2] Kanani, P., McCallum, A. and Hu, S., ”Resource-bounded
Information Extraction: Acquiring Missing Feature Values On
Demand”, Proceedings of the 14th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, Hyderabad, India,
June 21-24, 2010.

[3] Kanani, P. and Melville, P., ”Prediction-time Active Feature-
value Acquisition for Customer Targeting”, NIPS 2008 Work-
shop on Cost Sensitive Learning.

[4] SampleRank: Training Factor Graphs with Atomic Gradients.
Michael Wick, Khashayar Rohanimanesh, Kedar Bellare, Aron
Culotta, Andrew McCallum. Proceedings of the International
Conference on Machine Learning (ICML), 2011.

[5] Learning and inference in weighted logic with application
to natural language processing. Aron Culotta, Ph.D. Thesis,
University of Massachusetts, 2008

[6] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu,
T. Shaked, S. Soder- land, D. Weld, and A. Yates. Web-scale
information extraction in knowitall. In WWW04. ACM, May
2004.

[7] D.Lizotte, O.Madani, and R.Greiner. Budgeted learning of
naive-Bayes classifiers. In UAI03, Acapulco, Mexico, 2003.

[8] M. H. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. Taylor, and
A. Unruh. Active information gathering in infosleuth. IJCIS,
9(1-2):328, 2000.

[9] S. Zhao and J. Betz. Corroborate and learn facts from the web.
In KDD, pages 9951003, 2007.

[10] Shlomo Zilberstein and Victor Lesser. Intelligent information
gathering using decision models. Technical Report 96-35,
Computer Science Department University of Massachusetts at
Amherst, 1996.

[11] Shlomo Zilberstein. Resource-bounded reasoning in intelli-
gent systems. ACM Comput. Surv, 28, 1996.

[12] Planning, Executing, Sensing, and Replanning for Informa-
tion Gathering. Knoblock, C. A. 1995. In Proceedings of IJCAI
1995.

[13] Wu, Fei, Hoffmann, Raphael, and Weld, Daniel S. Informa-
tion extraction from wikipedia: moving down the long tail. In
KDD 08:

[14] Lin, J., Fernandes, A., Katz, B., Marton, G., and Tellex, S.
Extracting answers from the web using knowledge annotation
and knowledge mining techniques, 2002.

[15] Melville, Prem, Saar-Tsechansky, Maytal, Provost, Foster, and
Mooney, Raymond. An expected utility approach to active
feature-value acquisition. In Pro- ceedings of the International
Conference on Data Mining



[16] Sheng, Victor S., and Ling, Charles X. Feature value acquisi-
tion in testing: a sequential batch test algorithm. In ICML 06:
Proceedings of the 23rd inter- national conference on Machine
learning

[17] McCallum, Andrew Kachites. ”MALLET: A Machine Learn-
ing for Language Toolkit.” http://mallet.cs.umass.edu. 2002.


