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ABSTRACT
Many query suggestion techniques have been proposed to
better capture user intent and to improve search effective-
ness. However, most of these methods make use of query
logs which are not readily available to the research commu-
nity. Anchor text, on the other hand, is widely available and
has proven useful for many tasks. In this paper, we investi-
gate the problem of query suggestion via random walk and
demonstrate that anchor text can be an excellent substitute
for a query log. In particular, our results suggest that an-
chor text is as effective as a real log for this technique and it
even outperforms the real log in some cases. In addition, we
propose a simple but efficient implementation of the random
walk procedure under the MapReduce framework. Each it-
eration of the walk can be done in a matter of minutes on
graphs with million of vertices.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Query For-
mulation

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Query suggestion, query log, anchor text, random walk,
MapReduce.

1. INTRODUCTION
Many different query formulations are possible for a given
information need. Some of those formulations will be effec-
tive, others will not. Formulating the correct query for web
search can be a difficult task, given that users may not be
aware of the right vocabulary to use. As a result, query sug-
gestion has become an important part of web search engines.

Query reformulation or query rewriting techniques [10, 20,
23] manipulate the original query by replacing words or

adding new words in order to create a more effective query.
In contrast, query suggestion or query recommendation tech-
niques [2, 24, 1, 16] use the whole original query to find
closely related queries that have previously been submitted
to the search engine. While each class of technique has ad-
vantages, we focus on query suggestion techniques in this
paper.

Most of the proposed query suggestion techniques make use
of query logs as the source of past observed queries. While
some methods find suggestions for a query based on the
content similarity between their clicked documents [24, 1],
in this paper, we investigate a “content-ignorant” approach
because it is more practical on large datasets. In particu-
lar, we focus on random walk-based methods such as that
proposed by Mei and Church [16]. In general, these meth-
ods build a bi-partite click-graph from a query log and use
queries connected via a random walk as suggestions for each
another. The expected number of steps in getting from one
query to another is the “score” for the suggestion. The key
advantage of this type of method is its ability to find sug-
gested queries that do not have any clicked documents in
common with the initial query.

A major problem with this technique, and others, is that
query logs are not readily available to the research commu-
nity. This makes it difficult to compare the relative effec-
tiveness of techniques and apply them in domains for which
there is no query log. To address this lack of availability,
we propose to use anchor text to simulate parts of a log
since they have very similar structure. Anchor text is often
a concise description of the page it points to and can be
thought of as a “query” to retrieve that page. The similarity
between anchor text and real queries has also been observed
by other researchers. Eiron and McCurley [8] showed that
anchor text and real queries are similar regarding term dis-
tribution and length. Nallapati et al. [19] used anchor text
as queries to train retrieval models. More recently, Dang and
Croft [6] have shown that anchor text is as effective as a real
query log for the task of query reformulation. In this paper,
we create an anchor log from anchor text extracted from
the TREC ClueWeb collection. Suggestions obtained with
this anchor log and a real log (the MSN log [18]) via ran-
dom walks are compared in terms of retrieval performance
on TREC collections. Our results show that the anchor log
is at least as effective as the real log, and can significantly
outperform it in one query set.



Random walk is a standard graph algorithm that has many
applications in the area of information retrieval as pointed
out by Craswell and Szummer [4]. In addition to query
suggestion, it has also been applied to document ranking
[4], label propagation [22, 11, 13] and click-through data
smoothing [9]. Existing work, however, has either used a
relatively small log or performed only short walks. When
logs get larger and longer walks become necessary, the effi-
cient implementation of the random walk is an important is-
sue that does not appear to have been sufficiently addressed
in previous research. In this paper, we propose a simple
implementation for the random walk procedure using the
MapReduce framework.

In the next section, we describe the process of building the
anchor log from a web collection and compare it with the
MSN log. Section 3 presents the random walk model for
query suggestion and its implementation under the MapRe-
duce framework. Section 4 contains the experimental results
as well as our discussion of them. Section 5 describes related
work in the area and finally, Section 6 will conclude.

2. ANCHOR LOG CONSTRUCTION
A query log contains a broad range of information gathered
from searchers. The most important part for query sugges-
tion is the queries issued by users and the documents they
clicked on for those queries. Session information which cap-
tures users’ behaviour either within a window of time or
of other segmentation criteria is also useful for a variety of
tasks. However, the technique that we investigate in this
paper does not use session information.

Even though search logs have proven important in many
ways, they generally are not available to the research com-
munity due to privacy concerns. On the other hand, anchor
text, which is widely available, has very similar structure to
a search log and thus potentially can be a substitute. In
fact, Dang and Croft [6] have shown that a log simulated
from anchor text is as good as a real log for query reformu-
lation.

Web pages are connected to one another via hyper-links,
each of which is associated with some anchor text. A link
is called internal if two connected pages are from the same
domain and external if they come from different domains.
Since most of the internal links are for navigation purposes,
their associated anchor text is not very helpful. Typical
examples of such anchor text are “home” and “index”. As
a result, we only consider external links in our construction
process.

The web collection for anchor text mining that we use is the
English portion of the ClueWeb-09 catetory A 1. It contains
500 million pages in English that were crawled from the web
during early 2009. We extracted all pairs of anchor text and
associated urls from the web pages in this collection.

In order to reduce noise, we discarded anchors that con-
tain non-English words and those that contain navigation-
triggered words such as “click”, “download” and “subscribe”.
We also removed anchors that contain only numbers and

1http://boston.lti.cs.cmu.edu/Data/clueweb09/

Table 1: Statistics of MSN Log and Anchor
MSN Log Anchor Log

# Total Queries 12,250,998 5,484,766,989
# Unique Queries 3,544,809 323,640,671

Average Query Length 2.51 2.74

stop words. We put the resulting <anchor text, url> pairs
together to build a simulated query log, which will be refered
to as the anchor log in the rest of the paper. In the anchor
log, anchor text replaces the queries, and hyperlinked pages
represent clicked documents. Our anchor log is similar to
that of Dang and Croft [6] but on a larger scale.

We use the MSN log [18] as the real log counterpart for
comparison. The MSN log is a sample of queries submitted
to a commercial search engine over a month period. The
same content filter was applied to this log. Table 1 shows
the statistics of these two logs.

One might argue that the real log is at a disadvantage in this
comparison considering its size. This, in fact, reinforces our
point about the potential of anchor text: it is freely available
virtually in any amount. Since the goal of this study is to
explore the possibility of using anchor text as a substitute
for query logs, the difference in size should not matter.

3. RANDOM WALK ON A CLICK GRAPH
Random walk is a general procedure that can be applied on
graphs. It has two main variations: the forward walk model
computes the probability of getting from point A to point B
in t steps while the backward walk model computes the prob-
ability of reaching B from A. Therefore, the forward model
can be explained as predictive and the backward model as
diagnostic. The model applied in this paper is the forward

walk.

3.1 The Model
A bipartite graph is a graph where vertices can be organized
into two sets such that there are no edges connecting vertices
in the same set. The click graph is such a bipartite graph
with queries on one side and documents on the other. An
edge connecting a query and a document indicates that we
have observed clicks for that document-query pair and its
weight is the number of clicks. In the case of the anchor log,
the edges in the graph represent <anchor text, url> pairs.

With the click graph in mind, the random walk procedure
can be explained as follows. Starting at a query qi, a user can
“walk” to connected documents, each with some probability.
At each document, the user then “walks” to other connected
queries and the process repeats. The fact that one can“walk”
from qi to qj indicates that qj is relevant to qi and thus, qj
can be potentially suggested to users who issue qi.

The process above forces the user to move to a different
vertex in every step. Thus longer walks can get further away
from the starting point. In the context of our query log click
graph, it is unlikely that queries that are too far from the
initial query make good suggestions. Therefore, we allow self
transition in the random walk process. In other words, at
every step, the user can decide whether to move to another





Figure 2: One iteration of random walk in the MapReduce framework. Pair of edges to be connected are
distributed to the same mapper which joins them based on the common vertex to emit a new edge. The
reducer aggregates intermediate instances of “A →E” to generate the complete edge.

Table 2: Pseudo code for the random walk proce-
dure in MapReduce. Note that we ignore the prob-
ability normalization in the Reducer class for sim-
plicity.

Mapper(1−1)

Input: q
(t−1)
A

For each edge e in q
(t−1)
A

Emit e
End For

Mapper(1−2)

Input: T , self-transition probability s
For each group of edges G in T that shares the
source vertex

For each edge e in G
e.prob← e.prob× (1− s)
Emit e

End For
Emit new Edge(G.sℎaredV ertex, G.sℎaredV ertex, s)

End For

Mapper(2)

Input: stream s1 from q
(t−1)
A , stream s2 from T

For each pair e1 ∈ s1 and e2 ∈ s2
such that e1.target = e2.source
Emit new Edge(e1.source, e2.target, e1.prob× e2.prob)

End For
Reducer
Input: List of edges E sorted by both source and target

G← edges that share both source and target vertex
e← any e′ ∈ G
e.prob =

∑
e′∈G e′.prob

extend the walk, most of them will unlikely be helpful. As
a result, it is not necessary to maintain all of them. In this
paper, we propose to maintain only top-K new vertices at
each step from which we will allow further walk. We can
either set K to a constant or lower its value as we walk fur-
ther from the starting point. For simplicity, we choose the
former approach.

Since the set of reachable nodes at the end of each step in-
cludes both old vertices (because we allow self-transition)
and new vertices. Simply keeping only top-K might prevent

Table 3: Statistics of the click graphs built from the
MSN Log and our Anchor Log

#queries #urls #edges
MSN Log 826,639 541,352 1,609,827

Anchor Log 8,215,751 9,885,766 29,811,501

us from getting any new vertices since the top-K might be
dominated by old vertices, especially when we use a reason-
ably large self-transition probability to promote suggestions
closer to the original query. As a result, we record only the
top-K among newly discovered vertices and keep all of the
old ones.

4. EXPERIMENTS
In this section, we evaluate the efficiency of our proposed
implementation of the random walk technique as well as
compare the effectiveness of our anchor log and the MSN
log for query suggestion.

4.1 Data Preparation
We construct a bi-partite graph for each of the logs. Since
<query, url> pairs that have low frequency might not be
reliable, we filter out all pairs with frequency of 1. In an
attempt to reduce noise, we follow Craswell and Szummer
[4] by doing a two-stage pruning of the graph. We first
remove all urls that are connected to only one query and
then remove all queries that are connected to only one url.
The statistics of our pruned graphs is shown in Table. 3.

Table. 3 suggests that the anchor graph is denser than the
MSN graph. The #queries/url and #url/query ratio for
the MSN graph are 2.97 and 1.95 respectively while these
ratios for the anchor graph are 3.02 and 3.62.

4.2 Parameter Settings
In our preliminary experiments, we tried different values for
the self-transition probability. This is by no mean an exhaus-
tive parameter tuning. We observed the best performance
with s = 0.4 for the MSN log and 0.01 for the anchor log.
Thus, we will use these values in all of our experiments.



4.3 Evaluation Method
It is always difficult to evaluate query suggestion techniques
since the definition of “quality” of suggestions is unclear.
Beeferman and Berger [2] evaluate suggestions based on their
actual click-through rate. Jones et al. [10] evaluate sugges-
tions by manually checking how similar they are to the origi-
nal queries. In this paper, we choose to evaluate suggestions
using their retrieval performance instead.

To simulate the context of web search, we do retrieval on the
ClueWeb09 category A dataset. It contains roughly 500 mil-
lion web pages crawled during January and February 2009.
We use two different query sets, one from the TREC Web
Track 2009 (WT-09 ) and the other from TREC Web Track
2010 (WT-10 ). The former set contains 50 queries and the
latter has 36. It is worth mentioning that the relevance
judgments are incomplete due to the size of this collection.

The core evaluation task in this study is that given two dif-
ferent lists of suggestions for the same query, how should
we determine if they are good and which one is better? We
could of course judge a list by its top suggestion: it is good
if that suggestion performs better than the original query
with respect to some retrieval metric. However, to the best
of our knowledge, there is no known techniques that can
consistently provide a single suggestion that is better than
the initial query. Since our goal in this study is to compare
the anchor text and query logs rather than trying to opti-
mize the query suggestion method, we choose to use a more
relaxed criteria.

We do our evaluation as following. We use the original query
and top-m suggestions in each list to do retrieval and record
their MAP and NDCG@10. Then we manually choose the
best suggestion among each list as its representative, and
thus the MAP or NDCG@10 of a list will be that of its
best suggestion. Now we can compare one list to the other
as well as to the original query. We vary m from 1 to 10 in
our experiments. This can be explained in the context of a
user using a search engine: the search engine suggests a list
of alternatives to the user and the user will likely be able to
select good suggestions. Hence, the list can be considered
“good” if it contains a “good’ suggestion.

It is worth noting that the goal of suggesting alternative
queries is not always to improve the original query, but some-
times it is to suggest queries on related topics. In this paper,
however, we assume that we are trying to improve the origi-
nal query and leave related query suggestion to future work.

We used Lemur/Indri2 as the retrieval software and language
modeling [5] was used for retrieval. When any suggested
query is used to do retrieval, it is always combined with the
initial query via the Indri’s #combine operator with equal
weight. We use TupleFlow [21] as an implementation of
MapReduce. A two-tailed t-test is used with p-value< 0.05
to perform significance tests.

4.4 Efficiency
The main efficiency problem for the implementation of ran-
dom walks is the growth rate of reachable nodes over time.

2http://www.lemurproject.org

Table 4: The number of reachable vertices at dif-
ferent walk’s lengths. While this growth is man-
agable with the MSN log, this is not the case with
the anchor log. “Anc-” stands for the anchor log and
“MSN-” represents the MSN log.
L. Anc-Full Anc-Top300 MSN-Full MSN-Top300
2 1,655 819 56 50
3 134,277 1,119 178 117
4 457,435 1,419 695 219
5 3,548,565 1,719 1,571 332
6 6,823,483 2,019 4,372 486

Intuitively, the denser the graph, the higher is this growth
rate. Table 4 shows the average number of reachable nodes
for one initial query when using the standard procedure (pre-
sented as “-Full”) and our top-K approach (marked as “-
Top300”) in which we set K = 300.

While the growth on the MSN log is manageble due to its
small size, this is not the case with the anchor log. After only
6 steps, the walk covers more than one third of the graph.
Keeping only top-K new vertices at each step certainly re-
duces this growth. However, since random walk works by
propagating probabilities among all connections, this filter-
ing will direct all the probability mass to those top-K ver-
tices. As a result, it will affect the walk’s behaviour.

To verify if simply maintaining only the top-K new vertices
at each step is reasonable, we compare it with the standard
procedure on the MSN log with a 30-step walk. The self-
transition probability is set to t = 0.4. For simplicity, we
only present the results observed with WT-09 since the re-
sults with WT-10 are very similar. Quality of suggestions
are evaluated as described in section 4.3 with m = 10.

Fig. 3 shows the average number of reachable vertices per
initial query and the quality of suggestions at each iteration
of the two procedures. We can see that while the Top300

approach only maintains a very small set of reachable ver-
tices, its suggestions are at least as good as those generated
by the standard procedure that has to maintain many more
reachable vertices, and thus is more computationally expen-
sive as can be seen in Fig. 4 in terms of running time. In
addition, it is interesting to notice whereas longer walks with
the standard procedure result in lower quality suggestions,
this is not the case with the Top300 approach. This helps
validate our intuition to some degree that when a node p is
connected with too many nodes, not all of these connections
are helpful. In fact, propagating the probability mass of p
along all these connections might diffuse the walk away from
good suggestions. This is especially true when p is further
away from the starting query, which is why the performance
drop of the standard procedure starts from the 20tℎ iteration
but not early in the process.

For the rest of the paper, we will apply this Top-300 ap-
proach to the procedure on the anchor log since running the
standard procedure is not practical considering we will ex-
periment with long walks. With the MSN log however, we
will use the standard walk procedure. The reason is that,
even though the Top-300 approach is more stable with the



Figure 3: Comparison of the standard random walk procedure and our Top-300 approach. Fig. (a) shows
the NDCG@5 for suggestions provided by the two procedures (for 32 queries in WT-09) and Fig. (b)
shows the number of reachable vertices per starting query at each iteration that needs to be maintained by
each procedure. While our approach maintains a much smaller set of reachable vertices than the standard
procedure, the suggestions that it generates are at least at good.

Figure 4: The running time of each step of the ran-
dom walk on two logs.

length of walk length, the best results we achieved with the
MSN log in most cases are observed to be from the stan-
dard procedure (though the differences are not significant).
Given our evaluation criteria, using the standard procedure
will give the MSN log some advantages.

The running time 3 of these three processes is given in Fig. 4.
Each iteration of the algorithm (starting at all queries at
the same time) takes an average of 38 seconds on the MSN
graph and 423 seconds on the anchor graph using Top300.
We note that we can reduce the running time by using a
more efficient data structure to store the graph on disk. In
this work, our graphs are encoded as lists of edges and they
are stored as simple gzipped text files. Therefore, reading
the graph from disk is responsible for a large portion of the
running time for the anchor log graph.

3Our hardware cluster includes 60 compute nodes with 8
cores (Xeon 5355 2.66 GHz), 16GB of ram. However, we
normally used only 40 mappers in our experiments.

4.5 Query Suggestion Evaluation
In this section, we will evaluate the effectiveness of the an-
chor log and the MSN log for query suggestion. Experiments
proceed as follows. For each query q in our query set that
appears in the log, we use it as the starting point from which
we conduct a random walk of length t. We set t to 30 in
all of our experiments since we have observed no significant
improvement with larger t. At the end of the walk, the
top-m query nodes that are reachable from q are considered
suggestions generated by this log. This list is compared to
the original query as well as other lists using the evaluation
method described in section 4.3 above.

4.5.1 The Anchor Log
We were able to obtain suggestions to 40 out of 50 queries
from the web track 2009’s query set and 31 out of 36 from
the 2010’s set from our anchor log. We set m = 10 in this
experiment. Table 5 shows the performance comparison be-
tween the suggestions generated with this log and the initial
queries.

These results across two query sets consistently show that
suggestions provided by this log significantly outperform the
original queries, regardless of the walk length. Most of the
differences are statistically significant at p-value< 0.05. This
suggests that the log is indeed very effective in suggesting
queries with high retrieval performance. Some examples of
these suggestions are provided in Table 6.

It is interesting to see that the best performing suggestions
were generated very early in the walk process: at t = 2 on
WT-09 and t = 4 on WT-10.

4.5.2 The MSN Log
The MSN log can only provide suggestions for 34 queries
in WT-09 and to 26 queries in WT-10. Its performance is
shown in Table 7. Similar to the results with the anchor
log, the suggestions generated with the MSN log are also



Table 6: Examples of suggestions generated with the anchor log. The first column shows the original query of
which NDCG@10 is given in the second column. The suggestions to this query together with its NDCG@10

is provided in the third and fourth column respectively.
Orig. Query NDCG@10 New Query NDCG@10

neil young 0.4254 neil young living with war 1.0
bellevue 0.103 www ci bellevue wa us 0.6823
tornadoes 0.468 how tornadoes work 0.7382
ocd 0.041 obsessive compulsive disorder 0.2107
kcs 0.0 kansas city southern 0.4026
joints 0.0 joint pain 0.0214
air travel information 0.0 permitted and prohibited items 0.0245
disneyland hotel 0.0231 discount hotel anaheim california 0.1784
iron 0.0 wikipedia iron 0.4362
the music man 0.0 professor harold hill 0.3577

Table 5: Effectiveness of the anchor log for query
suggestions. The 3rd row provides the retrieval
scores of the original queries in WT-09 and WT-

10. Subsequent rows present results for suggested
queries obtained from this log at different walk-
length. “rw-n” indicates a “n”-step walk. The sug-
gested queries are better than the original in both
metrics. ∗ indicates statistically significant differ-
ence to the original queries at p-value< 0.05.

WT-09 WT-10

NDCG@10 MAP NDCG@10 MAP

Orig. Q. 0.233 0.0696 0.1675 0.1103

rw-02 0.3505∗ 0.1112∗ 0.2907∗ 0.1464∗

rw-04 0.3434∗ 0.1061∗ 0.309∗ 0.1555∗

rw-06 0.3294∗ 0.1031∗ 0.2878∗ 0.1472∗

rw-08 0.3319∗ 0.1031∗ 0.2878∗ 0.147∗

rw-10 0.3256∗ 0.0993∗ 0.2781∗ 0.1463∗

rw-12 0.3214∗ 0.0993∗ 0.2685∗ 0.1428∗

rw-14 0.3198∗ 0.0979∗ 0.2785∗ 0.1466∗

rw-16 0.3198∗ 0.0965∗ 0.273∗ 0.1463∗

rw-18 0.3204∗ 0.0973∗ 0.2761∗ 0.1486∗

rw-20 0.3197∗ 0.0973∗ 0.2761∗ 0.1486∗

rw-22 0.3209∗ 0.0967∗ 0.2761∗ 0.1486∗

rw-24 0.2992∗ 0.0903 0.2761∗ 0.1486∗

rw-26 0.2986∗ 0.0902 0.2798∗ 0.1497∗

rw-28 0.3003∗ 0.088 0.2798∗ 0.1497∗

rw-30 0.2998∗ 0.088 0.2804∗ 0.1559∗

significantly better than then original queries. Examples of
suggestions provided by this log are given in Table 8.

4.5.3 Log Comparison
In this experiment, we use only the subset of queries of which
suggestions can be generated with both logs. This results
in a set of 32 queries for WT-09 and 25 queries for WT-

10. In addition, we set the walk-length parameter t = 2 and
t = 4 for the anchor log on WT-09 and WT-10 respectively;
t = 4 and t = 18 for the MSN log on WT-09 and WT-10

respectively since these settings provide the best results in
previous experiments. We vary m from 1 to 10 to see where
the effective suggestions are in the each list.

Fig. 5 and Fig. 6 show the performance comparison between

Table 7: Effectiveness of the MSN log for query sug-
gestions. The 3rd row provides the retrieval scores
of the original queries in WT-09 and WT-10. Sub-
sequent rows present results for suggested queries
obtained from this log at different walk-length. “rw-
n” indicates a “n”-step walk. The suggested queries
are better than the original in both metrics. ∗ indi-
cates statistically significant difference to the origi-
nal queries at p-value< 0.05.

WT-09 WT-10

NDCG@10 MAP NDCG@10 MAP

Orig. Q. 0.2121 0.0661 0.1839 0.1396

rw-02 0.2845∗ 0.0783 0.3126∗ 0.1781∗

rw-04 0.3027∗ 0.0828 0.3161∗ 0.1774∗

rw-06 0.3027∗ 0.0828 0.3161∗ 0.1773∗

rw-08 0.3017∗ 0.0826 0.3161∗ 0.1773∗

rw-10 0.2992∗ 0.0828 0.3161∗ 0.1773∗

rw-12 0.2992∗ 0.0839 0.3161∗ 0.1764∗

rw-14 0.2953∗ 0.0829 0.3161∗ 0.1764∗

rw-16 0.2945∗ 0.0826 0.3197∗ 0.1771∗

rw-18 0.2968∗ 0.0828 0.3205∗ 0.1773∗

rw-20 0.2754∗ 0.081 0.3205∗ 0.1773∗

rw-22 0.277∗ 0.0807 0.3169∗ 0.1766∗

rw-24 0.2699∗ 0.0809 0.3144∗ 0.1759∗

rw-26 0.2646∗ 0.0781 0.2642∗ 0.1609
rw-28 0.2359 0.0723 0.224 0.1242
rw-30 0.2176 0.0711 0.2247 0.1255

the two logs on WT-09 and WT-10 respectively. Sugges-
tions generated by both logs again outperform the original
queries both in NDCG@10 and MAP starting at m = 3 on
both query sets. This means effective suggestions are among
the top-3 of each list. Statistically significant improvements
occur from m = 4.

While both logs perform comparably on WT-10, the an-
chor log even achieves much higher NDCG and significantly
higher MAP than the MSN log. This confirms out intuition
that anchor text can be an excellent substitute for a query
logs for query suggestion. This result is also consistent with
that of Dang and Croft [6] which shows that anchor text is
as effective as a query log for query reformulation.





Table 9: Performance comparison separated by
“Help” and “Fail”. Rows marked with “Help” and
“Fail’ represent the subset of queries for which the
log can provide effective suggestions and those that
it fails to provide any effective suggestion respec-
tively. The 2nd and 3rd column provide the num-
ber of queries in each set and their NDCG@10. The
4th and 5th column present NDCG@10 of sugges-
tions as well as the relative improvement over the
original queries.

#q Orig.Q Suggestion %Increase

W
T
-0
9

Anchor Log
Help 24 0.1859 0.28 +50.62%
Fail 2 0.7164 0.0403 -94.38%

MSN Log
Help 23 0.1959 0.2454 +25.24%
Fail 5 0.433 0.0545 -87.42%

W
T
-1
0

Anchor Log
Help 19 0.1888 0.3031 +60.55%
Fail 1 0.1432 0.0032 -97.76%

MSN Log
Help 20 0.1863 0.2922 +56.85%
Fail 0 0.0 0.0 +0%

To understand the difference in performance of the two logs,
we divide our query set into two: one subset contains queries
for which the log can generate suggestions with higher
NDCG@10 than the initial queries and the other subset con-
tains queries for which the log fails to provide any such sug-
gestions. We then examine the performance of both logs
with respect to each group. Results are presented in Ta-
ble 9.

With the WT-09 query set, though both logs are able to
provide effective suggestions for roughly the same number
of queries, the suggestions obtained from the anchor log
are indeed more effective since they show an improvement
of 50.62% over the original queries whereas those from the
MSN log provides only 25.24%. In addition, the MSN log
also fails with more queries than the anchor log. These re-
sults explain why the anchor log achieves significantly better
performance than the MSN log with WT-09. With WT-10,
however, both logs help and fail about the same number of
queries and their performance on each subset is also compa-
rable to each other. Therefore, their overall performance is
very similar as we observed in Fig. 6.

5. RELATED WORK
It is important to point out the differences between our task
– query suggestion – and query reformulation. Query refor-
mulation techniques [10, 23] usually substitute some of the
query words or phrases, delete them or add new words to the
query. Query suggestion, on the other hand, treats queries
as a whole and identify suggestions for them from past ob-
served queries. As a results, suggestions are more “natu-
ral” than reformulated queries since they are “real” queries.
Consequently, suggestions are more suitable for presenting
to users as alternatives.

There are quite a few techniques that have been proposed
for query suggestion. Beeferman and Berger [2] use agglom-

erative clustering approach to group similar queries together
where the similarity of two queries is defined to be the frac-
tion of common clicked documents they have. Instead of us-
ing only click information, Baeza-Yates et al. [1] also takes
into the account the content of the page. Each query is
represented as term vector aggregated over all clicked doc-
uments and these term vectors are clustered using k-mean.
Wen et al. [24] use a similar approach but consider query-
query content similarity and document-document similarity
defined in some taxonomy. Our approach, which is based
on a random walk, is different to those because it does not
use content similarity or any taxonomy. The approach of
Beeferman and Berger is the most similar to ours in that re-
gard, but it requires the computation of pair-wise similarity
between any pair of queries, which is less efficient.

Our approach, in fact, is inspired by the one proposed by
Mei and Church [16]. They use the notion of hitting time,
which is the expected number of steps that a random walk
hits a particular query, to rank suggestions. The general
idea is suggestions are better if they have shorter expected
number of steps of reaching the initial query. While this is
a backward walk model, we conduct a forward walk.

With the emergence of parallel processing frameworks,
MapReduce has been used to speed up many tasks [14, 3].
The MapReduce implementation of graph algorithms such
as PageRank has been proposed [15]. However, this is not
the case for random walk even though it is a very popular
algorithm with many applications including ranking docu-
ments [4], smoothing click-through data [9] and label prop-
agation [11, 13, 22]. It is worth mentioning that PageRank
is a query-independent random walk whereas random walks
for query suggestion are query-dependent, which has higher
complexity. To the best of our knowledge, an implementa-
tion for random walks in the MapReduce framework has not
been presented before.

Anchor text has been noted as useful by many researchers
[19, 8, 17, 25]. However the most relevant to our study which
aims to use anchor text as a substitute for query logs is the
work by Dang and Croft [6]. The main difference is that they
use anchor text for query reformulation whereas we address
the task of query suggestion. In addition, our anchor log
is significantly larger than theirs, which was based on the
TREC GOV2 collection.

6. CONCLUSIONS
In this paper, we construct a simulated query log from an-
chor text extracted from the ClueWeb-09 collection. We
compare this log with a real query log (the MSN log) in
terms of the retrieval performance of suggested queries they
generate via the random walk procedure. Our main finding
is that our anchor log is at least as effective as the MSN
log for query suggestion. In fact, the suggestions it provides
are significantly better than those obtained with the MSN
log on the query set from TREC Web Track 2009. Part of
the reason for this may be that the anchor log is larger, and
thus has better coverage than the MSN log. This, in fact,
further confirms the potential of anchor text which is freely
available in vast amount.

In addition, we present an implementation of the popular



random walk procedure in the MapReduce framework. We
have also shown that it is not necessary to maintain all new
reachable vertices at each step of walk. Doing so not only in-
creases the computational expense, it diffuses the walk away
from good suggestions. Instead, we can only keep the top-
K new discovered vertices in each step. This substancially
cuts down the number of vertices that need to be considered
while still performing comparably to the standard proce-
dure. Consequently, each iteration of the walk on a graph
with millions of vertices can be done in a matter of minutes.

Currently, there are no known techniques that can consis-
tently provide a single best suggestion for users’ queries.
Therefore, we evaluated a list of suggestions by judging the
best one among them. Interestingly, both the anchor log and
the MSN log can provide suggestions that are significantly
better than the original query. We see that these high qual-
ity suggestions occur as soon as the third position in ranked
list of suggestions. We believe that reranking approaches
[12] can help push them to the top position.

Even though the forward random walk model we imple-
mented in this paper is probably the simplest one, it per-
forms very well in our experiments. Craswell and Szummer
[4] achieve better results with backward walks than with for-

ward walks, suggesting we can benefit more with other vari-
ants. We intend to evaluate these models in more detail.

Morever, we observed that the two logs provide different
suggestions to many of the queries. In the future, we will
also investigate the possibility of combining anchor text with
query logs.
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