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ABSTRACT

It is well known that clickthrough data can be used to im-
prove the effectiveness of search results: broadly speaking,
a query’s past clicks are a predictor of future clicks on doc-
uments. However, when a new or unusual query appears, or
when a system is not as widely used as a mainstream web
search system, there may be little to no click data available
to improve the results. Existing methods to boost query
performance for sparse queries extend the query-document
click relationship to more documents or queries, but require
substantial clickthrough data from other queries.

In this work we describe a way to boost rarely-clicked
queries in a system where limited clickthrough data is avail-
able for all queries. We describe a probabilistic approach for
carrying out that estimation and use it to rerank retrieved
documents. We utilize information from co-click queries,
subset queries, and synonym queries to estimate the click-
through for a sparse query. Our experiments on a query log
from a medical informatics company demonstrate that when
overall clickthrough data is sparse, reranking search results
using clickthrough information from related queries signifi-
cantly outperforms reranking that employs clickthrough in-
formation from the query alone.

Categories and Subject Descriptors: H.3.3 [Information

Search and Retrieval]: Search process

General Terms: Experimentation, Algorithms

Keywords: Sparse Queries, Reranking, Query Log Mining,
Sparse Clickthrough Data, Query Selection

1. INTRODUCTION
Clickthrough data from query logs is widely used to im-

prove document ranking [1, 8, 9, 10, 14, 15, 25]. But how
does it work for new or unusual queries in a search sys-
tem? Such (sparse) queries are problematic because little or
no clickthrough information is available for them in query
logs. This situation can be attributed to three causes: (1)
either the query is unpopular or new and therefore very few
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searches have been issued with this query; (2) the query is
not unpopular but the displayed ranking of the search results
does not fulfill users’ information needs to the extent that
results are rarely clicked; or (3) the query is not unpopular
but the retrieved list of documents is of poor quality so that
reranking with the same set would not improve the results.
Mostly, such queries can be boosted with their own sparse
clickthrough data if available [23], or information from other
more popular queries such as co-click queries may be used
to enrich the results [8, 25]. Existing approaches however
require substantial clickthrough data from somewhere for
solid improvements due to noise that is introduced in gath-
ering the additional data [10, 23]. In this context, our work
aims at answering the following question: how can we rerank
search results for rare or sparse queries in a system for which
limited clickthrough data is available?
Our aim is in particular to achieve a better ranking of doc-

uments for underrepresented or sparse queries of types (1)
and (2) described above. We do not deal with case (3) since
this situation must be approached with a better retrieval
algorithm and not with reranking.

We deal with issues (1) and (2) indirectly by estimating
how likely a document is to be clicked given a query by
using a language modeling framework [19]. Our hypothesis is
that using clickthrough data from related queries for sparse
queries aids in achieving a better ranking than solely using
the query’s own sparse clickthrough data. The difficulty of
the task arises from the fact that little or no clickthrough
data is available not only for the query in question, but also
for all other queries in the query log. In this situation, we
cannot afford to use an approach that introduces too much
noise.

For our task, we employ queries related to the query whose
results are to be reranked. They come from one of the fol-
lowing three sources: 1. Similar queries: these share at least
one co-click with the original query, which is a well-known
feature from previous work [8, 10, 13, 23]; 2. Subset queries:
these are contained in the original query as an n-gram se-
quence; 3. Synonym queries: these are lexically, semanti-
cally, or syntactically related to the original query. We use
the clickthrough data of these related queries in our models.

We test our models on queries from a medical query log
that was obtained from a medical informatics company, Up-
ToDate. We also use their Lucene-based search system that
yields the initially ranked search results for a query. The
users of this system are doctors and nurses in practices and
hospitals – i.e., specialists in their domain. Therefore, the
medical queries are very specific to the domain. In such a
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system, sparsity of clickthrough data is experienced more
strongly than in general search engines that quickly acquire
vast amounts of queries per day.

Our results show that all reranking models outperform the
baseline for which clickthrough-boosting is employed with
information from the original query only. Further, we ob-
serve some interesting trends among the reranking models
when reducing clicks in the dataset. Reranking with subset
queries and a merged version that uses all related queries
perform best, which is expected.

Our results are specific to a particular medium-scale search
system, though we believe they are general enough to apply
to any similar setting. We hypothesize that the same ideas
will extend to general search engines with much greater lev-
els of activity, but do not have access to the resources needed
to test that belief.

This paper is organized as follows: the next Section 2 re-
views relevant related work in the area. In Section 3 we
detail the empirical setting that motivated us for this re-
search and that constrains our possible solutions. Then,
we describe the baselines and reranking models that use
clickthrough data from related queries in Section 4. This
is followed by the experiments and the results in Section 5.
Finally, we conclude our work in Section 6.

2. RELATED WORK
It is well known that by means of clickthrough data search

results can be reranked to significantly improve the results [1,
8, 9, 10, 14, 15, 25]. However, clickthrough data sparsity
poses a problem [6, 8, 10, 13], since many queries often have
a small number of clicks, which makes them incomplete. In-
deed, queries often have no clicks at all. Gao et al. [10] ap-
ply two smoothing methods to overcome the data sparsity
problem, one of which is based on Good Turing smooth-
ing. This is achieved by smoothing the features of 0-click
queries with features of 1-click queries. The other ‘smooth-
ing’ method is based on query clustering on the clickthrough
graph [8]. Here, the query-document click graph is extended
with more queries and documents by following links between
them. However, in their experiments on a dataset with less
clickthrough data available, Gao et al. [10] show that the
query clustering approach on the clickthrough graph does
not help. This method only works well when substantial
clickthrough data is available, since the introduction of ad-
ditional documents in the click graph is likely to be noisy for
queries originally not having a click with such documents.

One similarity between our work and Craswell and Szum-
mer’s random walk on the click graph [8] is that we use
information from co-click queries to estimate parts of the
reranking models – this is equivalent to following a link be-
tween a document and a co-click query. However, one major
difference is that we do not include new documents in the
document list to be reranked, since this is prone to be noisy
when clickthrough data is sparse. This means that we do not
go beyond the scope of 1-hop co-click queries. Another ma-
jor difference is that in Craswell et al.’s work the query con-
tent is not considered in the reranking process, whereas we
also attempt to use information from other related queries
for which the subqueries and synonyms of a query have to
be analyzed.

There has been a lot of previous research that uses infor-
mation from co-click queries for reranking [8, 10, 13, 23].
These queries are what we refer to as ‘similar queries’, and

they are one possible source of related queries in our rerank-
ing models. Zhao et al. [25] use clickthrough frequencies
of subqueries in their reranking approach while calculating
the likelihood of a document being retrieved, given a query.
Synonym queries on the other hand have been explored in
the literature in the form of query reformulation, query ex-
pansion and query rewriting [11, 17, 22].

There are several learning to rank approaches that incor-
porate clickthrough data [1, 9, 20]. Although we employ a
simple regression approach to estimate the similarity of some
queries (Section 4.3.2), we do not otherwise use learning ap-
proaches. For reasons explained in the following section,
our empirical evaluation is constrained to use a black-box
retrieval system, for which we are combining very few fea-
tures. A straightforward parameter sweep is as powerful as
any learning method in this case.

To the best of our knowledge, although previous approaches
have tested their retrieval and reranking algorithms on sparse
queries, they have not employed them on sparse queries in a
sparse system where the overall clickthrough data available
is limited for all queries. In our work, we aim at addressing
this aspect in particular. We note that such a setting seems
unusual, but is common in the early days of any new search
system. Indeed, major search engines have the same prob-
lem – i.e., they have queries which have rarely been seen
before. Further, their total count of such queries is almost
certainly vastly greater. However, since these queries are
a more noticeable part of the search experience for smaller
search engines like that of UpToDate, this work is more valu-
able in such a setting. Our results will show that ‘sparse’
means up until queries have close to 500 clicks.

3. EMPIRICAL SETTING
The motivation for this research arose during discussions

with the medical informatics company UpToDate. UpTo-
Date hosts medical information that is searched on a daily
basis by a large number of physicians. Although it receives
a substantial number of queries each day, the volume is mi-
nuscule compared to major search engines: our collection
contains around 10 million queries per month compared to
an estimated more than 10 billion queries handled by Google
this past March [7].

The search engine used by UpToDate is based on ver-
sion 1.4 of the open source Apache Lucene system1. It has
been extensively tuned over several years, using parameter
sweeps, evaluations on subsets of users, careful editing of the
hosted information, and human intuition. A user’s query
is converted into a complex weighted combination of the
original query words, synonyms from a controlled vocabu-
lary, and field references. In this work, we incorporate click-
through information in the Lucene-based ranking, improv-
ing retrieval effectiveness to the point that it is exceptionally
good. As we show in Section 5.2, the system is extremely
accurate, achieving NDCG closing in on 90% on average.

Not surprisingly, there are a number of queries that per-
form much worse, the ‘sparse queries’ in particular. The em-
pirical parts of this study are carried out in this environment.
Whereas the baseline search system is a carefully crafted
Lucene implementation that incorporates clickthrough in-
formation for all queries with enough click history, our ex-

1http://lucene.apache.org/java/docs/index.html
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periments investigate methods for applying clickthrough in-
formation for sparse queries in addition.

The goal of our empirical work is to explore the impact of
several approaches for using sparse information to improve
the ranking of the UpToDate-based system. That means
we are constrained to combining a carefully crafted Lucene
score with other information – here, clickthrough informa-
tion from the query and its related queries. We leave for
future work approaches that expose the inner workings of
the Lucene black-box system and integrate clickthrough in-
formation more elaborately.

4. RERANKING METHODS
In this section we first detail two baseline methods be-

fore describing the reranking models that incorporate click-
through data from related queries.

4.1 Baseline System (Luc)
As mentioned before, the query log and search system we

have for this work are based on the Apache Lucene system
used by UpToDate. Lucene by default employs a combina-
tion of the vector space model and the boolean model for re-
trieval. The system has further been extended and tuned for
this work as described in Section 3. We convert this retrieval
system’s raw output score, scoreLuc(Q,D), to probabilities
for our reranking models (Section 4.3) as follows:

PLuc(D|Q) =
scoreLuc(Q,D)

�

i scoreLuc(Q,Di)
(1)

where the denominator of this equation sums over all docu-
ments Di retrieved for the query Q.

4.2 Clickthrough-Boosted Baseline (BoosLuc)
The Clickthrough-Boosted Baseline (BoosLuc) is an ex-

tension of the Lucene system in that every query is boosted
with its own clickthrough information from the training data.
A Lucene retrieved document D for query Q is reranked as
follows:

PBoosLuc(D|Q) = γ ·
cCT(Q,D)

cCT(Q)
+ (1− γ) · PLuc(D|Q) (2)

where cCT(Q,D) is the clickthrough count for query Q with
document D, cCT(Q) is the total clickthrough count for Q

used for normalization, and PLuc(D|Q) is from Equation 1.
γ is defined as follows:

γ =
cCT(Q)

cCT(Q) + ρ
(3)

which is Dirichlet-like smoothing, ensuring heavier weight on
the clickthrough part in Equation 2 when more clickthrough
data is available for Q, and less otherwise. With less click-
through data, PLuc(D|Q), which estimates how likely D is
to be relevant by content, has a larger impact. We determine
ρ with a parameter sweep on the training data.

4.3 Reranking Models
In this section we describe the reranking models for sparse

queries that use clickthrough data from related queries. All
reranking models have the same base model, but they differ
in their source of related queries from which the informa-
tion is drawn. The base model estimates the relevance of a
document D given a query Q as follows:

PRelQ(D|Q) = α · PCT(D|Q) + (α− 1) · PLuc(D|Q) (4)

where α is Jelinek-Mercer smoothing tuned on training data.
The first component PCT(D|Q) indicates how likely D is to
be clicked based on the clickthrough information obtained
from related queries:

PCT(D|Q) = β ·
�

Q�∈Q

P (D|Q�)·P (Q�|Q)+(1−β)·
cCT(Q,D)

cCT(Q)

(5)
where Q is a set of related queries that varies depending
on the particular model used. β is again determined by
means of Dirichlet-like smoothing as in Equation 3, with
the parameter ρ replaced with κ. P (D|Q�) indicates the
likelihood of D to be retrieved by the related query Q�:

P (D|Q�) =
cCT(Q

�, D)

cCT(Q�)
(6)

which is a normalized probability based on Q�s clickthrough
data so that

�

D P (D|Q�) = 1.
P (Q�|Q) in Equation 5 stands for the quality of the re-

lation between Q� and Q. Intuitively, Q and Q� are most
related if Q� can predict the way Q’s Lucene ranked doc-
uments are going to be clicked. In other words, given the
Lucene ranked listQLuc ofQ and the clickthrough ranked list
Q�

CT of Q�, the two queries are most related if QLuc ranks
documents in the order they are clicked in Q�

CT. The list
Q�

CT is sorted in decreasing order of frequencies cCT(Q
�, D)

for Q�. This means that ideally exactly those documents in
QLuc should be ranked lowest that were not clicked for Q�

and are thus missing in Q�
CT. Hence, we compare QLuc and

Q�
CT as follows:

P (Q�|Q) = NDCG(QLuc) (7)

where the relevance judgments for NDCG come from the
ranking of Q�

CT. That is, we map the clicks given by Q�
CT

to relevance grades, with which QLuc is evaluated (see Sec-
tion 5.1.) In particular, here we use NDCG@n, where n ≤ 10
– the NDCG value at the highest rank available, not exceed-
ing 10. The NDCG values are normalized to probabilities so
that

�

Q�∈Q
P (Q�|Q) = 1.

Note that with this approach, documents in QLuc that
are ranked lowest and which were not clicked for Q� (absent
in Q�

CT) will get a relevance grade of 0 in QLuc. If those
documents are perfectly ranked at the bottom of the list,
this will not result in a lower NDCG score.

To summarize, Equation 5 has the following consequences
in extreme cases:

1. if there is no clickthrough data available at all for Q

or any Q� ∈ Q, then the reranking model will not alter
the original ranking as given by the Lucene baseline;

2. if there is no clickthrough data available for any of the
related queries, or no related queries could be found,
but there is information for Q, then the reranking
model will utilize the clickthrough likelihood of Q and
rank exactly like BoosLuc (Equation 2).

In the usual case where some sparse clickthrough data
is available for both Q and related queries, the model is a
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combination of all these components. Each related query
contributes to the likelihood of D being relevant for Q. If
there is no evidence for cCT(Q

�, D) given a particular Q�,
then this results in D not being boosted by Q�. Neither do
we apply a special form of smoothing here, nor do we use
clicks with related queries on other documents to boost D,
which would introduce noise into the estimation. The idea is
that by means of different ways of locating related queries,
we can find enough evidence to boost the right documents.

4.3.1 Similar Query Reranking (Sim)

In this model a related query is a similar query Q� that
shares at least one co-click on a document with the original
query Q. The domain of similar queries therefore consists
of all the training queries in the entire ‘clickthrough corpus’
that have at least one click in common with Q’s ranked
list. We constrain the clickthrough corpus here to have a
limited and meaningful set of similar queries that excludes
junk queries. We locate similar queries efficiently via the
reverted indexing approach [18]:

Build Reverted Index.
This is a preparation step for which we obtain the clicked

document ids for every training query Q from the click-
through data from which the index is built. The entries
look as follows:

docid(D) = {queries that retrieve D having cCT(Q,D)}

This way we accumulate the queries that were clicked with
every docid for all the training queries. The clickthrough
counts are normalized so that

�

i cCTnorm
(Q,Di) = 1, where

each Di has at least one click with Q.

Retrieve Similar Queries.
This is how similar query lookup is achieved. Given an

initial query Q, we retrieve similar queries Q� ∈ Q by query-
ing the reverted index with each of the clicked docids for Q.
This yields a combined list of similar queries with their nor-
malized clickthrough counts. We conflate multiple entries of
a similar query Q� in this list to obtain the set Q by averag-
ing the normalized clickthrough count for each Q�. This is
then used to estimate P (D|Q�) (Equation 6).

Rank Similar Queries.
The similar queries are ranked in decreasing order of P (Q�|Q)

as described in Section 4.3 (Equation 7). By construction,
every similar query has a non-zero P (Q�|Q).

4.3.2 Subset Query Reranking (Sub)

Under this model a related query Q� is defined as a sub-
query of Q. The domain of related queries is therefore the
power set of all non-empty n-gram subqueries of Q. Con-
sidering subqueries is useful when the original query is too
specific, such as in pediatric migraine headache, since sub-
queries such as migraine headache or headache often capture
more general content. We analyzed in our training data how
frequently subqueries of sparse queries are clicked. For this,
we took all training queries with fewer than 100 clicks, of
which there are about 1 million queries, and obtained their
subqueries. Table 1 contrasts the number of these training
subqueries having clicks in a certain range versus the total
number of training queries having click counts in the same

range. The numbers show that subqueries of sparse queries
are not as sparse as their corresponding super queries (bold
entries in 2nd column), with 10,368 of them having at least
100 clicks. But the subqueries are not more popular either,
since the numbers in the higher click count bins are compa-
rable (bold entries in 2nd versus 3rd columns).

Table 1: Number of training subqueries having

clicks in a certain range whose super queries have

less than 100 clicks, versus the number of all train-

ing queries having clicks in that range.

clicks #Subqueries of #All queries

sparse queries

1-9 108,807 960,423
10-49 28,421 42,915
50-99 6435 7234
100-499 7291 7489

500-999 1426 1430

1000-2499 1077 1078

2500-4999 369 370

>5000 205 208

In the subset query ranking model (Sub), we estimate
P (D|Q�) as described in Equation 6, but for P (Q�|Q), we
train a linear regression function with several features on a
portion of the training data, since this form of estimation
yields better performance with subset queries. As the truth
label during training we use NDCG(QCT) (with relevance
judgments from Q�

CT) from a different training split. The
features are the following:

overlap(Q,Q�) number of overlapping terms between the
query and subquery

kcc(Q), kcc(Q�) Key Concept Classifier (KCC) score [4]

sim(Q,Q�) weighted overlapping terms, where weight w(t)
for a term t is either the Google n-gram count [5] or
KCC(t):

simgoogle/kcc(Q,Q
�) =

�

t∈Q� w(t)
�

t∈Q w(t)
(8)

scoreLuc(Q), scoreLuc(Q
�) total Lucene retrieval score for query

and subquery

popweight(Q,Q�) popularity weight of Q� with Q:

popweight(Q,Q
�) =

cCT(Q)
�

Q∗⊃Q� cCT(Q∗)
(9)

where Q∗ ⊃ Q� represents queries Q∗ that contain Q�.
The popularity weight thus contrasts how popular Q�

is as a subquery of Q versus being a subquery of other
queries, estimated by means of clickthrough counts.

popscore(Q,Q�) popularity score of Q� with Q:

popscore(Q,Q
�) =

popweight(Q,Q�)
�

Q��∈2Q
popweight(Q��, Q)

(10)

where Q�� iterates over all subqueries in Q. The popu-
larity score indicates how popular the subquery Q� is
as opposed to other subqueries Q�� in Q.

We ensure all features are between 0 and 1 through nor-
malization. For the subset queries model, P (Q�|Q) is then a
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linear combination of these features with the trained weights.
Note that most of these features just described are applica-
ble to subset queries only. We tried training a function for
the other reranking models, too, by including NDCG(QLuc)
as an additional feature. This feature proved to be the
strongest one for them, which is what we use to estimate
P (Q�|Q) for those approaches.

4.3.3 Synonym Query Reranking (Syn)

In Synonym Query Reranking (Syn), a synonym query is
syntactically, semantically, or lexically related to the origi-
nal query. So variations of a query such as singular/plural
or paraphrases such as in hypernatremia and high plasma

sodium level are valid synonym queries. As a synonym re-
source we use a carefully constructed medical vocabulary
by deputy editors from UpToDate. It has 24,415 canonical
keyword entries with 150,383 synonym entries in total.

Given a query, we construct the set of synonym queries
Q as follows: first, if a canonical keyword entry exists for
the query, we use the synonym entries associated with it. If
there is no canonical entry for a query (which often happens
with very general medical terms), we take the n-gram subset
queries of the query and again look for canonical keyword
entries for those subset queries. If still no synonym queries
could be found after this step, we try to match the original
query and its subqueries in the synonym entries, to then
include the associated canonical entry and the remaining
synonym entries for that query. The found set of synonyms
is filtered to exclude 0-click queries. We use at most 10
synonyms from this set.

P (Q�|Q) and P (D|Q�) of these synonym queries are then
estimated by means of the training clickthrough data as de-
scribed in Equations 6 and 7, Section 4.3.

4.3.4 Merged Reranking (Merged)

For this model, we merge the different kinds of related
queries to one set, i.e.,

Q = similar queries ∪ subqueries ∪ synonyms

For each type of related query we estimate P (Q�|Q) and
P (D|Q�) the way it was described for the query in Section 4.3
and its subsections. We do not reduce the number of related
queries in this process. Therefore, the effect on Equation 5 is
that the sum is performed over a larger set of related queries.

The reason for having this merged reranking model is to
compensate for a bad choice of related queries for any one of
the methods – such as poor synonyms, no similar queries (for
0-click queries), or no subset queries (for original unigram
queries).

5. EXPERIMENTS

5.1 Data and Evaluation
Our query log is from UpToDate. The query log has 4

months of data. Tables 2 and 3 contain some statistics about
the entire data set. We split the query log into three folds:
two training folds for parameter tuning and one test fold on
which the results are reported in Section 5.2. The folds are
roughly equal in size.

For the experiments, we use 1407 queries together with the
training portion of the query log and 972 queries with the
test set. To avoid biasing parameters toward certain queries,
the training queries used in parameter tuning are distinct

Table 2: Some statistics about the query log.

Feature Quantity
Total # queries 39,248,767
Unique queries 4,896,827
Queries/day 256,528
Unique queries/day 32,005
Queries/month 7,849,753
Unique queries/month 979,365

Table 3: Distribution of clicks for all queries in the

training and test data sets.

Click Range Train Test
1-9 960423 634761
10-49 42915 28569
50-99 7234 4838
100-499 7489 5221
500-999 1430 956
1000-2499 1078 660
2500-4999 370 170
> 5000 208 74

from the test queries for which the results in this paper are
reported. All training and test queries are popular (i.e., each
query has at least 500 clicks). We perform the experiments
both on these popular queries and we also simulate them
as sparse queries by reducing the amount of training click
data available to the models. This is done to understand
the performance of sparse queries in a sparse environment.

Each query comes with clicks in the training folds as well
as clicks in the test fold. For some of our experiments we
use all of the clicks available. In others we reduce the num-
ber of clicks available to the algorithms in order to simulate
a sparse situation. The reduction of clicks for sparsity is
achieved as follows: to have K clicks for a query, we evenly
reduce the click count for each document so that the sum
of all the clicks for the query roughly equals K (with some
small error, due to multiplication with a small fraction). If
the total click count for a query is less than K, the clicks
are not altered. Therefore, this reduction of clicks preserves
the distribution of the click counts. We choose this form
of click reduction to preserve the trend in the data, i.e., the
most frequently clicked document will still be the same after
reduction. Note that clicks can be reduced within a single
fold, but can also be reduced across two or three.

Our aim in reranking the Lucene results is to better ap-
proximate the ranking as given by the click frequencies from
users, similar to Zhao et al’s work [25]. Hence we use the
clicks in the test fold as a representation of “truth.” For
the experiments reported in this paper, clickthrough truth
comes from the test fold and model estimation is done with
the training folds. Note that while the training clicks are
reduced in some of the experiments, the clickthrough truth
data from the test split is never reduced.

Given a query Q, in order to evaluate its ranked list of n
documents R, we use two different measures. One of them
uses relevance judgments from clickthrough truth, whereas
the other compares the rank correlation to the clickthrough
truth list. For the former measure, we use the truth clicks
for Q from the test fold as relevance judgments. We do
this by mapping the clicks to relevance grades for the well-
known NDCG measure (Normalized Discounted Cumulative
Gain) [12]:
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NDCG(Q,R) =
1

ZQ

n
�

i=1

2reli − 1

log2(1 + i)
(11)

where i is the ith document in R and reli is the relevance
grade of document i. This measure is normalized with ZQ so
that NDCG=1.0 when ranking is perfect. We would like to
be able to uniformly map the clicks to a reasonable range of
relevance grades to be used with NDCG for any given query.
We experimented with various schemes of mapping the clicks
for all the queries in the training query log portion to find the
most suitable approach. We discovered that we can achieve
a reasonable range of real-valued relevance grades roughly
between 1 and 4 if we use log10(clicks) for the mapping.
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Figure 1: Mapping clickthrough data to NDCG rel-

evance grades for all queries in the training query

log.

Table 4: Relevance judgments from the entire test

set rounded to discrete values.

Rel. Grade Test total
1 7121
2 2772
3 1115
4 30

Figure 1 shows the effect of choosing log10(clicks) with
a cumulative distribution function of the clicks on the doc-
uments of all the queries in the training data. Note that
by this construction relevance grades are real-valued rather
than discrete.

Table 4 shows the corresponding relevance judgments for
the entire test set. For this, we rounded the real-valued rel-
evance grades to discrete values. The numbers indicate that
across the dataset, there are only 30 ‘perfect’ documents,
1115 ‘excellent’ documents, 2772 ‘fair’ documents, and 7121
‘bad’ documents, which should not be ranked highly.

Therefore, given a query Q and a ranked list R obtained
through a reranking method as detailed in Section 4, we
evaluate the ranking of each D ∈ R by means of the truth

clicks of (Q,D) from the test fold mapped to NDCG rel-
evance grades as follows: log10(cCT(Q,D)). Similarly, in
Equation 7 where we estimate the quality of the relation
P (Q�|Q) by means of NDCG, the frequencies cCT(Q

�, D) in
Q�

CT are also mapped to NDCG relevance grades in the same
manner.

Since NDCG has been criticized in past research for not
correlating well with user satisfaction [2, 21, 24], we also
use a measure that directly evaluates the rank correlation

between two lists. Unlike NDCG, this measure does not re-
quire relevance judgments; the ranking of the lists are com-
pared directly. We still show our results with NDCG, since
it is a well-known measure widely used in the information
retrieval community. As the rank correlation metric, we use
the MMeasure [3] which penalizes differences in rankings de-
pending on the rank position, similarly to the weighted gen-
eralized version of Kendall’s Tau and Spearman’s footrule
presented in recent work by Kumar and Vassilvitskii [16].
The M Measure is defined as follows:

M(t, r)@k = 1−
M �(t, r)@k

norm
(12)

where t and r are two ranked lists for which M yields 1 if t
and r are identical at rank k, and 0 if they are completely
disjoint at rank k. M � is defined as follows:

M
�(t, r)@k =

�

Z

�

�

�

1

rankt(i)
−

1

rankr(i)

�

�

�
(13)

+
�

S

� 1

rankt(j)
−

1

k + 1

�

+
�

T

� 1

rankr(l)
−

1

k + 1

�

where i ∈ Z is the set of overlapping documents between
t and r, j ∈ S is the set of documents occurring in t but
not in r, and l ∈ T is the set of documents occurring in
r but not in t. Note that a document being ‘absent’ in a
list is assumed to have rank k + 1, which is denoted by the
penalizing denominator k + 1 in S and T . The notation
rankx(y) denotes the rank of document y in list x. The M
Measure gives a higher weight to documents whose rankings
are closer in high ranks of r and t, whereas the weight is
lower with greater disagreements and lower rankings in the
lists. The normalization constant in Equation 12 depends on
k, referring to the case when Z is empty and all documents
in r and t fall into the sets S and T .

In our evaluation, we observe M(t, r)@k for t being the
truth list – the clickthrough ranked list in decreasing order
of click frequencies – and for r – the reranked list by one of
the reranking methods.

5.2 Results
We first conduct the experiments on the unreduced 972

test queries to measure the performance of the baselines and
all reranking models. For all models, the parameters α and κ

(for the reranking models) and ρ (for BoosLuc) are set using
the training data. For estimating the components in these
runs, the models have full access to the training clickthrough
data. Table 5 shows the results for the popular queries.

We can see that the baseline system Luc is already very
good with NDCG@1 = 0.894 and M@1 = 0.682, increasing
at lower ranks up until 0.925 for NDCG@20 and 0.705 for
M@20. However, we can significantly improve on this by
just boosting with clickthrough data, which is what the sec-
ond baseline BoosLuc represents. We observe NDCG@1 =
1.0, and at the other ranks we have almost perfect ranking,
which is also reflected in the M Measure rank correlation.
As for the reranking models Sim, Sub, Syn and Merged –
they also perform very similarly to BoosLuc with Syn (the
synonym queries reranking model) showing the largest gain.
Syn beats all other methods significantly with p-value < 0.04
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Table 5: Comparing the reranking methods on 972 popular test queries. All bold numbers are statistically

significant over all non-bold ones at same ranks with p-value < 0.04 using the paired two-sided t-test.

Average Luc BoosLuc Sim Sub Syn Merged
NDCG@rank

1 0.894 1.0 1.0 0.999 1.0 0.999
2 0.89 0.997 0.996 0.996 0.998 0.995
5 0.907 0.992 0.988 0.99 0.994 0.987
10 0.914 0.99 0.984 0.987 0.991 0.984
20 0.925 0.989 0.984 0.986 0.991 0.984

Average Luc BoosLuc Sim Sub Syn Merged
M@rank

1 0.682 0.983 0.978 0.972 0.989 0.971
2 0.678 0.971 0.964 0.962 0.978 0.957
5 0.699 0.948 0.933 0.938 0.957 0.93
10 0.707 0.928 0.908 0.916 0.935 0.906
20 0.705 0.90 0.878 0.888 0.907 0.876

Fixed – ρ = 1000 α = 0.5 α = 0.6 α = 0.6 α = 0.5
Parameters κ = 20000 κ = 20000 κ = 20000 κ = 20000

using the paired two-sided t-test for both measures. This
experiment shows that with popular queries in a popular
system when a substantial amount of clickthrough data is
available, we can successfully boost a well-performing base-
line such as the Lucene system with clickthrough data from
the query only. For even better performance, the synonym
queries reranking model can be used.

We now consider what happens if far fewer clicks are avail-
able on documents. We vary the number of clicks available
for all queries, N , between 0 and 20,000 to simulate a sparse
system that gradually progresses to a system with larger
amounts of clickthrough data. Tables 6 and 7 and Figure 2
with the graphs show the simulated sparse query runs in
a sparse system with little clickthrough data available for

all queries. With higher N , the performance eventually be-
comes identical to what is reported in Table 5, since this
corresponds to running the models with maximum N .

In Tables 6 and 7 we present all the reranking models in
comparison to BoosLuc with only at most 1-50 clicks avail-
able for every query in the system. We notice a big, signifi-
cant difference between BoosLuc and the reranking models
at all ranks for these clicks, with BoosLuc catching up as
the number of clicks increases. At NDCG@1 and M@1, all
reranking models are almost perfect, whereas at lower ranks
Sub and Merged perform best. This is also the case for 10
clicks, although Merged is not statistically significant over
all methods at NDCG@5, but it is significantly better ac-
cording to the M Measure. Sub clearly dominates for both 1
and 10 clicks for both measures. At 20 clicks, Sub is not the
strongest method any more. The merged reranking model
shows the best performance together with Sim at ranks 1
and 2. At 50 clicks we can also see that Merged dominates
the results. This is not surprising, since Merged contains
related queries from all models and it therefore has an ad-
vantage over the other methods in extreme cases, such as
when no subset queries are available, or no co-click queries
or synonyms could be found. It is surprising that Merged
does not perform best in Table 5, where more clickthrough
data is available. One reason might be that the scores of
many documents are heavily boosted due to the large num-

ber of related queries – and that unfortunately many of those
documents are non-relevant.

The parameters were fixed on training data individually
for every different click setting for each of the methods. Note
that the fixed parameter α is consistently higher in Tables 6
and 7 (α = 0.8, 0.9) for most reranking models than it was in
Table 5 (0.5, 0.6), which is the weight on the related queries
reranking part in Equation 4. This is required for mak-
ing up for the sparsity of clicks, whereas for more popular
queries such a high emphasis on the information from the
related queries is not required. κ is very sensitive for differ-
ent reranking models and depends on the number of clicks
available in a sparse system, although lower values are pre-
ferred. In the runs with the popular queries in Table 5 it is
more stable with κ = 20000.

Figure 2 shows all the runs for the reranking models and
BoosLuc (always the solid line) with NDCG and M Measure
performance at the measured ranks 1, 10, and 20 for varying
click counts. Each graph shows the results at a fixed NDCG
or M Measure rank on the y axis with varying clicks on the x
axis for the methods. In all the graphs, the BoosLuc curve
starts off low and improves the more clicks (on the query
itself for this baseline) are available. However, after 500
clicks the effectiveness has plateaued and no further gains
occur. In fact, there is only modest value to clicks after the
first 300. Therefore, the presented click range is between 0
and 800 or at most 2,000 for the graphs; the numbers do
not change much afterwards and gradually progress into the
results in Table 5.

As for the first two graphs with NDCG@1 and M@1 on
the y axis, there is little noticeable difference between the
reranking methods, except for the fact that they all outper-
form BoosLuc. A slight dominance of Sub is visible in the
M@1 graph. At NDCG@10 and M@10, this becomes much
clearer: the lines for Syn and Sim are noticeably below the
lines for Sub and Merged. This fact becomes even more ev-
ident at NDCG@20 and M@20, with the gap between the
lines growing larger. Another point is that between 0 and
100 clicks, in all the graphs the performance between the
related query reranking models is very similar. With more
than 100 clicks, the changes become noticeable.
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Figure 2: Comparing different reranking methods and BoosLuc on 972 simulated sparse queries. The x axis

shows the maximum number of clicks available, whereas the y axis is NDCG or M Measure @ different ranks.
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Table 6: NDCG results on comparing the reranking methods to BoosLuc on 972 simulated sparse queries

when clickthrough data is sparse. The same results for ranks 1, 10, and 20 are shown in full in Figure 2.

All bold numbers are statistically significant over all non-bold ones at same ranks and clicks with p-value <

0.004 using the paired two-sided t-test.

clicks N = 1 N = 10

Average BoosLuc Sub Merged Sim Syn BoosLuc Sub Merged Sim Syn
NDCG@
rank

1 0.914 1.0 1.0 1.0 1.0 0.929 0.993 0.993 0.992 0.992

2 0.903 0.952 0.952 0.949 0.949 0.919 0.985 0.984 0.982 0.977

5 0.915 0.94 0.94 0.939 0.939 0.932 0.983 0.982 0.981 0.979

10 0.92 0.94 0.94 0.939 0.939 0.936 0.976 0.975 0.975 0.973

20 0.931 0.949 0.949 0.948 0.948 0.942 0.972 0.971 0.971 0.97

Fixed Pa- ρ = 1000 α = 0.8 α = 0.8 α = 0.9 α = 0.9 ρ = 1000 α = 0.9 α = 0.9 α = 0.9 α = 0.9
rameters κ = 1000 κ = 1000 κ = 5000 κ = 5000 κ = 10000 κ = 20000 κ = 5000 κ = 5000

clicks N = 20 N = 50

Average BoosLuc Sub Merged Sim Syn BoosLuc Sub Merged Sim Syn
NDCG@
rank

1 0.948 0.998 0.999 0.999 0.998 0.971 0.999 0.999 1.0 1.0

2 0.937 0.992 0.995 0.993 0.99 0.964 0.995 0.997 0.997 0.997

5 0.937 0.974 0.983 0.98 0.971 0.952 0.982 0.987 0.984 0.981

10 0.944 0.983 0.988 0.987 0.982 0.952 0.978 0.983 0.979 0.975

20 0.95 0.981 0.983 0.982 0.98 0.96 0.986 0.989 0.987 0.985

Fixed Pa- ρ = 1000 α = 0.8 α = 0.8 α = 0.9 α = 0.9 ρ = 1000 α = 0.5 α = 0.9 α = 0.9 α = 0.8
rameters κ = 20000 κ = 1500 κ = 1000 κ = 15000 κ = 1000 κ = 1000 κ = 5000 κ = 1500

Table 7: M Measure results on comparing the reranking methods to BoosLuc on 972 simulated sparse queries

when clickthrough data is sparse. The same results for ranks 1, 10, and 20 are shown in full in Figure 2. All

bold numbers are statistically significant over all non-bold ones at same ranks and clicks with p-value < 0.02

using the paired two-sided t-test.

clicks N = 1 N = 10

Average BoosLuc Sub Merged Sim Syn BoosLuc Sub Merged Sim Syn
M@
rank

1 0.736 0.995 0.995 0.995 0.995 0.745 0.923 0.922 0.924 0.912

2 0.715 0.895 0.895 0.891 0.891 0.73 0.90 0.90 0.899 0.878

5 0.724 0.832 0.832 0.828 0.828 0.742 0.878 0.877 0.876 0.86

10 0.725 0.804 0.804 0.801 0.801 0.749 0.871 0.87 0.869 0.857

20 0.719 0.78 0.78 0.778 0.778 0.739 0.839 0.838 0.837 0.828

Fixed Pa- ρ = 1000 α = 0.8 α = 0.8 α = 0.9 α = 0.9 ρ = 1000 α = 0.9 α = 0.9 α = 0.9 α = 0.9
rameters κ = 1000 κ = 1000 κ = 5000 κ = 5000 κ = 10000 κ = 20000 κ = 5000 κ = 5000

clicks N = 20 N = 50

Average BoosLuc Sub Merged Sim Syn BoosLuc Sub Merged Sim Syn
M@
rank

1 0.783 0.955 0.964 0.963 0.952 0.849 0.975 0.979 0.981 0.978

2 0.769 0.933 0.948 0.944 0.926 0.836 0.957 0.97 0.969 0.963

5 0.764 0.886 0.91 0.902 0.88 0.814 0.92 0.938 0.929 0.921

10 0.764 0.872 0.895 0.889 0.867 0.799 0.89 0.909 0.898 0.888

20 0.757 0.858 0.876 0.871 0.854 0.785 0.871 0.889 0.878 0.869

Fixed Pa- ρ = 1000 α = 0.8 α = 0.8 α = 0.9 α = 0.9 ρ = 1000 α = 0.5 α = 0.9 α = 0.9 α = 0.8
rameters κ = 20000 κ = 1500 κ = 1000 κ = 15000 κ = 1000 κ = 1000 κ = 5000 κ = 1500

The results show very interesting trends: subset queries
seem to be a more reliable clickthrough source for rerank-
ing than synonyms or co-click queries at lower clicks, which
is an interesting observation. For best performance over a
wider range of low clicks, the merged model together with
the subset query model are most helpful, as we learned from
Tables 6 and 7. When substantial clickthrough data is avail-
able, however, Syn outperforms all other methods as we saw
in Table 5. Further, the results at rank 1 are near perfect for
almost all the reranking models, whereas maintaining per-
fect reranking quality at lower ranks until 20 seems slightly

more difficult for some of the methods. These results show
the sensitivity of the methods to the number of clicks avail-
able and high-rank versus low-rank performance. What is
evident in all the results however is that in a sparse system
with sparse queries – even queries with up to 400 clicks –
clickthrough boosting solely with the information from the
original query is a poor choice, as is done with BoosLuc. Fur-
thermore, using synonym queries can be helpful even when
a system has large numbers of clicks available.

Finally, it is evident in Tables 6 and 7 and in Figure 2 that
the two measures NDCG and M Measure mostly agree with
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one another with small exceptions, although the absolute
improvement between BoosLuc and the reranking methods
is greater with the M Measure.

6. CONCLUSIONS
In this paper, we tackled improving search results for

sparse queries when the overall availability of clickthrough
data is sparse. The aim was to approximate the ranking
as defined by users’ clicks. For this, we presented several
reranking models that use clickthrough counts from related
queries to better estimate the relevance of a document, given
a query. The general reranking model estimates the rel-
evance of a document by considering the quality of the re-
lated query and the likelihood that the related query will re-
trieve the given document. The models differ in their source
of related queries, which may be similar queries sharing at
least one co-click with the original query, subqueries, or syn-
onym queries. Finally, a merged model combines the various
sources of related queries into one as evidence for reranking
documents.

The experimental results showed that with popular queries
the synonym queries reranking model significantly outper-
forms basic clickthrough boosting of the original query, al-
though all methods were able to greatly improve over the
basic Lucene baseline often achieving nearly perfect results.
For sparse queries in a simulated sparse system we observed
that the related query reranking models are able to main-
tain the strong performance and significantly improve over
the clickthrough boosted baseline with large gains. In a very
sparse system with only 1-50 clicks available for every query,
the subset query and merged reranking models performed
best.

As future work, it would be interesting to conduct fur-
ther experiments on other sparse web data sets or on other
domain-specific query logs from small- or medium-sized sys-
tems to understand the generalizability and limitations of
our models.
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