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ABSTRACT

In this work, we focus on modeling relative effectiveness of result
sets to leverage multiple ranking algorithms. We use a relative ef-
fectiveness estimation technique (ReEff) that directly predicts the
difference in effectiveness between a baseline ranking algorithm
and other alternative ranking algorithms by using aggregates of
ranker scores and retrieval features. Our ranker selection exper-
iments on a large learning-to-rank data set shows that ReEff can
provide substantial improvements over using a single fixed ranker
– ReEff achieves more than 10% relative improvement on about 5%
of the queries – and when using ranker and retrieval based features,
modeling the relative effectiveness of rankers performs better than
modeling their effectiveness independently. Further, compared to
fusion, ranker selection yields different types of benefits and ranker
selection using ReEff can further improve fusion for three fusion
techniques.

1. INTRODUCTION
Many web search engines combine several features using learn-

ing to rank algorithms. Learning to rank algorithms (rankers) differ
based on the features they use, the type of objective functions they
target, as well as the optimization techniques they use to find pa-
rameter settings [11, 23, 16]. For example, RankSVM minimizes
a pairwise objective function using convex optimization, whereas
AdaRank [23] uses direct optimization for rank-based metrics such
as MAP. Given these differences in the rankers, their relative per-
formance can vary for different queries, even though their average
performance can be similar. Ideally, a query-dependent selection
of rankers will help improve performance over a fixed choice.

To this end, several query-dependent modifications have been
proposed for selecting appropriate ranking functions for each query.
While some focus on identifying the subset of training data to train
query-specific ranking functions from, other focus on designing
loss functions that are query-specific [5]. In recent work, Peng et
al. [17] use the training data to identify nearest-neighbor queries,
which are then used to estimate the expected performance of each
ranker.

In contrast to these techniques, we focus on a direct approach
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for selecting the best ranker for each query. We use a relative effec-
tiveness estimation technique (ReEff) that models the difference in
effectiveness between the rankings. To represent each ranker, we
use features derived from the ranker scores and the features used
by the rankers themselves. Specifically, we use statistical aggre-
gates such as mean and variance to characterize the distribution of
the ranker scores. We also use aggregates of retrieval features and
use the average similarity of the top K feature vectors of each rank-
ing. Using these aggregate features, we learn a regression model
that can predict the difference in effectiveness between a baseline
ranker and the other rankers. The predicted difference is then used
to select the best ranker for each query. Unlike independent esti-
mation of the effectiveness of each ranker, this approach focuses
on modeling a quantity that is closer to the end goal of selecting a
ranker that performs better than a fixed baseline ranker.

Using ReEff we conduct ranker selection experiments on a large
learning-to-rank data set and demonstrate that this approach yields
substantial improvements (more than 10% relative improvement on
about 5% of the queries) over using a single fixed ranker. We find
that when using ranker based and retrieval based features, model-
ing relative effectiveness of rankers is better than modeling inde-
pendent effectiveness.

We use ReEff to also improve fusion – the merging of rankings
from multiple rankers. We find that selection yields different types
of benefits when compared to simple fusion techniques: Selection
has higher impact on a smaller subset of queries, whereas fusion
has lower impact but on a larger subset of queries. To leverage the
different benefits of selection and fusion, we conduct ranker fusion
experiments, where we use query-dependent selection of rankers to
augment fusion in three different ways: 1) Selective fusion, where
we select fusion for some queries, while selecting individual rank-
ings for others. 2) Selecting rankers, where we select the top few
rankers to fuse for each query, and 3) Weighting rankers, where we
weight each ranker based on its relative effectiveness with respect
to the baseline ranker. Our experiments show that relative effective-
ness estimation using ReEff can be effective for improving three
state-of-the-art fusion techniques.

The main contributions of this work are in applying ReEff, a rel-
ative effectiveness modeling technique for selecting between dif-
ferent ranking algorithms, analyzing the impact of ranker selection
using ReEff on a large web search data set, and demonstrating the
utility of ranker selection for improving ranker fusion.

The remainder of the paper is organized as follows: Section 2
presents related work in query-dependent selection. Section 3 de-
scribes the ranker selection approach using ReEff and ways to im-
prove fusion using query-dependent selection. Sections 4 and 5
present experimental results for ranker selection and fusion and
Section 6 presents the analysis of ReEff’s performance, followed



by conclusions in Section 7.

2. RELATED WORK
Several query-dependent application of retrieval techniques have

been studied in various contexts including selective query expan-
sion [7, 4], query-dependent learning [20, 5, 9] and query-dependent
selection of ranking functions [18, 17].

Selective expansion techniques can be viewed as a selective ap-
plication of a ranking function. For example, Amati et al. [4] use
a measure of the difficulty of the initial ranking to predict whether
expansion will lead to topic drift, whereas Townsend et al. [7] use
relative entropy between the language models of the expanded and
original ranked lists to detect if expansion causes topic drift. Soskin
et al. [22] utilize query-drift and clarity based variants to improve
the fusion of results retrieved from multiple query-expansion mod-
els. However, these techniques focus on measures that are designed
to model aspects specific to query expansion and hence may not be
well-suited for selecting between learning-to-rank algorithms for
large scale web search.

Recently, query-dependent modifications to learning-to-rank al-
gorithms have been proposed. Qin et al. [20] propose a modifica-
tion to RankSVM that learns multiple hyperplanes (one for each
top K rank), whose rankings are then combined to produce a sin-
gle ranking. Bian et al. [5] develop query dependent loss functions
which adjust the contribution of each query to the learning, based
on the query’s type: whether it is informational or navigational.
Different from these approaches, instead of focusing on the train-
ing of the ranking algorithms, we focus on post-ranking modeling
of the relative effectiveness of the rankings. Furthermore, the rel-
ative effectiveness modeling approach is not restricted to using a
particular ranking algorithm.

Selecting similar queries has been proposed as a mechanism for
query-dependent training and selection of rankers. He et al. [10]
use query-based pre-retrieval features to identify a cluster of queries
in the training set, and select the best retrieval model on the cluster.
Another approach groups queries based on their difficulty by using
features such as click entropy and learns different ranking functions
for each group [24]. Plachouras et al. propose the use of two mea-
sures that characterize the broadness of query terms and show that
it is effective for choosing between two types of evidence combi-
nation techniques for the topic distillation task [18]. [9] identify
similar queries in the training set and use these neighbor queries to
train different ranking functions using the same ranking algorithm.

Our approach is similar to that of learning-to-select (LTS) ap-
proach proposed by Peng et al. [17]. Using a baseline ranking al-
gorithm such as BM25, they represent each ranker using the diver-
gence of its scores with that of the baseline ranker’s scores. The
divergence scores are then used to find k-nearest neighbor queries
in the training set in order to estimate the performance of each
ranker.We use LTS as a key baseline for comparison with the pro-
posed ranker selection technique.

The key difference of our approach is that instead of focusing on
query-dependent training of ranking functions or using the training
queries to estimate performance of the rankers, we directly model
the relative effectiveness of the different rankings. In an earlier
poster paper, we showed how this relative effectiveness approach
can be used to select between two rankers on a small subset of
the Letor 3.0 data set [1]1. Using several additional variants of
the ranker score based and retrieval-based features themselves, we
show the relative effectiveness estimation can be used to effectively
select between multiple rankers and also improve the effectiveness
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of fusion.

3. RELATIVE EFFECTIVENESS
There are two broad approaches for leveraging multiple rankers:

1) Selection - Selecting a single ranking algorithm, and 2) Fusion
- Combining the results from the available rankers and re-ranking
them.

We argue that a query-dependent selection of rankers can im-
prove the performance of both selection and fusion. First, since no
single ranker performs the best for all queries, selecting the best
ranker for each query can improve performance over using a fixed
ranker for all queries. Second, query-dependent selection can im-
prove fusion in multiple ways. For example, we find that for some
queries fusion is beneficial, whereas for others selecting an indi-
vidual ranker is better. Therefore, selectively applying fusion can
improve over applying fusion for all queries.

Below we describe a relative effectiveness estimation technique
(ReEff) for query-dependent selection of rankers.

3.1 ReEff
The main idea behind ReEff is to learn a regression model that

can predict the difference in effectiveness between an alternate ranker
and a baseline ranker. If there are multiple alternate rankers, then
the alternate ranker with the highest positive predicted difference
is selected. If no alternate ranker has a positive predicted differ-
ence, then we choose the baseline ranker itself. By modeling the
relative difference in effectiveness, we learn to estimate the per-
formance of the alternate rankers in relation to the baseline ranker.
Thus, unlike independent estimation of effectiveness, modeling rel-
ative effectiveness allows us to capture dependencies between the
performance of the rankers for each query.

Let R = {B} ∪ A, be the set of m available rankers, where
B is the baseline ranker and A = {A1, · · · , Am−1} is the set of
alternate rankers. Let D

q
R be the ranking produced by the ranker

R ∈ R for query q. Also let T (Dq
R) denote the effectiveness of

the ranking D
q
R, as measured by a target effectiveness metric such

as average precision. Then, for each query q, the ranker selection
problem is to find a ranker, R∗ that achieves the highest T (Dq

R∗).

R∗ = arg max
R∈R

T (Dq
R)

Since relevance information is not available for all queries, we
need to estimate T (Dq

R) for unseen queries. Instead of learning
a regression model to independently estimate T (Dq

R), we learn a
regression model that estimates the relative effectiveness,
Td(Dq

R,Dq
B) = T (Dq

R)−T (Dq
B). Given a set of training queries

Q with relevance information and a set of regression functions hd :
D × D → R that approximate Td, we learn a least squares regres-
sion function h∗

d as follows:
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d = arg min
hd
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Further, for all q ∈ Q, we set h∗

d(Dq
B ,Dq

B) = 0.
Then, for a given test query, qt, we choose the ranking, R∗ as:

R∗ = arg max
R∈R

h∗

d(Dqt

R ,Dqt

B )

The maximization will select the baseline ranker B as R*, if no
alternate ranker Ai has h∗

d(Dqt

Ai
,Dqt

B ) > 0 for query qt.

3.2 Features
To learn the regression function h∗

d, we first construct feature
vectors that can represent the ranking of each both the baseline



Table 1: ReEff features: pos. refers to value of the feature each rank (e.g. the score at a given rank). hmean refers to harmonic mean and
gmean refers to geometric mean. var, sd and cd refer to variance, standard deviation, and co-efficient of dispersion respectively.

Type Feature Name Description Variants

Ranker Features Alternate ranker id Nominal feature that is identifies the type of
alternate ranker.

None

Scores of top k ranked documents Un-normalized scores of the top k docu-
ments.

pos., min, max, mean, hmean,
gmean, var, sd, cd, skew, and
kurtosis

Retrieval Features Features of top k ranked documents Aggregates of the feature values of the top k
ranked documents.

min, max, mean, hmean,
gmean, var, sd, cd

Average feature similarity Average similarity of each document vector
to the centroid of the top k document vectors

Un-normalized and L2 nor-
malized.

Overlapping documents. Fraction of overlap in the top k ranked docu-
ments in the two rankings.

None

ranking, D
q
B and the alternate rankings, D

q
Ai

. Then, we use the
difference of these feature vectors as the final regression feature
vector.

We use two sources for constructing the feature vectors of each
ranking. First, we use the scores assigned by the rankers as indi-
cators of document relevance, which in aggregation can be effec-
tive for representing the quality of a ranking. Second, we use the
features that are used by the rankers themselves to generate more
aggregate features. The features used for ranking are also designed
to reflect document relevance and are intimately related to the per-
formance of each ranker. Table 1 lists the features that we use to
represent each ranking.

For the ranker based features, we use the ranker id itself as a
nominal and the scores of each top K document as individual fea-
tures. We also use aggregates such as min, max, mean, variance,
standard deviation and co-efficient of dispersion. Higher scores for
top K documents and higher mean aggregates can indicate highly
effective rankings, whereas higher variance can indicate poor ef-
fectiveness. Further, we use two additional variants of the mean,
harmonic and geometric means and two higher order descriptive
statistics, skew and kurtosis, to characterize the distribution of the
ranker scores. Skew measures the symmetry around the mean (or
a lack thereof) of the score distribution around the mean, whereas
kurtosis measures the peakedness of the distribution.

For the retrieval-based features, we use the statistical aggregates
for each retrieval feature and also use two additional measures, 1)
average feature similarity, and 2) fraction of overlapping docu-

ments, which capture the intra-ranking similarity and inter-ranking
similarity, respectively. To measure average feature similarity we
treat each top ranked document as a n-dimensional feature vector
and construct the centroid of the top k documents. Then, we com-
pute the average of the distances of each top ranked document to
this centroid2. The faction of overlapping documents is simply the
ratio of the number of common documents in the two rankings and
the number of top k documents considered.

The features we use are simple aggregates of features that are
already used for ranking and can be computed efficiently. The av-
erage feature similarity computation requires two passes over the
feature sets of the top ranked documents for all rankers – one pass
to compute the centroid and the other to compute the distance of
each feature vector to the centroid. Compared to scoring and sort-
ing a large number of documents, which web search engines typi-
cally do, the time taken to compute the aggregates and the average
feature similarity for the top few documents can be relatively small.

2This is akin to intra-cluster similarity used to measure the quality
of a cluster of n-dimensional data points.

3.3 Leveraging ReEff for Ranker Fusion
In addition to using ReEff for selecting the best ranker for a given

query, we also explore the use of ReEff for improving ranker fusion
– combining the rankings from multiple rankers. ReEff provides
estimates of the relative differences of the alternate rankers with the
baseline ranker for each query. We utilize these estimated relative
differences to improve fusion.

1. Selective Fusion - We target selective fusion – selecting queries
for which fusing the rankings can be beneficial. Our initial
analysis showed that for some queries, fusion is more effec-
tive than selection, whereas for others selection can be more
effective. We model selective fusion as the task of choosing
between the individual rankings and the fused ranking. The
best ranking (individual or fused) is selected based on the
estimated relative differences.

2. Selecting Rankers - Selecting the most effective rankers per
query can help improve fusion performance. In many cases,
we find that fusing fewer but more effective rankings is better
than fusing all available rankings. We utilize the estimated
relative effectiveness of the rankings to induce an ordering
on all the available rankers and select the top k rankings to
fuse for each query.

3. Weighting Rankers - Using weights that reflect the relative
quality of the rankings that are being fused can also help im-
prove fusion performance: intuitively, documents present in
highly effective rankings should be preferred to documents
from less effective rankings. However, since the effective-
ness of the rankings is not known for all queries, we use the
relative differences that ReEff estimates as weights indicat-
ing the effectiveness of the rankers. We compare this ap-
proach to MAPFuse [14], a recently proposed technique for
utilizing the performance of the rankers on the training set as
weights for combining rankings.

In the subsequent sections, we present empirical evaluation of
ReEff for both ranker selection and ranker fusion.

4. RANKER SELECTION
We conduct ranker selection experiments to evaluate the utility

of ReEff for selecting between rankers. We conduct these selec-
tion experiments on a large publicly available Microsoft Learning-
to-Rank data set (MSLR-Web-10K) consisting of 10,000 queries.
Each query-document pair in this dataset is represented by a set
of 136 features, including low-level features such as covered query



Table 2: Ranking Algorithms and their mean average precision on
the MSLR Web 10K dataset.

Name MAP Description

BM25 0.2561 Single feature ranker.[21]

RankBoost 0.2770 Boosting algorithm that minimizes
discordant pairs in ranking [8]

AdaRank 0.2840 Boosting algorithm that
directly optimizes for MAP [23].

L1-LogReg 0.3031 Logistic Regression
with L1-constraints [2].

AFS 0.3053 Co-ordinate ascent-based algorithm
with direct optimization for MAP [16].

term ratio, individual retrieval models such as TF-IDF [3], Okapi
BM25 [21], and variants of Language Modeling [19] approaches
that are applied to different fields such as URL, title, anchor and
body and document quality features such as page rank3.

We use a five-fold cross-validation approach for all our experi-
ments. The training fold is used to train the ranking algorithms and
the trained models are used to produce rankings on both the training
and test set. We use five rankers listed in Table 2, including four
competitive learning to rank methods and a single feature ranker
BM25, which is the best individual feature. The table shows the
MAP of the rankers on the entire data set and we see that the AFS
based algorithm with direct optimization for MAP [16] performs
the best and BM25, the single feature ranker, performs the worst.

We use four baseline methods for ranker selection for compari-
son with ReEff.

1. Prior-Based - Prior-Based selects a ranker using a random
draw from a multinomial distribution which specifies the like-
lihood of each ranker being the best for a query. We estimate
the parameters of this distribution from the training queries.

2. Best-on-Train - Instead of using the best individual ranker
on the entire dataset, we use a stronger baseline, Best-on-
Train. For each test fold, Best-on-Train selects the ranker that
achieves the best average performance (in terms of MAP) on
the corresponding training fold. We find that this leads to a
better performance compared to only using AFS, the ranker
with the best MAP on the entire dataset.

3. LTS [17] - LTS is a learning to select algorithm that uti-
lizes the training data to estimate the performance of each
ranker on queries that are similar to the test query. For each
ranker R, LTS computes KL-divergences of the score distri-
bution produced by R with respect to the score distributions
produced by a baseline ranker such as BM25. This diver-
gence feature is computed for the test query and the training
queries. Then, LTS identifies from the training queries, the
k-nearest neighbors (k-nn) for the test query using the diver-
gence feature as the distance. The performance of R on this
set of k-nn training queries is used as the expected perfor-
mance of R on the test query. The process is repeated for all
available rankers, and the ranker R∗ which has the highest
expected performance is selected as the best ranker for the
test query.

Peng et al. [17] use BM25 as their base ranker 4 but in our ex-

3The data set and full list of the features are available at: http:
//research.microsoft.com/en-us/projects/mslr
4They do not use the base ranker as a candidate ranker available for
selection but only use it to compute divergences.

periments since we use BM25 as one of the candidate rankers,
we use TF-IDF as the base ranking function. We use a held-
out set in the training data to estimate the two parameters for
the LTS approach, the number of nearest neigbors (k) and
the number of top ranked documents (n) used to compute
the score distributions.

4. Indep. - Indep. learns a Random Forest [13] based regres-
sion model that can predict the performance of each ranker
independently. For each query, the ranker with the highest
predicted performance is selected as the best ranker. Indep.
uses all the features listed in Table 1 except for the overlap-

ping documents feature, which is a feature defined over two
rankers. The features are extracted from the top 20 docu-
ments from each ranker.

5. ReEff - ReEff learns a Random Forest [13] based regression
model that predicts the difference between a baseline ranker
and the other alternate rankers. The alternate ranker with the
highest positive difference is selected. If no candidate ranker
has a positive predicted difference, then the baseline ranker
is used. ReEff uses the Best-on-Train ranker as the baseline
ranker. The features used to learn the regression are extracted
from the top 20 documents for each ranker.

4.1 Results
We compare ranker selection results in terms of mean average

precision (MAP) of the selected rankings and selection accuracy.
To compare selection accuracy, we designate the ranker chosen by
Best-on-Train as the baseline ranker5, and treat the other rankers as
alternate rankers. Then, we evaluate the selection methods on the
number of queries for which they choose an alternate ranker, and
the number of times the selected alternate ranker performed better,
worse or the same when compared to the baseline ranker.

Table 3 shows the ranker selection results in terms of mean av-
erage precision (MAP) on 10,000 queries (top) and selection accu-
racy (bottom). The results show that ReEff outperforms all selec-
tion baselines. Below, we present a detailed analysis of the selec-
tion results.

4.1.1 Baselines.

Best-on-Train selects AFS as the best ranker for three folds and
Logistic Regression for the other two folds. For each fold, the best
performing ranker on the training queries also turns out to be the
best on test queries. Note that Best-on-Train is a stronger baseline
than the best individual ranker, as it performs better than only using
AFS, the ranker with the best MAP (0.3053) on the entire data set.

Compared to this stable Best-on-Train baseline, Prior-Based ran-
dom selection performs worse, which suggests that it is not trivial
to select the best ranker for each query.

Using LTS for ranker selection also performs worse than the
baseline Best-on-Train. LTS selects alternate rankers for a large
number of the queries (for more than 63% of the queries) but mostly
unsuccessfully – selection using LTS leads to poor performance in
48% of the queries, while only providing improvements for 42%.

Prior work [17] has shown that LTS can provide substantial im-
provements on the Letor learning to rank data sets, when selecting
between three rankers. To validate our implementation of LTS, we
conducted selection experiments on the Topic distillation subset of
the Letor 3.0 data set [15]. On this smaller data set, but for the
same set of rankers, LTS did achieve improvements in MAP over

5Best-on-Train may be different for different folds.



Table 3: Ranker selection results: Each fold comprises 2000 test queries. Bold-face indicates the best (non-oracle) performance in each
column. ∗ indicates statistically significant improvements over the Best-on-Train, determined using Fisher’s randomization test (p < 0.05).

Method Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

Best-on-Train 0.3056 0.3131 0.3027 0.3048 0.3111 0.3074
Prior-Based 0.2945 0.2918 0.2749 0.2922 0.3004 0.2908

LTS 0.3038 0.3023 0.3007 0.3034 0.3094 0.3039
Indep. 0.3041 0.3095 0.3013 0.3038 0.3118 0.3061

ReEff 0.3131∗ 0.3142 0.3071∗ 0.3098∗ 0.3189∗ 0.3126∗

Oracle 0.3658 0.3640 0.3604 0.3652 0.3727 0.3656

(a) Mean-average Precision for ranker selection.

Method Alt.Queries Better (%) Worse (%) Same (%)

Prior-Based 6969 2713 (38%) 4216 (62%) 0 (0%)
LTS 6323 2736 (43%) 3032 (48%) 555 (9%)

Indep. 6646 2855 (42%) 3037 (46%) 754 (12%)

ReEff 4506 2197 (49%) 1716 (38%) 513 (20%)

(b) Selection accuracy relative to the Best-on-Train baseline on the entire set
of 10,000 queries. Better, Worse, and Same indicate the number of queries
for which the method was better, worse or same compared to Best-on-Train.

the Best-on-Train6. However, on this larger web data set, despite
conducting an exhaustive grid search over a wide-range of values
for the k and n parameters (the number of nearest neighbors and
the number of top-ranked documents respectively), LTS does not
provide any improvements7. We find that the overall correlation
between the expected performance of each ranker, determined as
the average performance of the k-nearest neighbors, and the actual
performance on the test query is very low (Pearson’s ρ of 0.11 for
LTS, compared to 0.27 for ReEff), which in part explains the over-
all poor selection performance.

Indep. also performs worse compared to Best-on-Train both in
terms of MAP and in terms of the positive to negative impact. In-
dep. hurts more queries than it improves, as nearly 46% of the alter-
nate ranker selection leads to worse performance, whereas less than
42% of alternate ranker selections leads to improvements. Despite
having access to all the base set of features that ReEff utilizes, In-
dep. does not provide improvements over Best-on-Train, whereas
ReEff performs consistently better. This shows that when using
ranker based and retrieval based features directly modeling rela-
tive effectiveness is more useful than independently estimating the
effectiveness of each ranker.

4.1.2 ReEff

ReEff provides consistent average improvements in MAP. ReEff
performs the best on each individual fold and its improvements over
Best-on-Train are statistically significant in all but one fold. ReEff
achieves about 9% of the possible oracle improvements, the im-
provements that can be achieved with a selection oracle that selects
the best ranker for every query (last row in Table 3). Even though
the average improvements on the entire data set are small (about
0.0052 in absolute MAP), the actual gains achieved by ReEff are
substantial improvements (0.0113 in absolute MAP) obtained on a
smaller subset of queries, the subset for which ReEff selects alter-
nate rankers. The average relative improvement within this subset

6LTS improved MAP by 0.0053 over the Best-on-Train MAP of
0.2206, while ReEff gave an improvement of over 0.0109 in MAP.
7The range for k was [1,2,...5,10,15,20,..,50,100,200,...500,1000]
and the range for n was [1,2,...,10,20,...50,100]. The best k was
500 for four folds, and 400 for the other and the best n was 5 for
all five folds.

of queries is about 3.75%.
Further, ReEff also performs better than the other baselines in

terms of selection acuracy. Since ReEff selects alternate rankers
for fewer queries (less than 50%), it provides better performance
for fewer queries, compared to the other baselines. However, in
49% of the cases when ReEff selects an alternate ranker, it results in
an improvement over the baseline, whereas only 38% of the times
leads to a decrease in performance. We believe that this positive
to negative impact ratio is a key strength of ReEff and we provide
further analysis on this aspect of ReEff’s performance in Section 6.

In summary, the ranker selection experiments show that using
ReEff to select the best ranker for each query can outperform using
a fixed ranker for all queries. In the next section, we explore the
utility of ReEff for improving ranker fusion.

5. RANKER FUSION
We conduct ranker fusion experiments to demonstrate the util-

ity of ReEff for improving fusion. We use three fusion techniques:
1) Reciprocal Rank - a rank based technique, 2) CombMNZ - a
score based technique and 3) MapFuse - a rank based technique
that utilizes past performance of rankers to perform weighted com-
bination.

• Reciprocal Rank [6] (RR) uses the rank information of docu-
ments in each ranking to produce fused results. Reciprocal Rank
is a competitive rank based fusion algorithm shown to achieve
good fusion performance on the Letor datasets [15]. Given a set
of rankers R, the final Reciprocal Rank score of a document d
for query q is computed as follows:

RR(q, d) =
X

R∈R

1

k + rankR(q, d)

where, rankR(q, d) is the rank of document d in R’s ranking
for query q. k is a free parameter, which we set to 60 based on
training set performance.

• CombMNZ [12] (CM) uses the sum of normalized scores as-
signed by the rankers, which is then weighted by the number of
rankings in which the document was retrieved in the top k ranks.



Table 4: Fusion versus Selection. Comparison of fusion techniques against selecting the best ranker using ReEff. Mean(∆AP) denotes the
mean of differences in AP between the baseline Best-on-Train and corresponding fusion technique. b,r,c and m superscripts indicate statis-
tically significant improvements (determined using Fisher’s randomization test with p < 0.05) over the Best-on-Train baseline, Reciprocal
Rank (RR), CombMNZ (CM), and MapFuse(MF) methods respectively.

Method MAP Mean(∆AP) Better Worse RI

Best-on-Train 0.3074 +0.0000 0 0 NA

RR 0.3017 -0.0058 4062 4874 -0.080

CM 0.3108 +0.0031b 4637 4292 +0.034
MF 0.3052 -0.0022 4229 4706 -0.048

ReEff 0.3126 +0.0052b,r,c,m 2196 1718 +0.048

The final score is computed as follows:

CM(q, d) = |M |
X

R∈R

nscoreR(q, d)

where, M = {R ∈ R|rankR(q, d) ≤ k} and nscoreR(q, d) is
the min-max normalized score assigned to document d by R for
query q. We set k to 1000 based on training set performance.

• MAPFuse [14] (MF) uses the performance of each ranker on the
training set of queries to produce the final score. The MAPFuse
score for each document is computed as follows:

MF (q, d) =
X

R∈R

MAPR(q)

rankR(q, d)

where, MAPR(q) is the mean-average precision of the ranking
produced by ranker R for query q.

5.1 Fusion versus Selection
Table 4 shows results for fusion using all rankers and for select-

ing the best ranker for each query (selection) . For each method,
we tabulate 1) the mean of differences in AP with respect to the
Best-on-Train baseline, denoted as Mean(∆AP), 2) the number of
queries for which the technique was better than Best-on-Train, 3)
the number of queries for which the technique was worse, and 4)
the Robustness Index, defined as RI = (# Better − # Worse)/n,
where n is the total number of queries.

Using ReEff to select the best ranker for each query is better
than fusing the results from all five rankers. In fact, only one fusion
technique, CM, provides additional average improvements over the
Best-on-Train baseline. Also, selection performance is slightly bet-
ter in terms of robustness measured by RI. Even though CM pro-
vides improvements for a larger proportion of queries compared
to selection (46% versus 22%), it also degrades performance for a
larger proportion (42% versus 17%). The trend is similar for the
other two fusion techniques as well.

Thus, we find that fusion and selection provide different benefits
and we use ReEff to augment fusion to leverage these benefits.

5.2 Using ReEff to Improve Fusion
We use ReEff to augment the fusion techniques in three ways.

• Selective Fusion (Selective {RR, CM, MF}) - First, we use ReEff
to select between the individual rankings and the fused ranking.
The fused ranking is generated by combining all the available
individual rankings. In this setting, the baseline ranker is the
Best-on-Train ranker, which is chosen from the set that includes
both the individual rankers as well as the fusion ranker.

• Ranker Selection (S+RR, S+CM, S+MF) - Second, we use ReEff
to select the top K rankers for fusion. We report the performance

of fusing top 2 to top 5 rankers using each of the three fusion
techniques.

• Ranker Weighting (W+RR, W+CM,W+MF) - Third, we use Re-
Eff to assign weights to the rankings produced by each ranker.
First, we use ReEff to obtain predicted differences of the al-
ternate rankers with respect to the baseline ranker. Then, we
normalize the predicted differences using a min-max normaliza-
tion to avoid negative weights8. Finally, the document scores
for each ranker are multiplied by the corresponding normalized
weight and these weighted document scores are used by the fu-
sion techniques to produce the final fused ranking. We report the
performance of weighting in conjunction with ranker selection9.

The final score of a document for the fusion techniques are com-
puted as follows:

1. Weighted Reciprocal Rank (W+RR)

W+RR(q, d) =
X

R∈R

wR

k + rankR(q, d)

2. Weighted CombMNZ (W+CM)

W+CM(q, d) =
X

R∈R

wR × nscoreR(q, d)

3. Weighted MAPFuse (W+MF)

W+MF (q, d) =
X

R∈R

wR

rankR(q, d)

where, rankR(q, d) is the rank of the document in R’s ranking,
nscoreR(q, d) is the min-max normalized score of document d
assigned by R and wR is the normalized ReEff weight for R.

5.3 Results

5.3.1 Selective Fusion

Table 5 shows the results for 1) fusion – fusing the results of all
rankings using RR, CM, and MF, 2) ranker selection – selecting
the best individual ranking for each query, shown as (ReEff), and
3) selective fusion – selecting between the individual rankings and
the fused ranking (Selective RR, Selective CM and Selective MF).

For all three fusion techniques, selective fusion performs better
than fusion. All improvements of selective fusion over the corre-
sponding fusion methods are statistically significant. Furthermore,
selective fusion also performs better than ranker selection and the
improvements over ranker selection are statistically significant for
RR and CM.

8The baseline ranker’s predicted difference is set to zero.
9The impact of weighting alone can be compared when fusing all
available rankers.



Table 5: Selective Fusion: Results of selective fusion. Mean(∆AP) denotes the mean of differences in AP between the baseline Best-
on-Trainand corresponding fusion technique. b,r,c,m, and e superscripts indicate statistically significant improvements (determined using
Fisher’s randomization test with p < 0.05) over the Best-on-Train baseline, Reciprocal Rank (RR), CombMNZ (CM), MapFuse(MF), and
ReEff methods respectively. Bold-face entry indicates the best MAP.

Method MAP Mean(∆AP) Better Worse RI

Best-on-Train 0.3074 +0.0000 0 0 NA

RR 0.3017 -0.0058 4062 4874 -0.080

CM 0.3108 +0.0031b 4637 4292 +0.034
MF 0.3052 -0.0022 4229 4706 -0.048

ReEff 0.3126 +0.0052b,c 2196 1718 +0.048

Selective RR 0.3141 +0.0060b,r,e 2676 2076 +0.060

Selective CM 0.3156 +0.0081b,c,e 3550 2654 +0.090

Selective MF 0.3132 +0.0058b,m 3082 2494 +0.059

Table 6: Selecting and Weighting Rankers for Fusion: Mean average precision (MAP) results for selecting and weighting rankers using
ReEff. Bold-face entries indicate the best performing method for each column. ∗ indicates statistically significant improvements of the S+ or
W+ methods over the corresponding top K ranker fusion (B+ methods). ∗∗ indicates statistically significant improvements of the weighted
fusion (W+ methods) over the corresponding selection of rankers (S+ methods) using ReEff. All statistical significances are determined
using Fisher’s randomization test (p-value < 0.05).

Method Top 1 Top 2 Top 3 Top 4 All

B+RR 0.3074 0.3099 0.3098 0.3052 0.3017
B+CM 0.3074 0.3179 0.3180 0.3126 0.3108
B+MF 0.3074 0.3153 0.3150 0.3112 0.3061

S+RR 0.3126∗ 0.3130∗ 0.3115∗ 0.3077∗ 0.3017
S+CM 0.3126∗ 0.3187 0.3195∗ 0.3154∗ 0.3108
S+MF 0.3126∗ 0.3164∗ 0.3168∗ 0.3135∗ 0.3061

W+RR 0.3126 0.3133 0.3123∗∗ 0.3100∗∗ 0.3067∗∗

W+CM 0.3126∗ 0.3189 0.3202∗∗ 0.3174∗∗ 0.3153∗∗

W+MF 0.3126∗ 0.3167∗ 0.3173∗ 0.3156∗∗ 0.3112∗∗

Selective fusion combines the merits of both fusion and selec-
tion. For example, when using CM, selective fusion increases the
number of queries with a positive impact by about 13% compared
to selection, while also increasing the number of queries with neg-
ative impact by about 9%. This trade-off leads to an overall im-
provement in MAP, and also provides substantial improvements in
overall robustness as shown by the RI values. These results suggest
that selective fusion can help to combine the benefits of both fusion
and selection.

5.3.2 Selecting Rankers for Fusion

Table 6 shows the performance of selecting the top k rankers for
fusion. The rows for the B+ and S+ methods in Table 6 show the
results of using Best-on-Train and ReEff respectively for selecting
the top k rankers. The Top 1 column corresponds to the case of
selecting a single ranker for each query, whereas the Top 5 column
corresponds to the case of using all the five rankers for fusion. The
B+ entries for Top 1 show the baseline performance for Best-on-
Train whereas the S+ and W+ entries show the performance of
selecting using ReEff.

For all three fusion techniques, the performance of fusing the
rankings of the top few rankers is better than fusing all rankings.
As shown by the B+ rows in the table, when using Best-on-Train to
select the top few rankers, using just the top 2 or 3 rankers provides
the best performance.

Using ReEff to select rankers yields substantial improvements
over using Best-on-Train to select rankers. All corresponding im-
provements, except for selecting the top 2 rankers for CM fusion,
are statistically significant. Further, the best performance with se-

lection is achieved by S+CM for Top 3 i.e., when selecting the top
3 rankers for CM (MAP 0.3195) . This setting is also significantly
better than the best performance that can be achieved by selecting
rankers using Best-on-Train – when using the top 2 rankers (MAP
0.3179). These results suggest that ranker selection using ReEff
can further improve fusion performance.

5.3.3 Weighting Rankers for Fusion

The W+ rows in Table 6 show the results for using the relative
difference weights in conjunction with ranker selection. Using Re-
Eff for weighting rankers yields further improvements in all cases.
When fusing the top 2 rankers, weighting the selected rankers does
not yield substantial improvements. However, when fusing the top
3, 4 and 5 rankers, weighting provides substantial additional im-
provements for all fusion techniques. RR and CM do not use any
weights on the rankers, and by introducing some weighting on the
rankers through ReEff we obtain additional improvements. How-
ever, it is worth noting that MF already uses weights on the rankers
and replacing these static weights with query-dependent weights
from ReEff provides substantial additional improvements. This
shows that ReEff yields reliable query-dependent weights that can
be used for improving fusion.

In summary, we find that fusion and selection provide different
types of benefits and using ReEff we can improve the combination
of multiple rankers through selective fusion, ranker selection and
ranker weighting.

6. ANALYSIS
We analyze the performance of ReEff to identify the features that



Table 7: Feature Importance for ReEff randomForest regression: Top ranked features sorted by the mean decrease in node purity, which is a
measure of importance of the feature in the regression.

Feature Type Aggregate Type Importance

Ranker scores standard deviation 1.66
Ranker scores skew 1.59
Ranker scores variance 1.57
Query-URL click count geometric mean 1.42
Ranker scores co-effic. of dispersion 1.37
Query-URL click count mean 1.35
Ranker scores kurtosis 1.29
Query-URL click count variance 1.23
Average feature similarity individual 1.18
Ranker scores position 20 1.08
Query-URL click count standard deviation 1.06
Ranker score positions 1:19 1.02-0.87

Feature Type Aggregate Type Importance

Ranker scores geometric mean 0.83
Ranker scores arithmetic mean 0.80
BM25 body max 0.71
BM25 whole document max 0.67
Page Rank max 0.67
Ranker scores harmonic mean 0.64
... ... ...
LMIR.ABS whole document variance 0.63
LMIR.JM whole document variance 0.62
URL dwell time geometric mean 0.61
Document length max 0.61
URL length co-effic. of dispersion 0.60

are most important for selection and also to better understand the
types of improvements that ReEff provides.

6.1 Feature Importance
Table 7 shows the list of the most important features for selec-

tion, where importance is determined as the normalized reduction
in the random forest regression error. The most important features
include a mix of the ranker based and retrieval based features –
the ranker scores and their aggregates, aggregates of the retrieval
features such as click-based and BM25 features, as well as the av-
erage feature similarity measure. For ranker scores the most im-
portant aggregates are those that characterize the variance in the
ranker scores and the two second order aggregates skew and kur-
tosis which characterize the shape of the score distributions. The
most important retrieval based features correspond to aggregates of
the query-url click count, which is a strong indicator of document
relevance. The average feature similarity feature, which measures
similarity of the top ranked documents is also one of the top 10 im-
portant features. Individual retrieval model scores such as BM25,
language modeling scores, which are strong indicators of relevance
also turn out to be important features for modeling relative effec-
tiveness.

Overall, the ranker scores appear to be the most important set of
features, since there are more aggregates of ranker based features
in the top ranks than retrieval score based features. To better under-
stand the impact of ranker scores versus retrieval-based features,
we also conduct selection experiments with each individual group
of features.

Table 8 shows the selection performance of the two groups on a
single fold (Fold 1) of data. We compare the feature groups in terms
of MAP, improvements over Best-on-Train, shown as ∆AP , and
the robustness index (RI). Using ranker score based features alone
does not yield any improvements over the baseline and has poor
robustness. Using retrieval based features alone provides good im-
provements over the baseline. Despite the poor performance when
used alone, ranker score based features add substantial improve-
ments when combined with the retrieval based features. These re-
sults suggest that the selection performance of ReEff depends on
both retrieval based features as well as ranker score based features.

6.2 Impact of Rankers
Table 9 shows the selection performance as the available alter-

nate rankers is increased. As shown by entries in the oracle col-
umn, as the number of rankers is increased, the potential for selec-
tion increases, with most potential delivered by the top 2 rankers,
while adding more rankers leads to smaller diminishing increases.

Table 8: Selection performance of different feature groups on a sin-
gle fold (Fold 1). Ranker and Retrieval rows indicate performance
of ranker score based, and retrieval-based features respectively.

Group MAP Mean(∆AP) Better Worse RI

Ranker 0.3061 0.0005 609 590 0.01
Retrieval 0.3096 0.0037 412 353 0.03

All 0.3131 0.0075 494 405 0.05

Accordingly, we see that most gains are achieved by selecting be-
tween the top 2 rankers (more than 80%), and adding more rankers
provides a smaller additional increase (less than 20% of the total
gains). Importantly, we see that ReEff utilizes all available rankers
to deliver improvements over the baseline ranker.

Table 9: Ranker Selection results on a single fold (Fold 1) while
increasing number of rankers for ReEff.

Rankers ReEff Oracle

1 0.3056 0.3056
2 0.3117 0.3405
3 0.3121 0.3512
4 0.3121 0.3592
5 0.3131 0.3658

In addition to using the best individual ranker (Best-on-Train)
as the baseline ranker, we also conduct experiments using other
rankers as the baseline rankers on a single fold (Fold 1). Table 10
shows the performance of using other rankers as the baseline ranker
for ReEff. In all cases, we find that selection improves over the cor-
responding baseline. More importantly, selection always improves
over the best individual ranker Logistic Regression for this fold.
This shows that while using the best individual ranker as the base-
line yields substantial improvements, selection performance is not
entirely due to the choice of the baseline ranker alone.

Table 10: Selection using other rankers as baselines on Fold 1.

Baseline MAP(Baseline) MAP(ReEff)

AdaRank 0.3018 0.3106∗

BM25 0.2548 0.3113∗

AFS 0.3005 0.3099∗

RankBoost 0.2790 0.3118∗

LogReg 0.3056 0.3131∗

6.3 Distribution of Selection Gains
Figure 1a(a) plots the selection gains against the oracle gains

– gains that can be achieved if we have a perfect selection tech-
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(a) Oracle Performance versus Selection Gains
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(b) Baseline Performance versus Selection Gains.

Figure 1: Distribution of Selection Gains using ReEff.

nique. Whenever there is high potential, ReEff provides gains in
most cases and most of the errors in selection happen in cases where
the potential is low. This shows that ReEff is effective at modeling
large positive differences more effectively.

Figure 1(b) shows the distribution of large differences in AP
achieved by using ReEff against the performance of the baseline
ranker, Best-on-Train. The boxplot shows the distribution of differ-
ences in AP that are greater than 0.1 (we have 1875 such instances
using ReEff). Large positive differences are obtained for queries
whose performance on the baseline ranker is below 0.4 in MAP
and large negative differences are obtained for queries whose base-
line performance is above 0.4 in MAP. This is in part because the
potential for gains are higher when the baseline ranker performs
poorly. This suggests that selection is useful for improving the per-
formance for queries whose baseline performance is poor.

6.4 Quality of Impact
Next, we analyze the impact of controlling the number of queries

affected by ranker selection. To this end, we conduct selection ex-
periments where we impose a threshold on the predicted difference
– i.e., we select an alternate ranker only if the predicted relative
difference exceeds the specified threshold. When the threshold is
set to zero, it is equivalent to the selection results we report in Sec-
tion 4. However, as we set the threshold to increasing positive val-
ues, we select alternate rankers for fewer queries and consequently
ranker selection affects fewer queries. For the purposes of this anal-
ysis, we experiment with thresholds between 0.0 and 0.05 with in-
crements of 0.005.

Figure 2(a) shows the effect of thresholding on the percentage
of positive improvements on the subset of queries with a non-zero
impact. When fewer queries are affected the ratio of positive im-
pact increases. Reducing the affected queries from 40% to 10%
leads to only a small improvement in positive impact of about 5%,
but further reductions in the percentage of affected queries leads
to dramatic improvements in positive impact. When only affecting
around 3% of the queries, selection can have a positive impact of
about 70%. Figure 2(b) shows similar trends of the relative im-
provements over the Best-on-Train on the set of queries that are
affected. When reducing the percentage of queries affected, we see
higher relative improvements leading up to nearly 13% increase on
a subset of 5% of the total queries. These results show the poten-
tial for calibrating ranker selection using ReEff to achieve a desired
trade-off in percentage queries affected versus quality of impact.

6.5 Fusion Analysis
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(b) Relative Improvement on Affected Queries.

Figure 2: Trade-offs in Selection Impact versus Percentage Queries
Affected.

Figure 3(a) shows the distribution of large differences in AP
achieved by using CM fusion using all five rankers plotted against
the performance of the baseline ranker, Best-on-Train. The boxplot
shows the distribution of absolute differences in AP that are greater
than 0.1. Similar to the performance of selection, fusion also yields
improvements for queries with poor baseline performance, and de-
grades performance of queries with higher baseline performance.
However, when compared to selection (in Figure 1(b)), fusion yields
improvements for more number of queries with higher baseline per-
formance.

Figure 3(b) shows the distribution of positive improvements over
Best-on-Train for fusion and selection. The upper curve represents
the cumulative density function (CDF) for fusion’s improvements
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(b) Positive improvements of fusion and selection.

Figure 3: Distribution of fusion improvements.

over Best-on-Train and the lower curve represents the CDF for se-
lection. The CDF’s show that selection typically provides larger
improvements compared to fusion. For example, more than 50%
of selection’s improvements are more than 0.10 in MAP, whereas
only 40% of fusion’s improvements are greater than 0.10 in MAP.
However, as we look at larger improvements, for example for im-
provements of over 0.3 in MAP there is no clear trend. This is in
part because there are fewer queries for which such large improve-
ments are obtained either through fusion or through selection. In
conjunction with the results from Table 4, the distribution of these
large improvements show that fusion and selection provide differ-
ent types of improvements. Fusion provides smaller improvements
over a large subset of queries, whereas selection provides larger
improvements over a smaller subset.

In summary, ReEff utilizes both ranker-based and retrieval-based
features to select between rankers and provides substantial gains
when there is large potential and also provides a thresholding mech-
anism that can be used to control the quality of its impact.

7. CONCLUSIONS
There has been a profusion of learning-to-rank algorithms for

improving web search. Leveraging these multiple ranking algo-
rithms can yield substantial improvements. In particular, a query-
dependent selection of ranking algorithms has high potential for
improving retrieval performance over a single fixed choice. In this
work, we showed that by modeling relative differences in effective-
ness between rankers, we can enable query-dependent selection of
ranking algorithms. Our experiments on a large scale web search
data set using five rankers to demonstrate the utility of relative ef-
fectiveness estimation. We find that modeling relative differences
is better than modeling effectiveness of each ranker individually,
when using ranker based and retrieval score based aggregates. Our
analysis shows that fusion and selection provide different kinds of

benefits for leveraging multiple rankers. Using the estimated rel-
ative differences we combined the benefits of fusion and selection
through selective fusion, ranker selection and ranker weighting to
further improve performance.

As part of future work, we will explore the utility of ReEff for
different ranking functions generated by using different subsets of
features and training data. Furthermore, we will investigate the
utility of ReEff for improving other fusion approaches.
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