Corpus-Specific Stemming using Word
Form Co-occurrence

W. Bruce Croft and Jinxi Xu

Computer Science Department
University of Massachusetts, Amherst

Abstract

Stemming is used in many information retrieval (IR) systems to reduce word forms to
common roots. It is one of the simplest and most successful applications of natural language
processing for IR. Current stemming algorithms are, however, either inflexible or difficult
to adapt to the specific characteristics of a text corpus, except by the manual definition of
exception lists. We propose a technique for using corpus-based word co-occurrence statistics
to modify a stemmer. Experiments show that this technique is effective and is very suitable
for query-based stemming.

1 Introduction

Stemming is a common form of language processing in most information retrieval
systems [4]. It is similar to the morphological processing used in natural language
processing, but has somewhat different aims. In an information retrieval system,
stemming is used to reduce different word forms to common roots, and thereby im-
prove the ability of the system to match query and document vocabulary. The variety
in word forms comes from both inflectional and derivational morphology and stem-
mers are usually designed to handle both, although in some systems stemming consists
solely of handling simple plurals. Stemmers have also been used to group or conflate
words that are synonyms (such as “children” and “childhood”), rather than variant
word forms, but this is not a typical function. Although stemming has been studied
mainly for English, there is evidence that it is useful for a number of languages.
Stemming in English is usually done during document indexing by removing word
endings or suffixes using tables of common endings and heuristics about when it is
appropriate to remove them. One of the best-known stemmers used in experimental
IR systems is the Porter stemmer [5], which iteratively removes endings from a word
until termination conditions are met. The Porter stemmer has a number of problems.
It 1s difficult to understand and modify. It makes errors by being too aggressive
in conflation (e.g. “policy”/“police”, “execute”/“executive” are conflated) and by

missing others (e.g. “European”/“Europe”, “matrices” /“matrix” are not conflated).
It also produces stems that are not words and are often difficult for an end user to
interpret (e.g. “iteration” produces “iter” and “general” produces “gener”). Despite
these problems, recall/precision evaluations of the Porter stemmer show that it gives
consistent (if rather small) performance benefits across a range of collections, and
that it 1s better than most other stemmers.

Krovetz [4] developed a new approach to stemming based on machine-readable
dictionaries and well-defined rules for inflectional and derivational morphology. This
stemmer (now called KSTEM) addresses many of the problems with the Porter stem-
mer, but does not produce consistently better recall/precision performance. One of
the reasons for this is that KSTEM is heavily dependent on the entries in the dic-
tionary being used, and can be conservative in conflation. For example, because the
words “stocks” and “bonds” are valid entries in a dictionary for general English, they
are not conflated with “stock” and “bond”, which are separate entries. If the database
being searched is the Wall St. Journal, this can be a problem.

The work reported here is motivated by two ideas; corpus-specific stemming and
query-based stemming. Corpus-specific stemming refers to automatic modification of
conflation classes (words that result in a common stem or root) to suit the charac-
teristics of a given text corpus. This should produce more effective results and less
obvious errors from the end user’s point of view. The basic hypothesis is that word
forms that should be conflated for a given corpus will co-occur in documents from
that corpus. Based on that hypothesis, we use a co-occurrence measure similar to
the expected mutual information measure (EMIM 8, 1]) to modify conflation classes
generated by the Porter stemmer.

In query-based stemming, all decisions about word conflation are made when the
query is formulated, rather than at document indexing time. This greatly increases
the flexibility of stemming and is compatible with corpus-specific stemming in that
explicit conflation classes can be used to expand the query.

In the next two sections, we present these ideas in more detail. In section 4, we
discuss the specific corpora we used in the experiments and give examples of the
conflation classes that are generated and how they are modified. Section 5 gives the
results of retrieval tests that were done with the new stemming approach.

2 Corpus-Specific Stemming

General-purpose language tools have generally not been successful for IR. For exam-
ple, using a general thesaurus for automatic query expansion does not improve the
effectiveness of the system and can, indeed, result in less effective retrieval (e.g. [9]).
When the tool can be tuned to a given domain or text corpus, however, the results

are usually much better®.

From this point of view, stemming algorithms have been one of the more successful
general techniques in that they consistently give small effectiveness improvements. In
most applications where an IR system includes a stemmer, exception lists are used to
describe conflations that are of particular importance to the application, but are not
handled appropriately by the stemmer. For example, an exception list may be used to
guarantee that “Japanese” and “Chinese” are conflated to “Japan” and “China” for
an application containing export reports. Exception lists are constructed manually
for each application. Using human judgement for these lists is expensive and can be
inconsistent in quality.

Instead of the manual approach of exception lists, the conflations performed by
the stemmer can be modified automatically using corpus-based statistics. To do this,
we assume that word forms that should be conflated will occur in the same documents
or, more specifically, in the same text windows. For example, articles from the Wall
St. Journal that discuss stock prices will typically contain both the words “stock”
and “stocks”. This technique should identify words that should be conflated but are
not (“stock” and “stocks” are an example for KSTEM), and words that should not
be conflated but are. Examples of the latter are the word pairs “policy” /“police” and
“addition” / “additive” for the Porter stemmer.

The basic measure that is used to measure the significance of word form co-
occurrence is a variation of EMIM [8, 1]. This measure is defined for a pair of words
a and b by the following formula:

Tab

em(a,b) = -
where n,, n, are the number of occurrences of a and b in the corpus, and n,; is the
number of times both a and b fall in a text window of size win in the corpus. We
define ngp, as the number of elements in the set {< a;,b; > |dist(a;, b;) < win}, where
a;’s and b;’s are distinct occurrences of a and b in the corpus, and dist(a;, b;) is the
distance between a; and b; measured using a word count within each document.
Given this measure, the question is which word pair statistics should be measured?
In previous studies, the EMIM measure has been applied to all word pairs that co-
occur in text windows. The aim of this type of study was to discover phrasal and
thesuarus relationships. In this study, we have a different aim, namely, to clarify the
relationship between words that have similar morphology. For this reason, the em
measure is calculated only for word pairs that potentially could be conflated. The way
we have chosen to do this is to use an “aggressive” stemmer (Porter) to identify words
that may be conflated, and then use the corpus statistics to refine that conflation.

1Jing and Croft [3] discuss a corpus-based technique for query expansion that produces significant
effectiveness improvements

A problem with this approach is that if the aggressive stemmer is not aggressive
enough, word pairs that should be conflated will be missed. There are a number
of ways that this could be addressed, such as identifying word pairs with significant
trigram overlap. In our work, we have combined the Porter stemmer with KSTEM
to identify possible conflations. Even though KSTEM is not as aggressive as Porter,
it does conflate some words that Porter does not. For example, the Porter stemmer
conflates “abdomen” and “abdomens”, but not “abdominal”. KSTEM conflates all
of these.

More generally, we can view stemming as constructing equivalence classes of words.
For example, the Porter stemmer conflates “bonds”, “bonding”, and “bonded” to
“bond”, so these words form an equivalence class. The corpus statistics for word
pairs in the equivalence classes are used to determine the final classes. For example,
if “bonding” and “bonded” do not co-occur significantly in a particular corpus, one
or both of them may be removed from the equivalence or conflation class, depending
on their relationship to the other words.

More specifically, if a and b are stemmed to ¢, then all occurrences of a, b and ¢
are the same after the stemming transformation, i.e. a, b and ¢ form an equivalence
class. If, however, a is stemmed to b, and b is stemmed to ¢, then a, b and ¢ do not
form an equivalence class. The Porter stemmer occasionally makes such incomplete
conflations. We consider this a “bug” of the Porter stemmer, and put a, b and ¢ in
an equivalence class.

Suppose the collection has a vocabulary V = {w;,ws, ..., w,}. We use the union-
find algorithm to construct the equivalence classes as follows:

1. For each word w;, use the Porter stemmer to stem it to »;. Let R = {r;}.
2. For each element in V' |J R form a singleton class.

3. For each pair < w;,r; >, if w; and r; are not in the same equivalence class,
merge the two equivalence classes into one.

4. In each equivalence class, remove those elements not in V.

The union find algorithm runs in O(nlog™ n), “almost” linear time because log*n
is a small number even if n is very large.

Given the final equivalence classes, a representative or stem for each class must
be generated. We chose simply to use the shortest word in the class. As well as being
simple, this has the desirable result of producing complete words instead of the usual
type of Porter stem.

The other issue is what to do with word pairs for which there is insufficient statis-
tics. If the words in a conflation class are rare in the corpus, the em measure will
be unreliable. For these pairs, we chose to use KSTEM to determine whether they

4

should remain in an equivalence class. The threshold used for sufficient statistics is
that ng + np > 50.
To summarize, the overall process for producing corpus-specific conflation classes

consists of the following steps:

1.

Collect the unique words (the vocabulary V') in the corpus. This is done using
a simple flex scanner. Numbers, stop words and possible proper nouns are

discarded.

. Construct equivalence classes using the Porter stemmer, sometimes augmented

by KSTEM.
Calculate em for every pair of words in the same equivalence class.

Form new equivalence classes. This is done by starting with every word in V
forming a singleton equivalence class. Then every em pair, if em(a,b) > min
and they are not in the same class, merge the equivalence classes. If the statistics
are inadequate, use KSTEM to decide whether to merge classes.

. Make a stem dictionary from the equivalence classes for future use in indexing

and query processing. The shortest word in each class is the “stem” for that
class.

Timing figures and class statistics for sample corpora are presented in section 4.

3

Query-Based Stemming

The corpus-based stemming approach described in the last section produces a dictio-

nary of words with the appropriate stem. Given this dictionary, the usual process of
stemming during indexing can be replaced by dictionary lookup. Alternatively, the
full word form could be used for indexing and stemming would become part of query
processing. The way this would work is that when a query is entered, the equiva-

lence class for each non-stopword would be used to generate an expanded query. For
example, if the original query (in the INQUERY query language) was

#SUM(stock prices for IBM)

The expanded query for a particular corpus could be

#SUM(#SYN(stock stocks) #SYN(price prices) IBM)

The #SYN operator is used to group synonyms. Depending on the details of how
this is done in the underlying system, this query will produce the same result as a
query processed in an environment where the database had been indexed by stems.

The advantages of query-based stemming are that the user of the system can be
consulted as to the applicability of particular word forms and queries can be restricted
to search for a specific word form. These advantages can be significant in cases where
small differences in word forms result in large differences in the relevance of the
retrieved documents. For example, in looking for articles about terrorist incidents,
the word “assassination” is very good at discriminating relevant from non-relevant
documents, but the word “assassinations” is much less useful [6].

The main disadvantage of query-based stemming is that the queries become longer
and will, therefore, take longer to process. The impact on response times will depend
on the degree of query expansion. In the next section, we present statistics for some
corpora.

4 Corpora and Conflation Classes

The corpora that we use in these experiments are the West collection of law documents
and the Wall St. Journal collection of newspaper articles [7, 2]. The statistics for
these corpora and the associated queries and relevance judgements are shown in Table
1. Two sets of queries are used for the West collection. The first is where the queries
are treated as a collection of individual words. The second uses INQUERY operators
(such as #PHRASE) to structure the combinations of words.
stemming on phrasal units can produce different results than word-only stemming.
Retrieval results for both types of query are presented in the next section.

In previous work,

WEST WSJ
Number of queries 34 66
Number of documents 11,953 162,795
Mean words per query 9.6 37.5
Mean words per document 3,262 260
Mean relevant documents per query 28.9 144
Number of words in a collection | 39,000,000 | 42,307,309

Table 1: Statistics on text corpora

As an example of the timing figures for generating conflation classes, the follow-
ing figures are for the WSJ corpus. All timing figures are CPU times for a SUN4

workstation. To collect the unique words in the corpus takes 20 minutes. There
were 76,181 of these. The Porter stemmer takes 6 seconds to stem these words and
the union-find algorithm takes 9 seconds to form equivalence classes. The number of
classes produced is 39,225 and the average class size is 1.96 word forms. Generating
the em values for a text window of size 100 words (win = 100), takes 1 hour and
10 minutes. With a threshold for the em value of .01 (min = 0.01), the number of
conflation classes generated is 65,104 with an average class size of 1.17. Using these
classes as the basis for stemming produces the best retrieval results (shown in the
next section) and avoids 70% of the conflations made by Porter. This means that
query expansion is reduced in a query-based stemming environment.

For the West collection, there are 49,964 unique words which generate 27,117
classes using the Porter stemmer. After application of the em threshold, there were
40,012 classes.

As an example, with these classes, “bonds” is conflated to “bond” and “bonding”
i1s conflated to “bonded” in the WSJ corpus. In the West corpus, all words are
conflated to “bond”.

Figure 1 contains examples of the conflation classes for Porter on the WSJ corpora
and Figure 2 has the classes after application of the em threshold.

abandon abandoned abandoning abandonment abandonments abandons

abate abated abatement abatements abates abating

abrasion abrasions abrasive abrasively abrasiveness abrasives

absorb absorbable absorbables absorbed absorbencies absorbency absorbent
-absorbents absorber absorbers absorbing absorbs

abusable abuse abused abuser abusers abuses abusing abusive abusively

access accessed accessibility accessible accessing accession

Figure 1: Example of conflation classes on WSJ using Porter

The em value depends on the window size. The larger the window, the higher
the em values that are generated. When the window size is fixed, the em threshold
controls how any conflations by Porter are prevented. By experimenting with different
window sizes and threshold values, we found that as long as a reasonable sized window
(larger than 50) is used, performance depends only on the percentage of conflations
that are prevented.

The dominant overhead of our method is the time to collect co-occurrence data.
This is proportional to the window size. Since performance does not directly de-
pend on window size, a 100 word window represents a good compromise between
performance and computational overhead.

abandonment abandonments

abated abatements abatement

abrasive abrasives

absorbable absorbables

absorbencies absorbency absorbent

absorber absorbers

abuse abusing abuses abusive abusers abuser abused
accessibility accessible

Figure 2: Example of conflation classes on WSJ after co-occurrence thresholding

5 Retrieval Results

The following tables give standard recall/precision results for retrieval experiments
carried out using the Porter, KSTEM and em modified Porter stemmers (NEW).
Table 2 shows the results of the simple word-based queries on the West corpus. The
results show little difference between the stemmers, with perhaps a small advantage
at higher recall levels for the NEW stemmer. Table 3 gives the results for the phrase-
based queries for West. These results give an advantage to both Porter and the NEW
stemmers.

Table 4 gives the results for the WSJ collection. We see again a clear advantage
for the Porter and NEW stemmers. Overall, the NEW stemmer has very consistent
performance and may be able to combine the advantages of both the Porter and
KSTEM approaches.

The final experiment, shown in Table 5, uses KSTEM to decide whether a word
pair is conflated when there is insufficient statistics. Comparing this table to the
previous one, we see there is little difference. Words that do not occur frequently
enough to generate reliable em values are unlikely to affect retrieval on an average
basis. For individual queries, however, this modification could be very important.

6 Conclusions

A new approach to stemming that uses corpus-based statistics was proposed. This
approach can potentially avoid making conflations that are not appropriate for a
given corpus and uses an “aggressive” stemmer as a starting point. The result of this
stemmer is an actual word rather than an incomplete stem, as is often the case with
the Porter approach. It can also be implemented efficiently and is suitable for query-
based stemming. The experimental results show that the new stemmer gives more

consistent performance improvements than either the Porter or KSTEM approaches.

Acknowledgements

This work was supported by the NSF Center for Intelligent Information Retrieval at
the University of Massachusetts. Bob Krovetz helped with the organization of the
experiments.

References

1]

2]

K. Church and P. Hanks. Word association norms, mutual information, and

lexicography. In Proceedings of the 27th ACL Meeting, pages 76-83, 1989.

D. Harman. Overview of the first TREC conference. In Proceedings of the 16t
ACM SIGIR International Conference on Research and Development in Informa-
tion Retrieval pages 36-47, 1993.

Y. Jing and W.B. Croft. An association thesaurus for information retrieval. In

Proceedings of RIAO 94, 1994. to appear.

Robert Krovetz. Viewing morphology as an inference process. In Proceedings of
the 16" International Conference on Research and Development in Information

Retrieval, pages 191-202, 1993.
M. Porter. An algorithm for suffix stripping. Program, 14(3):130-137, 1980.

E. Riloff and W. Lehnert. Information extraction as a basis for high-precision text
classification. ACM Transactions on Information Systems, 12:296-333, 1994.

Howard Turtle. Natural language vs. Boolean query evaluation: A comparison of

retrieval performance. In Proceedings ACM SIGIR 94, pages 212-220, 1994.
C.J. van Rijsbergen. Information Retrieval. Butterworths, second edition, 1979.

E. Voorhees. Query expansion using lexical-semantic relations. In Processings of

the 17th ACM SIGIR Conference, pages 61-69, 1994.

Re

10
20
30
40
50
60
70
80
90
100

avg

Re

10
20
30
40
50
60
70
80
90
100

avg

call Precision (34 queries)
KSTEM PORTER NEW(100-0.01)
79.2 78.0 (-1.5) 78.0 (-1.5)
75.7 73.7 (-2.86) 75.3 (-0.6)
71.7 71.9 (+0.2) 72.6 (+1.3)
61.9 61.8 (-0.1) 62.0 (+0.2)
54.8 54.8 (+0.1) 54.8 (+0.1)
46.2 45.0 (-2.6) 46.2 (+0.1)
37.4 37.0 (-1.1) 38.2 (+2.2)
29.0 29.7 (+2.6) 31.6 (+9.0)
16.7 17.9 (+7.3) 18.3 (+9.8)
9.1 10.6 (+16.4) 10.0 (+10.0)
48.2 48.0 (-0.2) 48.7 (+1.1)
Table 2: Retrieval experiments on the West corpus
call Precision (34 queries)
KSTEM PORTER NEW(100-0.01)
79.2 79.7 (+0.6) 79.3 (+0.1)
75.6 74.5 (-1.4) 75.0 (-0.8)
71.8 71.1 (-1.0) 71.9 (+0.1)
63.9 63.8 (-0.2) 63.8 (-0.2)
58.1 58.4 (+0.5) 60.0 (+3.3)
50.7 51.3 (+1.1) 52.0 (+2.5)
41.9 42.2 (+0.8) 42 .6 (+1.6)
32.6 34.4 (+5.6) 34.9 (+7.0)
20.5 21.4 (+4.1) 21.8 (+6.1)
10.3 11.4 (+10.6) 10.5 (+1.7)
50.5 50.8 (+0.7) 51.2 (+1.4)

Table 3: Retrieval experiments using West structured queries

10

Recall Precision (66 queries)

KSTEM PORTER NEW(100-0.01)
10 52.3 52.7 (40.7) 52.8 (40.9)
20 45.1 45.4 (+0.6) 45.8 (+1.86)
30 39.4 40.8 (+3.5) 41.3 (+4.8)
40 35.1 36.2 (+3.1) 36.8 (+5.0)
50 29.9 31.1 (+4.1) 31.3 (+4.6)
60 24.9 26.3 (+5.8) 26.3 (+5.5)
70 20.8 22.0 (+5.5) 22.0 (4+5.3)
80 16.5 17.2 (+4.5) 17.3 (+5.1)
90 11.4 12.0 (+5.5) 12.1 (+6.7)
100 2.5 2.8 (+11.7) 2.8 (+15.5)
avg 27.8 28.6 (+3.1) 28.9 (+3.9)
Table 4: Retrieval experiments using WSJ corpus
Recall Precision (66 queries)
KSTEM NEW(100-0.01)

10 52.3 52.8 (+0.8)

20 45.1 45.8 (+1.5)

30 39.4 41.3 (+4.8)

40 35.1 36.8 (+5.0)

50 29.9 31.3 (+4.7)

60 24.9 26.3 (+5.5)

70 20.8 22.0 (+5.3)

80 16.5 17.3 (45.0)

90 11.4 12.1 (+6.7)

100 2.5 2.8 (+15.5)
avg 27.8 28.8 (+3.8)

Table 5: Retrieval experiments using KSTEM for pairs with insufficient statistics
(WSJ collection)

11

