Modeling Reformulation Using Query Distributions

ABSTRACT

Query reformulation modifies the original query with the
aim of better matching the vocabulary of the relevant doc-
uments, and consequently improving ranking effectiveness.
Previous models typically generate words and phrases re-
lated to the original query, but do not consider how these
words and phrases would fit together in new queries. In
this paper, a novel framework is proposed that models re-
formulation as a distribution of queries, where each query
is a variation of the original query. This approach con-
siders a query as a basic unit and can capture important
dependencies between words and phrases in the query. Pre-
vious reformulation models are special cases of the proposed
framework by making certain assumptions. An implemen-
tation of this framework consists of a query generation step
that analyzes the passages containing query words to gener-
ate reformulated queries and a probability estimation step
that learns a distribution for reformulated queries by opti-
mizing the retrieval performance. Experiments on TREC
collections show that the proposed model can significantly
outperform previous reformulation models.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms

Algorithms, Experimentation, Performance

Keywords

Query Reformulation, Query Substitution, Query Segmen-
tation, Passage Analysis, Information Retrieval

1. INTRODUCTION

In a typical search scenario, users pose keyword queries
to express their information needs. Due to vocabulary mis-
match and ambiguity, it is sometimes difficult to retrieve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR’11

Copyright 2010 ACM ...$5.00.

relevant documents using the original query. In response,
techniques for reformulating the original query to improve
retrieval performance have been developed. In this paper,
query reformulation is defined as a process of modifying or
rewriting the original query to better match the vocabulary
of relevant documents.

Many previous models of query reformulation have fo-
cused on generating related words and phrases to expand the
original query. For example, the relevance model approach
[14] adds new words to the original query, the sequential
dependency model [17] adds phrase structure, and the la-
tent concept expansion model [18] adds new term proximity
features and words. These types of model do not, how-
ever, consider how the new words and phrases can be used
together to form queries that are variations of the original
query. Instead, the new terms are typically added as a large,
possibly weighted, “bag of words” to the original query. By
ignoring how these words and phrases are used together in
actual queries, important dependencies can be missed.

Other research on web query reformulation, on the other
hand, has tended to focus on generating a single new query
(e.g. [4][13]) by applying a specific reformulation operation.
Different operations have been studied. Query segmentation
[4] tries to detect underlying concepts in keyword queries
and annotate those concepts as phrases, which adds phrase
structure into the original query. For example, given the
query “oil industry history”, query segmentation techniques
may detect “oil industry” as a concept and annotate it as
a phrase in the new query “(oil industry) history”. Query
substitution [13] tries to change some words of the original
query to bridge the vocabulary mismatch. For example, the
query “oil industry history” could be changed to “petroleum
industry history”, since some relevant documents may con-
tain “petroleum industry” instead of “oil industry”. How-
ever, little work considers combining these operations from
a unified perspective, thus important information about al-
ternative query reformulations is not captured.

In this paper, we propose a novel framework where the
original query is transformed into a distribution of reformu-
lated queries. A reformulated query is generated by apply-
ing different operations including adding or replacing query
words, detecting phrase structures, and so on. Since the re-
formulated query that involves a particular choice of words
and phrases is explicitly modeled, this framework captures
dependencies between those query components. On the other
hand, this framework naturally combines query segmenta-
tion, query substitution and other possible reformulation op-
erations, where all these operations are considered as meth-

ods for generating reformulated queries. In other words, a
reformulated query is the output of applying single or mul-
tiple reformulation operations. The probabilities of alter-
native reformulated queries can then be estimated within
the same framework. Furthermore, this framework poten-
tially provides a better way of modeling users’ reformulation
behavior. During a search session, the user will pose a se-
ries of reformulated queries if the original one doesn’t work
well, thus modeling reformulation as a distribution of related
queries instead of a large bag of related words seems more
natural.

The implementation of the proposed framework can be
divided into two major steps. First, a set of reformulated
queries is generated by applying a series of reformulation
operations on the original query. Second, the probability is
estimated for each reformulated query, thereby creating a
query distribution.

For the first step, a passage analysis technique on the
target corpus is used to generate reformulated queries. Our
previous research [omitted for anonymous review] has shown
the effectiveness of this technique. The general idea is based
on the observation that passages containing all query words
or most of the query words provide a good source of in-
formation for reformulating queries. Specifically, passages
with all query words provide information about the com-
mon ways that people split the original query into different
concepts. Similarly, passages only containing some query
words indicate possible ways of substituting those missing
query words.

For the second step, several important features are ex-
tracted to characterize the reformulated query as a whole.
Those features are not available in previous reformulation
models, especially for “bag of words” models, since they fail
to model a reformulated query as a whole. Examples of
those features include the chance of observing a reformu-
lated query in the target corpus and in an external web
corpus, the probability of observing this reformulated query
in query logs, and the operations used to generate this re-
formulated query. Based on these features, a probability
estimation approach is proposed to obtain the reformulated
query distribution that optimizes the retrieval performance
on the training set. Since the original query also belongs to
the query distribution, this approach provides a principled
way to combine the original query with other reformulated
queries instead of tuning combination parameters.

There are three major contributions of this paper: first,
a novel framework for modeling query reformulation is pro-
posed, where the original query is reformulated as a distribu-
tion of queries; second, an implementation of this framework
is described, which consists of a passage analysis technique
for generating reformulated queries and a probability esti-
mation approach for learning the query distribution; third,
the proposed framework is compared with previous models
theoretically and empirically, where we prove that previous
models can be considered as special cases of the proposed
framework and we further validate its advantages over pre-
vious models using experiments on TREC collections.

The rest of paper is organized as follows: we first intro-
duce the background and then propose our reformulation
framework. Following that, we describe a passage analysis
technique and a probability estimation approach for imple-
mentation. Experimental results are then reported. Finally,
we review the related work and conclude the paper.

2. BACKGROUND

A Collection is a set of documents, which is denoted as
C = {Dl}‘lg1 Here, D; denotes a document. |C| denotes
the size of the set C.

A Passage is defined as a sequence of words. In this pa-
per, we consider a passage to be a non-overlapped window
with fixed word size. Passage Analysis is the technique
that extracts the required information from passages con-
taining all or most query words.

The Original Query is the query posed by the user,
which is denoted as @ = qiqz...q;.. Here, ¢; is a query word
and [is the length of the query. This paper focuses on short
queries, where [is usually not bigger than five. Using our
previous example, the original query is “oil industry history”.

Query Reformulation is the process of modifying the
original query in order to retrieve more relevant documents.
A Reformulation Model is a model that transforms the
original query) into some new representation. Previous
reformulation models can be divided into two categories.

2.1 Distribution of Terms

The first category of previous models is a distribution of
terms, which is denoted as DOT. Besides the original query
words, the terms in this distribution include query phrases
[17], new words [14][18], and new phrases [18]. Formally,
this category of models is defined as follows.

Given a vocabulary of terms Vi = {ti}LZTl‘7 where t; is a
term, DOT transforms the original query into a distribution
over Vi, ie. Py = {(P(t:]Q) t:)}Y!, where P(t;|Q) is the
probability assigned to ¢;.

When Pr is used for retrieval, the retrieval score of a
document D is calculated in Eq. 1.

V|
P(Pr|D) = [P(t:|D)" 19 (1)
i=1
where P(t;|D) is the probability of generating t; from the
document D.

Next, we describe two typical models of this category.

The Relevance Model (RM) [14] limits ¢; to the orig-
inal query words and the new words that are related to
the original query. In the relevance model, P(¢;|Q) is es-
timated by mixing the language models of the top ranked
documents. For example, the original query “oil industry
history” could be reformulated as “(0.44 industry), (0.28 oil),
(0.08 petroleum), (0.08 gas), (0.08 country), (0.04 history),

.”, which includes not only words from the original query
such as “oil”, “industry” and “history”, but also new words
like “gas” and “petroleum”.

The Sequential Dependency Model (SDM) [17] lim-
its t; to the original query words and the bigrams extracted
from the original query @Q'. In the sequential dependency
model, P(¢;|Q) is estimated based on the type of ¢;, i.e. word
or bigram. In other words, all words have the same probabil-
ity value and this is also true for bigrams. For example, the
original query “oil industry history” could be reformulated
as “(0.28 oil), (0.28 industry), (0.28 history), (0.08 (oil in-
dustry)), (0.08 (industry history))”. Besides the words from
the original query, this also includes bigrams such as “oil
industry” and “industry history”.

The sequential dependency model considers two types of
bigrams, ordered and unordered.

2.2 Single Reformulated Query

The second category of previous models is a single refor-
mulated query generated by applying a specific reformula-
tion operation, which is denoted as SRQ.

Formally, @y (Oper) denotes the new query generated af-
ter applying the reformulation operation Oper to the original
query Q. Qr(Oper) is simplified to Q7 if the operation Oper
is not explicitly mentioned.

When Q; is used for retrieval, the score of document D
is calculated by P(Q5|D), i.e. the probability of generating
Q7 from document D. The estimation of P(Qy|D) depends
on implementations.

Next, we describe two reformulation operations.

Query Segmentation (SEG) [4] is the operation of
grouping query words into phrases. Given the original query
Q = q1g2-..qi, the segmented query is denoted as pip2...pm-
Here, p; is a phrase, which groups some original query words
gj+1---Gj+k together. j indicates the index of the original
query and k is the length of the phrase p;. If &k is equal to one,
p; is a single word. For example, “(oil industry)(history)” is
a segmentation of the original query.

Query Substitution (SUB) [13] is the operation of re-
placing some original query words with new ones. Given
the original query @ = (q1...¢i+1...¢i+s-.-q1), the substituted
query is denoted as q1...q} ...q;...qi, where the original words
Gi+1..-Qi+s are replaced with ¢f...q;. Here, s is the number
of the original query words to be replaced and ¢ is the num-
ber of new query words. For example, “petroleum industry
history” replaces “oil industry” with “petroleum industry”. s
and t are not necessarily equal so substitution can expand
the original query. For example, “oil and gas industry his-
tory” substitutes “oil industry” with “oil and gas industry”.

3. QUERY REFORMULATION AS A DIS-
TRIBUTION OF QUERIES

In this section, a Distribution Of Queries (DOQ)
framework is proposed and compared with previous refor-
mulation models.

3.1 Framework
Formally, we first generate a set of reformulated queries
Vo, = {Q”}‘VQT , where @, is a reformulated query. @,
is the output of applying single or multiple reformulation
operations. Then, the original query @ is transformed into
a distribution over Vg, i.e. Pg, = {(P(Q-,|Q) Q”)}‘VQT .
P(Qr,|Q) is the probability corresponding to Qr,. Note that
the original query @ also belongs to Vg,., which can be con-
sidered as a special reformulated query without applying
any reformulation operation. The framework itself does not
specify how to generate reformulated queries and how to es-
timate the probability for each reformulated query. Different
strategies can be adopted based on implementations.

Given this query distribution based representation, i.e.
Po, = {(P(Q+|Q) Qm)}LZ‘”{T‘, the retrieval score of a doc-
ument is calculated in Eq. 2.

Vo,
P(Po,|D) = H P(Q

where P(Qr,|D) is the probablhty of generating @, from
the document D.

For example, given the original query “oil industry his-
tory”, we first generate a set of reformulated queries “(oil in-

P(Qn- Q) (2)

Table 1: Different query representations for the
original query “oil industry history”
Model | Output

Distribution Of Terms (DOT)

RM (0.44 industry), (0.28 oil), (0.08 petroleum),
(0.08 gas), (0.08 county), (0.04 history), ...
SDM (0.28 oil), (0.28 industry), (0.28 history),

(0.08 oil industry), (0.08 industry history)
Single Reformulated Query (SRQ)
SEG (oil industry) (history)
SUB petroleum industry history
Distribution Of Queries (DOQ)
(0.78 oil industry history),
(0.08 (oil industry)(history)),
(0.05 (petroleum industry)(history)),
(
(

0.05 (oil)(industrialized) (history)),
0.04 (oil and gas industry)(history))...

dustry) (history), (petroleum industry) (history), (oil and gas
industry) (history), (oil)(industrialized) (history)...”. Here, a
reformulated query is generated by first applying query sub-
stitution and then applying query segmentation. For ex-
ample, the original query is first substituted as “petroleum
industry history” and then it is segmented as “(petroleum
industry) (history)”. Then, we estimate the probability for
each reformulated query and the original query. Clearly,
different reformulation operations are naturally combined
within this framework. The final representation generated
by DOQ is displayed in Table 1, where the representations
generated by previous models are also shown for comparison.

3.2 Comparison of Query Representations

We first compare DOT with DOQ. DOT augments the
original query with a bag of new terms but does not con-
sider how to fit these terms together to form actual queries.
In contrast, DOQ augments the original query with a set
of new queries, which captures the important dependen-
cies between terms. This difference is reflected on the new
terms added by these two representations, either directly or
through adding queries that contain the new terms. DOT
adds a new term t according to its own relationship with the
original query @ (i.e. P(t|Q)), while DOQ adds a new term
according to the relationships between the query containing
this term @, and the original query Q (i.e. P(Q-|Q)), where
considering @), as a whole captures dependencies between
terms in Q,. As shown in Table 1, RM (a representative
of DOT) assigns high probability for “county” while DOQ
does not, since “county” frequently cooccurs with the origi-
nal query but it is not usually found in reformulated queries.
On the other hand, DOQ provides high probability for “in-
dustrialized” while RM does not, since “industrialized” can
be used in queries such as “(oil) (industrialized) (history)” but
it rarely cooccurs with the original query.

Second, we compare SRQ with DOQ. SRQ and DOQ both
consider a query as a basic unit. However, SRQ only uses a
single reformulated query generated by applying a specific
operation, while DOQ generates a variety of reformulated
queries where each is the output of applying single or multi-
ple operations. Therefore, DOQ is more general than SRQ
and takes alterative reformulated queries into consideration.

3.3 Comparison of Retrieval Scores

In this subsection, we further compare the retrieval scores
of different models. We show that DOT and SRQ are both
special cases of DOQ under certain assumptions.

CrLamM 1. DOQ becomes DOT given two assumptions:
1. the estimation of P(Qr,|Q) assumes that the terms t in
a reformulated query Qr, are independent given the original
query Q, i.e.
P(Q1Q) = Teq, PUQ Tgq, (1 - P(1Q)

2. the estimation of P(Qr;|D) assumes that the terms t in
a reformulated query Qr, are independent given a document
D, i.e. P(Qr|D) = 11,eq, P(tID).

Note that in the first assumption we consider not only the
terms t appearing in @, but also the terms t' not in Q,
similar to previous work [21].

We provide a brief proof for Claim 1. Given the second
assumption, Eq. 2 can be written as follows:

VQ, |
P(Pq,|D) = T[] P(@: D)@

i=1
IVQ, |

= TICIT Papy™ @@ @)
i=1 teQr,;
V|

— H p(tj|D)ZQT€{QT\tj€Qr}P(Qf“Q) (4)
=1

Eq. 3 is obtained by directly using the second assump-
tion. Since it is reasonable to assume each @, in Vg, only
contains terms from the vocabulary Vr of DOT, we can re-
organize Eq. 3 to obtain Eq. 4 by merging the same term
t; together. In Eq. 4, {Q-|t; € Q»} denotes the set of refor-
mulated queries containing ¢;. Furthermore, using the first
assumption, we can obtain Claim 2.

CLAIM 2. 320 crqui e, P(QrIQ) = P(t;1Q), given
P(@Qr|Q) =Tlieq, PAQ) [Ty g, (1 — PH1Q)).

The proof of Claim 2 can be found in the Appendix. After
applying Claim 2 to Eq. 4, we obtain Eq. 5, which finishes
the proof of Claim 1.

[V |
P(Pq,|D) = [[P(t;|D)""'Y = P(PrD) (5)

j=1
Note that the two assumptions in Claim 1 indicate the
advantages of DOQ over DOT, where DOQ can consider
dependencies between query terms when it estimates the
query distribution (Assumption 1) and when it retrieves doc-

uments (Assumption 2).
Second, we will show SRQ is also a special case of DOQ.

CrLamM 3. DOQ becomes SRQ) given one assumption:
1. the query distribution assigns all probability to Qr and
assigns zero probability to other reformulated queries in Vg,

Given the assumption of Claim 3, Eq. 2 can be written
as follows:

Vo,

[T P(Qu|D)" @1
i=1

(II P@.Ip)?°) - P@;D)

Qr, Q5
P(Qr|D) (6)

P(Pq,|D)

Eq. 6 finishes the proof of Claim 3.

4. GENERATING REFORMULATED
QUERIES

In this section, we will briefly describe how to generate
reformulated queries through analyzing passages extracted
from the target corpus. More details can be found in our
previous work [omitted for anonymous review|. Following
that, we will describe how to further incorporate the re-
trieval model to generate operational search queries.

4.1 Query Generation with Passage Analysis

First, the original query is substituted to generate candi-
date queries. In order to replace some query words, passages
containing the rest of the query are extracted. Three differ-
ent methods are developed to analyze these passages which
provide possible ways of query substitution. Morphologi-
cally Similar Words (Morph) are a reliable way to sub-
stitute the original query words using appropriate morpho-
logical variants. For example, “industrialized” is morpholog-
ically similar to “industry” and also “oil industrialized his-
tory” is observed in many extracted passages, thus “oil in-
dustrialized history” is considered as a substitution of “oil
industry history”. The pattern-based method is another
way to find query substitutions. Several types of patterns
are derived from the original query and these patterns are
then used to match qualified passages to find query substitu-
tion. Two types of patterns are considered here, Adding-
Word Patterns (Pat-add) and Changing-Word Pat-
terns (Pat-chg). For example, “oil x industry history” is
an adding-word pattern extracted from the original query
“oil industry history” and the substitution “oil and gas in-
dustry history” can be found after applying this pattern
to those extracted passages. Similarly, “oil % history” is a
changing-word pattern and another substitution “oil spill
history” can be obtained through using this pattern. Some
query substitutions are difficult to obtain only relying on
corpus information, thus the third method uses Wikipedia
Redirect Page (Wiki), which is designed to maintain al-
ternative expressions for rediction?. For example, “oil in-
dustry” and “petroleum industry” form an alternative pair
and “petroleum industry history” has been observed in many
extracted passages, thus it is considered as a substitution.

Second, the candidate queries generated from the previ-
ous step are further segmented to generate the final reformu-
lated queries. Given a candidate query, passages containing
all query words are extracted. Then, each extracted pas-
sage tells us one way to segment the candidate query. After
analyzing all extracted passages, the most frequent ways of
segmenting the candidate query can be determined. For ex-
ample, the candidate query is “oil and gas industry history”,
which is a query substitution. Given the passage “...shape
the history of the oil and gas industry in Oklahoma during
the early days of the Oklahoma Oil boom...”, we obtain a
set of query components {“history”, “oil and gas industry”,
“oil”}. Since “o0il” is a substring of “oil and gas industry”,
“oil” is removed from this set. Finally, a segmentation is
recovered from this set as “(oil and gas industry) (history)”.

More examples of the reformulated queries generated are
shown in Table 2. “Orig” denotes the segmentation of the
original query without substitution.

2The definition of redirect pages and the examples can be
found at http://en.wikipedia.org/wiki/Redirects_on_
wikipedia

Table 2: Examples of reformulated queries.

embryonic stem cells nuclear reactor types

increase mass transit abandoned mine reclamation

Orig (embryonic stem cells) [(nuclear reactor)(types)
Wiki |(embryonic stem cell)
Morph [(embryos)(stem cells) (nuclear reactor)(type)

Pat-add|(embryonic stem es cells)|(nuclear power reactor)(types)

Pat-chg | (embryonic germ cells) |(nuclear fuel types)

(nuclear reactor)(technology)(types)

(increase)(mass transit) (abandoned mine reclamation)
(increase)(public transport){(mining)(reclamation)
(increased)(mass transit) |(abandoned mines)(reclamation)
n/a (abandoned mine land reclamation)
(increase public transit) (abandoned land reclamation)

4.2 Indicating Retrieval Models

In the previous subsection, we generated a set of concep-
tual reformulated queries (V{5) that are understandable to
users, but what retrieval models should be applied to those
queries are still unclear. In this subsection we produce op-
erational reformulated queries by explicitly indicating the
retrieval models used. For example, given the conceptual re-
formulated query “(petroleum industry)(history)”, users can
easily understand its meaning, i.e. treating “petroleum in-
dustry” as a phrase and “history” as a word, but it is not
clear how search engines should implement this query.

Indicating the retrieval model corresponds to how to esti-
mate P(Qr|D). Recall that the second assumption of Claim
1 indicates that the proposed Distribution Of Queries (DOQ)
model has the ability of capturing the dependencies of queries
terms during the retrieval step. Thus, two types of retrieval
models are considered: the document-level model and the
passage-level model.

The document-level model assumes the query terms
in the reformulated queries are independent given the doc-
ument. Specially, P(Q|D) is estimated in Eq. 7.

P(@Q.ID) = T] P(ID) (7)
teQr
where P(t|D) is estimated by the language modeling ap-
proach [21][28].

The passage-level model considers the dependencies
between query terms in a reformulated query by preferring
documents where the whole query is observed within a pas-
sage. Specifically, P(Q,|D) is estimated in Eq. 8.

_ #psgN(Qr, D)
P(Q|D) = FL s (®)
where #psgN(Qr, D) denotes the number of passages with
size N containing @, in document D and #psgN (D) de-
notes the total number of passages with size N in document
D. Note that #psgN(Qr, D) can be easily collected in the
previous step where the conceptual reformulated queries are
generated. This maximal likelihood estimation (Eq. 8) can
be smoothed with the background model. Based on the
value of N, different passage-level models can be generated.

The Indri query language [16] provides an implementa-
tion of these retrieval models. For example, using the In-
dri query language, the operational queries for a conceptual
query “(petroleum industry) (history)” are displayed in Table
3 by using the document-level model and the passage-level
model, respectively. In this query language, the operator
“#combine” is an implementation of Eq. 7 and the opera-
tor “#uwN” is an implementation of Eq. 8 where N is the
passage size. “#1” is an operator for a phrase.

Based on the choice of retrieval models, the set of op-
erational reformulated queries are different. Vgr and Vé’r
denote the set of operational queries using the document-
level model and the passage-level model, respectively. Table
4 shows VéiT and Vé’r for “oil industry history”. The cor-
responding conceptual reformulated queries (V) can be

Table 3: The Indri queries for “(petroleum indus-
try) (history)”

document-level:
#combine(#1(petroleum industry) history)
passage-level:

#uw20(#1(petroleum industry) history)
Table 4: The set of operational reformulated queries
for the original query “oil industry history”
document-level model (VST‘)

#combine(oil industry history),
#combine(#1(oil industry) history),
#combine(#1(petroleum industry) history),
#combine(#1(oil and gas industry) history),
#combine(oil industrialized history),...
passage-level model (V7)

#uw20(oil industry history),

#uw20(#1(oil industry) history),
#uw20(#1(petroleum industry) history),
#uw20(#1(oil and gas industry) history),
#uw20(oil industrialized history),...

found in Table 1. The final set of reformulated queries Vg,
could be VST7 or V5T7 or the union of both according to the
retrieval models used. The union of both is used when the
document-level and the passage-level models are combined.

S. ESTIMATING QUERY DISTRIBUTIONS

In this section, we first propose a model to learn the
query distribution by optimizing the retrieval performance
and then we describe the features used to characterize each
reformulated query.

5.1 Model

In order to estimate the probability for each reformulated
query, we assume it is a linear combination of their feature
values as shown in Eq. 9.

P(Q:Q) = ZAkfk (9)

where fi(Qr) denotes the feature value extracted to char-
acterize a reformulated query @, and)\ is the parameter
corresponding to fi. Similar assumptions have been made
in previous work [2, 24].

Using Eq. 9, Eq. 2 can be rewritten as follows:

log(P(Pq,|D))

VQ,|

> P(Qr,]Q)log(P(Q,|D))

i=1

VQ, |

Z ZAkfk (@r;) log(P(Qr;|D))

‘VQT‘

= D% D fr(@n)10a(P(Qr|D))

= > MF(Vo,,D) (10)

Table 5: Three types of features for the reformulated
query Q,

PSG Features

psgN-count|count of passages with size N containing Q,
doc-count |count of documents containing Q.

NGRAM Features

qlog probability estimated from query logs

title probability estimated from title

body probability estimated from body

anchor probability estimated from anchor text
OPER Features

Orig whether it is the original query

Sub whether it is a substituted query

Morph whether it is a substituted query using Morph

Pat-add whether it is a substituted query using Pat-add
Pat-chg whether it is a substituted query using Pat-chg
Wiki whether it is a substituted query using Wiki
Seg whether it is a segmented query

where Fi(Vo,,D) = Y12 £1(Qy,) log(P(Qr,|D)) is the
combination of the retrieval scores using each reformulated
query weighted by the feature fi. Fi(Vg,,D) can be con-
sidered as the retrieval feature extracted from the document
D and a set of reformulated queries Vq,.. Each reformulated
query feature fj corresponds to a retrieval feature Fj and
they share the same parameter \r. Therefore, the parame-
ters A\i can be learned by optimizing the performance of the
retrieval model (Eq. 10), which is a linear combination of
retrieval features Fj.

A learning to rank approach (ListNet [8]) is used to learn
the parameters, since it considers the same form of retrieval
models as Eq. 10. Specifically, the parameters are learned
by optimizing the cross entropy between the estimated docu-
ment distribution (P(D|Pg.,.)) and the underlying document
distribution (P*(D|Q)), where P(D|Pg,.) is estimated with
the help of Eq. 10 and P*(D|Q) is estimated based on the
relevance judgments of Q.

In this paper, a variation of ListNet is considered. Instead
of using the neural network, a limited-memory version of
BFGS [5] is used for optimization due to its efficiency.

5.2 Features

Recall that the first assumption of Claim 1 indicates that
the proposed DOQ model has the advantage of considering
dependencies between query terms during the estimation of
P(Qr|Q). Thus, features that characterize the reformulated
query @, as a whole are essential for estimating P(Q-|Q).
Three types of features are considered here.

The first type of features (PSG) are information extracted
from the target corpus. Specifically, we consider the number
of passages that contain the whole reformulated query as a
feature, which provides evidence about whether this refor-
mulated query is widely used in the target corpus. Different
passage sizes are considered. A smaller passage size indi-
cates stronger dependencies between query terms, but has
lower coverage since a lot of reformulated queries can not be
observed within a tighter window. On the other hand, using
a bigger passage size increases the coverage at the cost of
sacrificing some quality. Thus, it is interesting to consider
features extracted based on different passage sizes. We also
extend the passage size to the document length.

The second type of features (NGRAM) are based on query
logs and the web corpus. Query logs record the frequencies

of the queries used by search engine users, which can be
directly used as features of a reformulated query. On the
other hand, the web corpus used by search engine compa-
nies provides better coverage than the target corpus, and
thus can be used as a complement. Furthermore, different
fields of a web page serve different purposes, thus additional
information can be obtained by splitting the frequencies of
a reformulated query in the web corpus according to differ-
ent fields. Thanks to the Web N-gram Services provided by
Microsoft [12], the above information can be efficiently ob-
tained, where raw frequencies are simulated by the N-gram
language model probabilities. Particularly, these probabili-
ties calculated from query logs and different fields of a web
page (body, title and anchor) are provided, respectively.

The third type of features (OPER) indicate the oper-
ations applied to the original query to generate the con-
cerned reformulated query. These features correspond to
questions such as whether the reformulated query is the orig-
inal query, or a substituted query, or a segmented query. For
a substituted query, we further consider what kind of meth-
ods are used (Morphologically Similar Words, Adding Word
Patterns, Changing Word Patterns and Wikipedia Redirect
Page from Section 4.1). This type of features help combine
different reformulation operations within the same frame-
work.

The above three types of features are summarized in Table
5. psgN-count can be instantiated to a variety of features
by taking different values of N.

Note that the features discussed in Table 5 are extracted
based on the conceptual queries. When document-level and
passage-level retrieval models are both used, differentiat-
ing VST and Vé’T becomes a problem, since they are gen-
erated from the same set of conceptual queries and thus
share the same feature values. The solution is to learn dif-
ferent sets of parameters (M) for each retrieval model. In
Eq. 10, Ay corresponds to the retrieval feature Fj (Vg,., D) =

ZLE{T‘ Ji(Qr;)log(P(Qr,|D)). Fr(Vag,,D) consists of two
parts, ie. fi(Qr,) and log(P(Qr,|D)). Queries in V{,
and V{5, will have the same f(Q-;) since they are gener-
ated from the same conceptual query, but they have differ-
ent log(P(Qr,|D) values since different retrieval models are
used. Therefore, Fj(Vg,,D) is different for V, and V.
Based on different Fj, different sets of A\ can be learned for
V4, and V.

6. EXPERIMENTS

Two TREC collections (Gov2 and Robust04) are used for
experiments. The statistics of each collection are summa-
rized in Table 6. These two collections have different prop-
erties. Gov2 is a large web collection with abundant varia-
tions of expressions, while Robust04 is a newswire collection
using consistent vocabularies.

For each collection, two indexes are built, one not stemmed
and the other stemmed with the Porter Stemmer[22]. Stem-
ming is a process of transforming words to their root forms,
which can be regarded as a specifical form of query refor-
mulation conducted during the indexing phase. These two
indexes help explore the effect of the proposed reformula-

Table 6: TREC collections used in experiments

Name Docs Topics
Gov2 25,205,179 | 701-850
Robust04 | 528,155 301-450,601-700

Table 7: Example of the query distribution learned on the non-stemmed index using the document-level
retrieval model. Top ranked reformulated queries (Q.) are displayed. In the query distribution, the original
query (Q) is italicized. Average Precision (AP) is reported as the retrieval performance.

[P(Qr]Q) Reformulated Query (Q) | APJP(Q+]Q) Reformulated Query (Q:) | AP]
(): prostate cancer treatments 41.21][Q: cruise ship damage sea life 6.75
QDist(doc) 50.23][QDist(doc) 25.83
0.1390 #combine(prostate cancer treatment) 42.51|| 0.1820 #combine(cruise ship damage sea life) 6.75
0.1118 #combine(#1(prostate cancer) treatment) 48.88([0.0950 #combine(#1(cruise ship) damage sea life) 21.69
0.0920 #combine(prostate cancer treatments) 41.21| 0.0544 #combine(cruise ship damage #1(sea life)) 9.80
0.0485 #combine(#1(prostate cancer treatment)) 11.50|| 0.0544 #combine(#1(cruise ship) damage #1(sea life))| 7.43
Q: kyrgyzstan united states relations 25.88(|Q: school mercury poisoning 10.29
QDist(doc) 39.18|[QDist(doc) 16.64
0.1652 #combine(kyrgyzstan united states relations) 25.88|| 0.2161 #combine(school mercury poisoning) 10.29
0.1128 #combine(kyrgyzstan #1(united states) relations) [36.56[0.1284 #combine(school mercury exposure) 20.26
0.0573 #combine(kyrgyzstan united states foreign relations)|{14.99|| 0.0441 F#combine(school #1(mercury exposure)) 13.64
0.0566 #combine(kyrgyzstan us relations) 35.74|| 0.0335 #combine(schools mercury poisoning) 9.11
Q@: blue grass music festival history 16.65(|@: kudzu pueraria lobata 44.96
QDist(doc) 38.06[|QDist(doc) 51.83
0.1953 #combine(blue grass music festival history) 16.65(0.2778 #combine(kudzu) 52.69
0.1456 #combine(bluegrass music festival history) 50.10(| 0.1244 #-combine(kudzu pueraria lobata) 44.96
0.0698 #combine(#1(bluegrass music) festival history) 23.90|| 0.0596 #combine(#1(kudzu pueraria lobata)) 22.08
0.0411 #combine(bluegrass #1(music festival) history) 22.46|| 0.0580 #combine(#1(kudzu kudzu)) 1.93

tion model when some basic reformulation operation (i.e.,
stemming) is applied or not. No stopword removal is done
during indexing. For each topic, the title part is used as the
query. The reformulated queries are generated from the non-
stemmed index. The query distribution is learned for each
type of index respectively and then the retrieval performance
of using the learned query distribution on the corresponding
index is reported.

Two passage sizes are used in this paper, i.e., 20 and 100,
according to [26], which represent a tight window and a
loose window, respectively. Correspondingly, two passage-
level retrieval models are developed to generate reformulated
queries, i.e. “#uw20” and “#uw100” (see Table 3). Similarly,
two features, i.e. psg20-count and psgl00-count (see Table
5), are extracted to describe a reformulated query.

Two types of query distributions are particularly consid-
ered: the first one only contains the reformulated queries
using the document-level model (“#combine”; see Table 3),
which is denoted as QDist(doc); the second one combines

the reformulated queries using both the document-level model

(“#combine”) and the passage-level models (“#uw20” and
“#uw100”), which is denoted as QDist(doc+psg).
Several baselines are compared. QL denotes the query
likelihood language model [21, 28]. SDM denotes the se-
quential dependence model [17]. RM denotes the relevance
model [14]. The parameters of RM are set according to [27].
Seg-SVM denotes a SVM-based query segmentation method
[3], which is trained on a corpus of 500 pre-segmented noun
phrases [4]. QL-psg denotes a passage-augmented language
model [15] which combines the retrieval score of a document
and the retrieval score of the best passage of this document.
The standard performance measures, mean average preci-
sion (MAP) and the normalized discounted cumulative gain
at 10 (NDCG10), are used to measure the retrieval perfor-
mance®. The two-tailed t-test measures significance.

6.1 Examples

First, we present examples of the query distribution learned

by using the document-level retrieval model QDist(doc).
Table 7 shows the example on the non-stemmed index. The

3In this paper, we report MAPx 100 and NDCG10x100.

Table 8: Example of the query distribution learned
on the non-stemmed index using the document-level
and the passage-level retrieval models.

[P(Qr]Q) Reformulated Query (Qr) [AP
@: ephedra ma huang deaths 47.42
QDist(doc) 57.07
QDist(doc+psg) 62.58
0.1682 #combine(ephedra deaths) 61.78
0.1434 #combine(ephedra ma huang deaths) 47.42
0.0439 #combine(ephedra ma huang death) 47.12
0.0395 #combine(ephedra #1(ma huang) death) 47.41
0.0394 #combine(#1(ephedra sinica ma huang) deaths)| 1.49
0.0392 #combine(ephedra sinica ma huang deaths) 28.83
0.0284 #uwl00(ephedra deaths) 44.34
0.0276 #combine(#1(ephedra ephedra) deaths) 4.69
0.0233 #combine(#1(ephedra ma huang) death) 2.66
0.0193 #uw20(ephedra deaths) 36.45

retrieval performance of using the original query and using
the query distribution is compared. The retrieval perfor-
mance of the top ranked reformulated queries in the query
distribution is also displayed.

Table 7 shows that the learned query distribution obvi-
ously outperforms the original query. In the query distribu-
tion, the appropriate probability is assigned to the original
query. In most cases, the original query receives the highest
probability, since it is safe not to deviate from the original
query too much. In some cases, the reformulated queries re-
ceive higher probabilities than the original one. For exam-
ple, given the original query “prostate cancer treatments”,
the reformulated queries “prostate cancer treatment” and
“#1(prostate cancer) treatment” receive higher probability
and they both outperform the original query, since “treat-
ment” is more likely to be used with “prostate cancer” in
actual queries. “kudzu pueraria lobata” is another example,
where the reformulated query “kudzu” receives higher prob-
ability since “pueraria lobata” is another and less popular
name of “kudzu” and not very useful for retrieval.

Besides the original query, many reasonable and effective
reformulated queries can also be observed in the learned
query distribution. For example, “#1(cruise ship) damage
sea life” and “kyrgyzstan #1(united states) relations” are
segmented queries, where much better retrieval performance
is achieved by discovering the concepts “cruise ship” and

Table 9: The results of different reformulation models. The best performance is bolded. * denotes significantly
different with baselines.

Gov2 Robust04
nonstem pstem nonstem pstem
MAP NDCG10 MAP NDCG10 MAP NDCG10 MAP NDCG10
QL 26.89 40.41 29.27 40.68 22.73 41.50 24.98 42.08
SDM 28.29 41.59 32.40 44.80 23.76 42.90 26.78 44.53
RM 28.72 41.30 31.07 40.64 24.82 42.49 26.71 42.42
Seg-SVM 26.36 38.84 28.90 39.90 22.73 40.80 25.12 42.34
QL-psg 26.52 41.30 29.25 41.02 22.99 41.67 25.59 42.42
QDist(doc) 31.09 45.36 33.31 46.07 25.76 43.85 27.48 45.13
vs. QL 15.6%* 12.2%* 13.8%* 13.2%* 13.8%* 5.7%* 10.0%* 7.2%*
vs. SDM 9.9%* 9.1%* 2.8% 2.8% 8.4%* 2.2% 2.6% 1.3%
vs. RM 8.8%* 9.8%" 7.2%* 134%™ 3.8% 3.2% 2.9% 6.4%"
QDist(doc+psg) | 32.02 46.27 33.98 46.08 26.16 43.84 27.88 45.20
vs. QL 19.1%* 14.5%* 16.1%* 13.8%* 15.1%* 5.6%* 11.6%* T4%*
vs. SDM 13.2%* 11.8%* 4.9%* 2.9% 10.1%* 2.2% 4.1%* 1.5%
vs. RM 11.5%* 12.0%* 9.4%" 134%™ 5.4%" 3.2% 4.4%" 6.6%"

“united states” in original queries. “school mercury expo- Table 10: Further analysis of query distribution.

sure” and “bluegrass music festival history” are substituted
queries where the original query words “mercury poisoning”
and “blue grass” are replaced with “mercury exposure” and
“bluegrass”, respectively. Significant performance improve-
ment can be observed by using these substituted queries.

Furthermore, we present the query distribution learned by
using both the document-level and the passage level retrieval
models QDist(doc+psg). Table 8 displays the example of
this type of query distribution using the non-stemmed index.

Table 8 shows that besides using the document-level re-
trieval model, QDist(doc+psg) also applies the passage-level
retrieval models to some important reformulated queries such
as “#uw100(ephedra deaths)” and “#uw20(ephedra deaths)”.
These passage-level queries help further improve the perfor-
mance of QDist(doc).

6.2 Results

The first experiment is conducted to compare the query
distribution model with other reformulation models. The
Relevance Model (RM) and the Sequential Dependency Model
(SDM) represent the Distribution Of Terms (DOT) models.
Seg-SVM generates a single segmented query and combines
it with the original query, which can be considered as a vari-
ant of the Single Reformulated Query (SRQ) model. The
performance of the language model augmented by the pas-
sage information (QL-psg) is also reported. The passage
sizes (20 and 100) as used in the query distribution model are
considered in QL-psg respectively and better performance is
reported for QL-psg. The results are provided in Table 9.

Table 9 shows that the query distribution models out-
perform both the DOT models (SDM and RM) and the
SRQ model (Seg-SVM), which supports the advantages of
modeling reformulation as a distribution of queries instead
of a distribution of terms and a single reformulated query.
When the passage-level retrieval models are incorporated,
QDist(doc+psg) further improves QDist(doc). Particularly,
QDist(doc+psg) performs significantly better than both SDM
and RM for MAP, which are the state-of-the-art reformula-
tion techniques. QL-psg is also worse than QDist methods,
which shows that the benefits of QDist come from modeling
the original query as a query distribution instead of simply
using the passage information.

The second experiment is conducted to further analyze

N10 denotes NDCG10. QDist denotes QDist(doc).
Gov2 Robust04
nonstem pstem nonstem pstem
MAP N10 MAP N10 |[MAP N10 MAP NI10
QL 26.89 40.41 29.27 40.68(22.73 41.50 24.98 42.08
SDM |28.29 41.59 32.40 44.80(23.76 42.90 26.78 44.53
RM |28.72 41.30 31.07 40.64(24.82 42.49 26.71 42.42
single | 23.26 35.83 25.88 37.21(19.37 36.34 22.33 39.22
equal [28.21 43.53 31.31 44.87|24.62 42.32 26.55 44.02
QDist|31.09 45.36 33.31 46.07(25.76 43.85 27.48 45.13

the query distribution model. Specifically, we consider two
additional baselines. The first baseline is to use the best
reformulated query (except the original one) in the learned
query distribution, which is denoted as “single”. Compared
with Seg-SVM, i.e. the variant SRQ method used in the
previous experiment, “single” is an exact SRQ method and
it uses the same set of reformulated queries as QDist. Thus,
the comparison between “single” and QDist will focus on the
effect of using the query distribution or a single best refor-
mulated query. The second baseline is to assign equal proba-
bilities to all reformulated queries in the distribution, which
is denoted as “equal”. The comparison between “equal” and
QDist helps show the effect of the probability estimation
method used by QDist. Table 10 shows the results, where
QDist(doc) is used as the query distribution method and
QL, SDM and RM are used as references.

Table 10 shows that as Seg-SVM, “single” is also worse
than QDist, which clearly indicates that using the whole
query distribution is much better than using the single re-
formulated query. “single” is even worse than QL, which
supports the observations of previous research [1] that it is
important to combine the original query and the reformu-
lated query to achieve good performance on TREC collec-
tions. “equal” is better than QL, comparable with SDM
and RM, but it is still worse than QDist. This shows that
the query probability estimation method is effective. In ad-
dition, it is expensive to use the “equal” method, since it
has to use all reformulated queries generated for retrieval.
When the number of reformulated queries is big, it causes
considerable computational cost. In contrast, QDist assigns
appropriate probabilities to reformulated queries, thus it is
easy to pick the top ranked reformulated queries for retrieval

0.32

0.31 —t

0.3

0.29 ——SDM

=#-RM
QDist(doc)

|1T

0.28 -

0.27
0.26

0.25 T
1 2 3 5 10 15 20 all

Gov2

Figure 1: The effect of the number of reformulated queries.
of top ranked reformulated queries and y-axis is MAP.

Table 11: The performance of top three queries
in QDist(doc) using different types of features. p
denotes PSG, n denotes NGRAM and o denotes
OPER. N10 denotes NDCG10.

Gov2 Robust04
nonstem pstem nonstem pstem
MAP N10 MAP N10 (MAP N10 MAP NI10

p (30.36 43.35 31.94 43.01|24.52 42.42 25.90 43.01
n 29.45 42.59 31.93 42.72|24.93 43.49 26.64 44.36
o 27.86 41.12 30.98 42.74124.67 42.83 26.75 44.57
p+n(30.29 43.45 32.02 42.70|25.16 43.88 26.73 44.35
p+o[30.14 43.37 32.06 43.76|24.61 42.62 26.59 44.17
n+o0|28.63 41.83 31.36 42.84|25.22 43.69 27.00 44.70
all |{30.06 42.69 32.10 43.00 (25.23 43.83 27.01 44.58

in practice. The effect of the number of reformulated queries
chosen is explored in the third experiment.

Fig. 1 displays the effect of using the top ranked refor-
mulated queries in the learned query distribution. On both
collections, only using the top three reformulated queries
can outperform both RM and SDM. The performance of us-
ing the top 10 reformulated queries is already very close to
the performance of using the whole distribution. Therefore,
QDist can be easily used in practice. Similar results are
observed on the Porter-Stemmed index.

The fourth experiment explores the effect of different types
of features (PSG, NGRAM, OPER, see Table 5). We are
particularly interested in their effects on picking the top
ranked queries. The performance of the top three reformu-
lated queries in QDist(doc) using different types of features
is reported in Table 11. The best performance is bolded.

Table 11 shows that better performance can be achieved
when different types of features are combined together. Be-
sides the top three reformulated queries, we also explore
other numbers of top ranked reformulated queries. Gener-
ally, when more reformulated queries are used, the perfor-
mance from using different feature sets becomes closer.

7. RELATED WORK

The Relevance Model [14] is representative of a series of re-
formulation models [18][7][26] that expand the original query
with new words. The Sequential Dependency Model [17] is
an example of models [19] that augment the query repre-
sentation with phrases. As discussed, these models focus on
adding new query components, words or phrases, but do not
consider how to use those components to construct queries.

Many models have been proposed for specific reformula-
tion operations such as segmentation and substitution.

Bergsma and Wang’s work [4] is among the earliest on
query segmentation. They trained a SVM classifier to make

0.26
0.25
0.24

>~ ==SDM
023 4+— -=-RM

QDist(doc)

0.22
0.21

1 2 3 5 10 15 20 all

Robust04

Non-stemmed index is used. x-axis is the number

a decision for each segmentation position using several types
of features. Tan and Peng [23] proposed an unsupervised
query segmentation method using a concept-based language
model. The parameters of the language model were esti-
mated by the EM algorithm conducted on the partial cor-
pus specific to the query. Bendersky et al [3] proposed a
two-stage query segmentation method.

Jones et al [13] first provided a clear definition for query
substitution. In their work, a substitution pair is generated
from two successive queries that share some common parts.
Then, a linear regression classifier is trained to decide the
quality of each pair. Wang and Zhai [25] mined the query
log to find potential query term substitution and addition
patterns. Their basic idea is that similar words would have
similar neighborhood words in query logs. Dang and Croft
[10] re-implemented and tested Wang and Zhai’s method for
TREC collections. The results showed this method does not
work well for the well-formed TREC queries.

Peng et al [20] proposed a context-sensitive stemming
method for web queries, where query words are stemmed
based on the analysis of their context. Stemming can be
considered as a special case of query substitution, since it
replaces original query words with their roots.

Guo et al [11] proposed a CRF-based model for query re-
finement, which combined several tasks like spelling correc-
tion, stemming and phrase detection. Within their model,
different tasks can be solved simultaneously instead of se-
quentially. Their model mainly focused on morphological
changes of the query words such as spelling correction and
stemming, but did not consider query substitution.

Few researchers have considered query segmentation and
query substitution from a unified view and reported experi-
mental results on TREC collections.

Collins-Thompson and Callan [9] represented the original
query as a distribution of feedback language models. The
feedback language model is a distribution of words including
original query words and new words and can be estimated
similar to Relevance Model. Thus, their method still belongs
to the category of Distribution Of Terms.

Our previous work [omitted for anonymous review| pro-
posed improving verbose queries using subset distribution.
This is a special case of the reformulation framework pro-
posed in this paper, where only subset queries are considered
in the query distribution.

Passage level evidence has been widely used for informa-
tion retrieval. Callan [6] explored the effect of different types
of passages with INQUERY. Liu and Croft [15] studied pas-
sage retrieval within the language modeling framework. Xu
and Croft [26] proposed Local Context Analysis, a query
expansion method, that analyzed passages. However, few

researchers have considered using passage level evidence for
query reformulation.

8. CONCLUSION

In order to capture the dependencies of query words and
phrases, a novel reformulation framework is proposed in this
paper, where the original query is reformulated as a distribu-
tion of queries instead of a bag of components. Experiments
on TREC collections show that this model significantly im-
proves retrieval performance on both the web corpus and
the newswire corpus. Currently, we focus on modeling the
dependencies within a reformulated query. How to capture
the dependencies between reformulated queries will be an
interesting future issue.

Acknowledgments

This work was supported in part by the Center for Intelli-
gent Information Retrieval and in part by ARRA NSF IIS-
9014442. Any opinions, findings and conclusions or recom-
mendations expressed in this material are the author’s and
do not necessarily reflect those of the sponsor.

9. REFERENCES

[1] M. Bendersky and W. B. Croft. Discovering key concepts in
verbose queries. In SIGIR08, pages 491-498, Singapore,
2008.

[2] M. Bendersky, D. Metzler, and W. B. Croft. Learning
concept importance using a weighted dependence model. In
WSDM10, pages 31-40, New York City, NY, 2010.

[3] M. Bendersky, D. A. Smith, and W. B. Croft. Two-stage
query segmentation for information retrieval. In SIGIR09,
pages 810-811, Boston, MA, 2009.

[4] S. Bergsma and Q. I. Wang. Learning noun phrase query
segmentation. In EMNLP-CoNLLO07, pages 819-826,
Prague, 2007.

[5] R. H. Byrd, J. Nocedal, and R. B. Schnabel.
Rrepresentations of quasi-newton matrices and their use in
limited memory methods. Mathematical Programming,
63(2):129-156, 1994.

[6] J. P. Callan. Passage-level evidence in document retrieval.
In SIGIRY4, pages 302-310, Dublin,Ireland, 1994.

[7] G. Cao, J. Y. Nie, J. Gao, and S. Robertson. Selecting good
expansion terms for pseudo-relevance feedback. In
SIGIR0S8, pages 243250, Singapore, 2008.

[8] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning
to rank: from pairwise approach to listwise approach. In
ICMLO7, pages 129-136, New York, NY, USA, 2007. ACM.

[9] K. Collins-Thompson and J. Callan. Estimating and use of
uncertainty in pseudo-relevance feedback. In SIGIR07,
pages 303-310, Amsterdan, Netherland, 2007.

[10] V. Dang and W. B. Croft. Query reformulation using
anchor text. In WSDM10, pages 41-50, New York, NY,
2010.

[11] J. Guo, G. Xu, H. Li, and X. Cheng. A unified and
discriminative model for query refinement. In SIGIR0S,
pages 379-386, Singapore, 2008.

[12] J. Huang, J. Gao, J. Miao, X. Li, K. Wang, F. Behr, and
C. L. Giles. Exploring web scale language models for search
query processing. In WW W10, pages 451-460, New York,
NY, USA, 2010. ACM.

[13] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating
query substitutions. In WW W06, pages 387-396, Ediburgh,
Scotland, 2006.

[14] V. Lavrenko and W. B. Croft. Relevance based language
models. In SIGIR01, pages 120-127, New Orleans, LA,
2001.

[15] X. Liu and W. B. Croft. Passage retrieval based on
language models. In CIKMO02, pages 375-382, McLean, VA,
2002.

[16] D. Metzler and W. B. Croft. Combining the language model
and inference network approaches to retrieval. Information
Processing and Management, 40(5):735-750, 2004.

[17] D. Metzler and W. B. Croft. A markov random field model
for term dependencies. In SIGIR05, pages 472479,
Salvador,Brazil, 2005.

[18] D. Metzler and W. B. Croft. Latent concept expansion
using markov random fields. In SIGIR07, pages 311-318,
Amsterdam, the Netherlands, 2007.

[19] G. Mishne and M. de Rijke. Boosting web retrieval through
query operations. In ECIR05, pages 502-516, Spain, 2005.

[20] F. Peng, N. Ahmed, X. Li, and Y. Lu. Context sensitive
stemming for web search. In SIGIR07, pages 639-646,
Amsterdam, the Netherlands, 2007.

[21] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In SIGIR98, pages
275281, Melbourne, Australia, 1998.

[22] M. F. Porter. An algorithm for suffix stripping. Program,
14(3):130-137, 1980.

[23] B. Tan and F. Peng. Unsupervised query segmentation
using generative language models and Wikipedia. In
WWWO08, pages 347-356, Beijing,China, 2008.

[24] L. Wang, J. Lin, and D. Metzler. Learning to efficiently
rank. In SIGIR10, pages 138—145, Geneva, Switzerland,
2010.

[25] X. Wang and C. Zhai. Mining term association patterns
from search logs for effective query reformulation. In
CIKMO08, pages 479-488, Napa Valley, CA, 2008.

[26] J. Xu and W. B. Croft. Improving the effectiveness of
information retrieval with local context analysis. ACM
Transactions on Information Systems, 18(1):79-112, 2000.

[27] Y. Xu, G. J. Jones, and B. Wang. Query dependent
pseudo-relevance feedback based on Wikipedia. In
SIGIR09, pages 59—66, Boston, MA, 2009.

[28] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
SIGIRO01, pages 334-342, New Orleans, LA, 2001.

Appendix

Claim 2. ZQTE{QT\tjeQT} P(Q-|Q) = P(t;]Q), given the
condition P(Qr|Q) = [T,cq, P(IQ) [y gq, (1 — P('1Q)).
PRrROOF. We use the binary variable b; to denote whether
the term t¢; appears in Q,. b; = 1, when ¢; is in @, and
b; = 0 otherwise. Thus, @, can be represented as a series
of variables (b1, b2, ..., bjv;.|) that correspondes to each term
in Vr. We assume P(b;|Q) follows a multi-Bernoulli distri-
bution [21]*, i.e. P(b; = 0|Q) + P(b; = 1|Q) = 1. Then,
P(b; = 11Q) = P(:|Q) and P(b = 0/Q) = 1 — P(L:|Q).
Therefore, the condition can be rewritten as P(Q.|Q) =

4Claim 2 also holds if multinomial distribution is assumed.
The proof is omitted due to space limitation.

> P@IQ

Qre{Qrlt;€Qr}
= > D D Plhibybg|Q)
b1e{0,1} bj=1 by, €{0,1}

V|

= > D Y T Pel@)

b1€{0,1} bj=1 by €{0,1} k=1

= P;=1Q > .. > J[reQ

b1€{0,1} bjy,|€{0,1} k#j

= P(b; =1|Q) [[IP(bx = 0|Q) + P(bx = 1]Q)]
k#j

= Pb;=1Q)

= P(|Q)

