
Fast Query Expansion Using Approximations of
Relevance Models

Marc-Allen Cartright
CIIR

Dept. of Computer Science
UMass Amherst

Amherst, Massachusetts
irmarc@cs.umass.edu

James Allan
CIIR

Dept.of Computer Science
UMass Amherst

Amherst, Massachusetts
allan@cs.umass.edu

Victor Lavrenko
School of Informatics

University of Edinburgh
Edinburgh, UK

vlavrenk@inf.ed.ac.uk

Andrew McGregor
Dept. of Computer Science

UMass Amherst
Amherst, Massachusetts

mcgregor@cs.umass.edu

ABSTRACT

Pseudo-relevance feedback (PRF) is a retrieval technique
that improves search quality by expanding the query us-
ing terms from high-ranking documents. These approaches
work by running the original query, analyzing some number
of top documents, and then running a second query derived
from that analysis. Although PRF can often result in large
gains in effectiveness, it is rarely used in practical settings
because running two queries is time consuming, particularly
when the new query might be many times larger than the
original.

We describe a PRF method that uses corpus pre-processing
to achieve query-time speeds that are nearly the same as
those of the original queries. Specifically, we show that a
language modeling based PRF method, Relevance Modeling,
can be recast to benefit substantially from a pre-processing
step of finding pairwise document relationships. Using the
resulting method, the Fast Relevance Model (fastRM), we
are able to reduce the online retrieval time by several orders
of magnitude while still obtaining considerably improved
performance over the unexpanded query.

We further explore methods for reducing the time re-
quired by the off-line document comparison step, investi-
gating a range of approaches for approximating the com-
parisons. Our results show that certain approximations can
substantially reduce the pre-processing effort and still achieve
significant improvements in retrieval performance with only
a small loss in effectiveness.

Categories and Subject Descriptors: Foundation of In-
formation Retrieval, IR Architectures, Scalability and Effi-
ciency

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Collection # docs Ratio (RM/LM)
MAP Ret. Time

AP89 84,678 1.21 191.37
WSJ 173,252 1.28 160.63
Robust05 1,033,461 1.38 430.88

Table 1: RM is more effective but much slower than
LM

General Terms: relevance model, pseudo-relevance feed-
back, distributed computing, algorithms

1. INTRODUCTION
Lavrenko and Croft’s Relevance Model [17] is a varia-

tion of pseudo-relevance feedback methods developed for
the language modeling framework. The approach contin-
ues to match or beat other information retrieval techniques.
However, like all pseudo-relevance feedback (PRF) meth-
ods, Relevance Model implementations typically slow down
query processing time by several orders of magnitude, mak-
ing them unsuitable for real-time retrieval settings. The
standard formulation of these methods involves submitting
an original query, using the resulting ranked list to perform
weighted query expansion, and performing a second round
of retrieval. The second query can consist of hundreds of
terms, resulting in a slow—sometimes impressively slow—
evaluation over the collection. To illustrate the problem,
consider Table 1 which compares gains in effectiveness to in-
creases in processing time across several collections, in both
cases as a ratio of RM compared to standard query likeli-
hood language modeling (LM).

Even for a small collection such as AP89, the original
Relevance Model is nearly 200 times slower than the Lan-
guage Model, while providing a 20% relative improvement.
The tradeoff illustrated here is unacceptable for any realistic
setting. Even in a research environment where low query-
processing throughput can be tolerated, a significant amount
of potentially useful research time can be lost merely per-
forming runs to tune parameters of the model.

We look to alleviate this issue in this study. We show
how the Relevance Model can be reformulated to perform

much of the computation offline, drastically reducing the
impact on retrieval time. We further investigate techniques
for reducing the time and space requirements of the offline
computation while avoiding a significant negative impact on
retrieval performance. Although our experiments and dis-
cussion focus on the Relevance Model, the ideas generalize
to most forms of PRF and are an important step towards
overcoming the inefficiency that often plagues the approach.

The rest of this paper proceeds as follows. We start by
describing the Fast Relevence Model approach in Section 2
and then demonstrate empirically its performance advan-
tages in Section 3. In Section 4 we discuss ways of further
reducing the time needed for fastRM, either by reducing
the amount of information stored (Section 4.2) or calculated
(Section 4.3). We wrap up by presenting some related work
in Section 5 and conclude in Section 6.

2. FAST RELEVANCE MODELS
Lavrenko and Allan first proposed Fast Relevance Models

in a 2002 technical report [16]. We summarize the key points
here for clarity.

Given a collection of documents C and the vocabulary of
terms V , we score a document D ∈ C based on its cross-
entropy from the unobserved relevance model R:

H(R‖D) =
X

t∈V

P (t|R) log P ′(t|D) (1)

where P ′(t|D) indicates the smoothed probability of t oc-
curring in document D. In practice, we approximate P (t|R)
in Equation 1 by assuming that the query Q = q1q2 . . . qi

is a small sample generated from distribution R, the latent
relevance space we want to model. We perform an initial
retrieval to generate a ranking of documents based on this
sample. We then use the top ranked documents to form or-
dered set M, which, by extension, acts as a larger sample of
R, which we use to better approximate P (t|R):

P (t|R) ≈ P (t|q1 . . . qi) =
X

M∈M

P (t|M)P (M |q1 . . . qi) (2)

Substituting Equation 2 into Equation 1, we can then re-
arrange the two finite sums to produce the cross-entropy
between the model samples and the documents in the col-
lection:

H(R‖D) =
X

t∈V

P (t|R) log P ′(t|D)

=
X

t∈V

X

M∈M

P (t|M)P (M |q1 . . . qk) log P ′(t|D)

=
X

M∈M

X

t∈V

P (t|M)P (M |q1 . . . qk) log P ′(t|D)

=
X

M∈M

"

X

t∈V

P (t|M) log P ′(t|D)

#

P (M |q1 . . . qk)

=
X

M∈M

H(M‖D) × P (M |q1 . . . qk) (3)

The key observation here is that H(M‖D) is independent of
the query and thus can be computed off-line. At query time,
the set M of models is determined using a typical query like-
lihood approach (recall that models here are documents) and
final scores are calculated by merging the H(M‖D) scores,

weighted by the models’ retrieval scores. That is, the ex-
pensive step of issuing an expanded query has been replaced
by much faster table lookup and score merging.

2.1 Storing H(M‖D)

We have shown a derivation of RM that makes it more
efficient if H(M‖D) is calculated off-line. Logically, we will
do that by creating a |C|×|C| matrix, A, that includes cross-
entropy values for all pairs of documents in C. In fact, it will
be useful to sort the rows of the matrix in decreasing order
of cross-entropy, meaning we will actually store the values
as illustrated in Figure 1. Here, M denotes a document
selected as a sample of the unobserved relevance model, and
D denotes a general document in the collection. Every entry
in the matrix contains a tuple 〈id, score〉, where id is the
document id of D, and score is the cross-entropy of M and
D, H(M‖D). Every row corresponds to a document in the
collection, therefore selecting row i corresponds to setting
document i as M .

<D,H(M || D)>

M inc. (M,*)

H(M || D) dec.

Figure 1: A calculated matrix

As mentioned earlier, the entries in each row are sorted
in score-decreasing order. We use several compression tech-
niques to reduce the storage requirements of the matrix. The
document ids are stored using a zero-compressed encoding
provided by the Hadoop library, and the scores are stored us-
ing a simplified version of a new DFCM compression scheme
[22]. An index of the row positions is stored at the end of
the matrix file. Upon opening, this index is read in once, so
during retrieval moving to a row involves a single seek call
to the matrix file. A scan of a row refers to repositioning to
the row and iterating over the entries in a streaming fashion.
Random accesses within a row are not supported.

2.2 Calculating H(M‖D)

Calculating cross-entropy between two documents lends
itself nicely to the MapReduce framework, though some care
must be taken to account for the smoothing factors involved
in the second probability term. Consider H(M‖D) again:

H(M ||D) =
X

t∈M

P (t|M) log P ′(t|D) (4)

At first glance, this formulation appears to fit neatly into a
product-then-sum operation, which is ideal for a MapReduce
environment. Determining an of inner product over a set of
documents can be performed simply by incrementing a score
accumulator using the posting lists of an indexed collection
[10, 18]. This approach avoids having to send the content of
every document to every node in the cluster in order to cal-
culate its similarity with every other document. Intuitively,

typically thousands of times more than |C|, the additional
tuples are negligible.

2.3 Final fastRM scores for retrieval
So far we have discussed how to use the matrix A to cal-

culate the relevance model cross-entropy, H(M‖D), quickly.
Several researchers have shown that RMs can be improved if
the original query’s likelihood is interpolated into the score
[1, 9]. We will use that variation, often called RM3.

Given a calculated matrix A, we use the following process
to calculate final scores:

1. For query Q, perform retrieval using language model-
ing, producing ranked list R̂.

2. Select the top fbDocs documents to form the feedback
set M = {M1, M2, . . .}

3. Calculate the posterior scores, P (Mi|q1 . . . qi) (see Eq. 3).
We set P (D|q1 . . . qi) = 0 for all D /∈ M.

4. For each document Mi ∈ M:

(a) Retrieve Mi’s row in the matrix, A.

(b) Scan the row, accumulating the score (posterior
times the value in A) for any document encoun-
tered.

5. Interpolate the original ranked list score with the cal-
culated cross-entropy score.

6. Return the top scoring documents from the resulting
list as the final ranked list.

3. EVALUATING FASTRM
We implemented the offline calculation using Hadoop Map-

Reduce v0.20.1, and processing was performed on Yahoo!
Inc.’s M45 cluster1. For retrieval, we modified a copy of In-
dri 2.10 [27] to support merging the previously calculated
scores into the ranked list.

We conduct our experiments over 3 collections, shown in
Table 2. We use the built-in Krovetz stemmer and the IN-
QUERY 418-word stopword list during indexing. We use
topics 51-200 from the early ad-hoc tracks of TREC2 as the
query set for AP89. We use only topics 151-200 from the
same topic set for experiments with the Wall-Street Journal
(WSJ) collection. The Robust05 collection consists of the
AQUAINT document collection, with the topic set taken
from the TREC Robust 2005 track. This set consists of
50 topics. We use only the title text of each topic. For
all PRF experiments, we set the number of feedback doc-
uments (fbDocs) to 10, and the number of feedback terms
(fbTerms) to 100. The fbTerms parameter does not affect
the fastRM implementation.

We report Mean Average Precision (MAP) and Normal-
ized Discounted Cumulative Gain (NDCG) in order to gauge
retrieval performance between different methods. We use
trec_eval v9.0 for this purpose. The Language Model and
the Relevance Model act as the baseline methods for our ex-
periments, the former serving as the efficiency baseline, and
the latter as the effectiveness baseline. In short, we want
Language Model speed with Relevance Model accuracy. We

1http://research.yahoo.com/node/1884
2http://trec.nist.gov

docs terms unique avg |D| |A|
Collection (103’s) (106’s) (103’s) (1’s) (Gb’s)
AP89 84.6 42.1 211.5 497.8 54.9

WSJ 173.2 81.7 243.5 471.6 228.8✝

Robust05 103.3 484.2 892.2 468.6 8105.9✝

Table 2: Statistics about collections used. ✝ indi-
cates an estimated value.

Ret. Time Build Size
Run NDCG MAP (msecs) (mins) (GB’s)

LM 0.3650 0.1972 13.1 N/A N/A

RM3 0.4115✝ 0.2377✝ 2506.9 N/A N/A

fastRM3 0.4006♦ 0.2224♦ 800.8 329.9 54.9

Table 3: Comparing the Language Model, RM3, and
fastRM models on AP89. ‘Build’ indicates the time
to construct the matrix A. ‘Size’ indicates space
consumed by the compressed matrix. ♦ indicates
statistical significance over LM (p < 0.01). ✝ indicates
statistical significance over both LM and fastRM3
(p < 0.01).

use the paired sample randomization t test as described by
Smucker and Carterette [25] for significance testing. We use
10 million samples for each significance test unless otherwise
noted.

Table 3 shows retrieval results over the AP89 collection
for the two baseline methods and the fully pre-computed
fastRM. The fastRM shows a clear improvement over the
Language Model in terms of retrieval effectiveness, and—
even on just this small collection—a considerable reduction
in retrieval time compared to the Relevance Model.

4. MAKING FASTRM FASTER
Although we have shown that fastRM can be slightly

slower than LM while providing much of the gain of RM,
there are three issues that appear as the collection size grows:

1. The time needed to calculate the matrix is reasonable
for the AP89 collection, but will grow unacceptably
with more documents – even using cloud-based ap-
proaches such as MapReduce.

2. Even when the full matrix can be calculated, storing
it can become a challenge since it grows quadratically
with the collection size. Table 2 shows sizes, estimated
or known, of the fully computed matrix for each col-
lection.3

3. Finally, the growing storage requirements in turn in-
crease the time to scan matrix rows during retrieval.
Eventually, scanning a single row will take long enough
to nullify any speed advantage obtained via precompu-
tation.

In the rest of this section we will present methods for ad-
dressing the issues above. In Section 4.2 we explore methods
that reduce the size of the stored matrix, addressing the sec-
ond and third points above. In particular, we demonstrate

3For the WSJ and Robust05 collections we only calculated
the portions of the matrix used in our experiments and es-
timated the final size based on the partial matrix.

that large portions of the matrix can be discarded without
sacrificing the gains in effectiveness. Then, in Section 4.3,
we address the first point by discussing methods that at-
tempt to generate a similarly sparse matrix by omitting the
calculations of many entries from the start. First we discuss
measuring the quality of matrix approximation.

4.1 Measuring approximation
In this section we will be approximating the original ma-

trix A. That is, we will remove entries, calculate them less
accurately, and so on, resulting in a matrix Â. Although
the ultimate impact of using Â is measured by retrieval ef-
fectiveness, we will also compare the approximated and true
matrices directly as described here.

The ranked list evaluation measures inform us how an ap-
proximation Â impacts retrieval. However, when comparing
a fully calculated row from A and an approximate construc-
tion from Â, we would like to know how much of the orig-
inal matrix is recovered by the approximation. Intuitively,
the documents in a row with higher cross-entropy relative
to the given M should be considered more important than
documents with a lower cross-entropy: in Equation 3 they
contribute more to the score. Therefore we desire a method
that assigns more importance to documents at higher ranks
in a particular row. We would also like a measure that is
bounded, since by definition the best performance we can
hope for is recovering exactly the elements of the row we
specify.

We adapt the NDCG measure [14] to fulfill this role. We
call it NDCGrow to disambiguate this measure from stan-
dard NDCG (which we report for retrieval evaluation). Let
Ai be row i in a fully calculated matrix of cross-entropy
values. Let Âi be the corresponding row i in Â. All of
the approximations used in this work compute the actual
cross-entropy between two documents. The rank order is
preserved, even if some documents do not appear in the ap-
proximate row, so if |Ai| represents the number of non-empty

entries in row Ai, then |Ai| ≥ |Âi|. Since standard NDCG
is defined over two lists of the same length, we need to treat
Âi as if it has the same number of entries as Ai. To do this
we simply inject a ‘non-relevant’ entry into Âi in place of
every document not recovered, to create a new list Â′

i. For
example, if

Ai = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

Âi = {1, 6, 7, 8, 10}

then

Â′
i = {1,×,×,×,×, 6, 7, 8,×, 10}

Define rel(id) to be 1 if document id is not a × symbol, and
0 otherwise. We define DCG@p for row Ai as:

DCG@p(Ai) =

p
X

j=1

rel(Ai[j])

log
2
(j + 1)

(9)

Now we can define NDCGrow@p to be the ratio of the dis-
counted cumulative gain (DCG) of Â′

i over the DCG of Ai

at position p:

NDCGrow@p =
DCG@p(Â′

i)

DCG@p(Ai)
(10)

Simply put, we use the non-relevant entries to make sure
the actual entries in Âi are assigned the proper gain dur-
ing computation. Using the example above, the measure’s
progression over several cutoffs is shown in Table 4.

p 10 9 8 7 6 5
NDCGrow@p 0.552 0.518 0.562 0.520 0.465 0.390

Table 4: NDCGrow scores at different p values.

The drop in NDCGrow makes sense — Âi recovers the
documents at higher ranks, while missing the low rank docu-
ments. Therefore, as we decrease p those gains are removed,
decreasing the NDCGrow score. Note that the earlier the
gain occurs the more it increases the numerator. This illus-
trates the bias towards higher rankings that we desire.

4.2 Reducing Storage Requirements
We first examine whether we can reduce the size of the

matrix that must be stored.

4.2.1 Column Dropping

In their original work, Lavrenko and Allan showed that
one only needs to retain some number of the highest scores
in each row, and performance is not notably impacted. We
conduct similar experiments here. We define ρ to be the
number of values retained for each row. If we consider the
rows to be left-to-right sorted in score-descending order, for
ρ = 1000, that means we retain the 1000 leftmost columns in
the matrix. For the document scores dropped, we simply use
the background score for the row in question—i.e., H(M‖D)
when M ∩ D is empty.

Intuitively, we can think of this dropping as increasing the
distinction between the ρ more similar documents and the
remaining less similar documents for a given model M . Fig-
ure 3 shows a comparison of the different values of ρ against
the full calculation from Section 3. Similar to Lavrenko and
Allan, retaining fewer scores has negligible, and in some
cases, a slightly positive effect. More notably, since we
stop scanning each row early, the retrieval time has dropped
dramatically, almost to the LM time: Table 5 shows the
specifics. We cannot only get away with dropping some
columns from the matrix; it appears that we should. Note
that we cannot push the reduction down too far; retrieval
performance drops markedly for a ρ value of 10. Figure 4
shows different values of ρ across the different collections.
The upper bound of effectiveness seems to hover steadily
around the ρ = 100 position, suggesting the parameter value
to be insensitive to values above 100.

4.2.2 Binning

Several previous works [26, 2] have shown that binning
retrieval scores can simultaneously increase efficiency and
reduce space requirements while not significantly impacting
retrieval performance. We investigate the viability of using
binning here to reduce the number of unique cross-entropy
scores that need to be stored. If we can reduce the number
of unique values needed, say to 256, we only need to store
256 explicit values, while the rest could be single-byte refer-
ence entries. We experiment using two binning techniques:
ǫ-based binning, and stepwise binning. We implement both
methods as a function of the actual scores produced at re-
trieval time.

Value of τ
Collection 10 20 50 100

AP89 0.524 0.727 0.921 0.984
WSJ 0.567 0.786 0.948 0.984
Robust05 0.718 0.887 0.977 0.990

Table 7: NDCGrow@1K of Highpass for the different
values of τ , across all collections.

diminishing returns in increasing the value of τ . This sug-
gests that while the NDCGrow increases as expected, more
low-rank documents are also being pulled into the lists. This
explains the phenomenon of the τ = 100 runs actually per-
forming worse than the runs with fewer terms used. This
begs the question of how much the performance is tied to
the number of terms projected, as opposed to just picking
the right terms to project.

5. RELATED WORK
We briefly sketch related work a few connected areas.
Pseudo-Relevance Feedback. The literature on PRF

is too large to cite in its entirety here, but we reference
previous influential works that provided much of the ba-
sis for this work. The classic expansion technique for vec-
tor space models is the Rocchio algorithm [23], which uses
the original ranked list to reweight the query vector. The
theoretical foundation of this work comes from the Rele-
vance Model [17], developed by Lavrenko and Croft in 2001.
At a similar time, Zhai and Lafferty produced a method
called model-based feedback [28]. Both the relevance model
and model-based feedback operate as pseudo-relevance feed-
back mechanisms for Language Models [21]. Recently, Met-
zler and Croft developed Latent Concept Expansion [20],
an expansion mechanism for the Markov Random Field [19]
(MRF). Metzler and Croft contrast the Language Model/Rel-
evance Model pairing in parallel to the MRF/LCE pairing.
Juxtaposing the models in this way shows that we cannot
directly compare to LCE, however it seems like a natural
progression for work of this kind.

Distributed processing & Efficiency. Some recent
work toward performing pairwise document comparisons in
a distributed environment comes from Elsayed et al. [10],
who showed a simple MapReduce algorithm to compute the
inner product scores over a given collection. In 2009, Lin
continued this line of work, presenting two new algorithms
for computing inner product scores in a MapReduce environ-
ment [18]. Anh and Moffat have investigated using impact-
order of terms to increase retrieval efficiency [2, 3]. While
our Highpass algorithm is similar in spirit, the application
is different. Additionally, Anh and Moffat conduct their ex-
periments using a Vector Space Model, whereas we operate
in a probabilistic retrieval setting.

All-Pairs Computation. Bayardo et al. also presented
a modification to the all-pairs calculation problem, exploit-
ing various features of data sparsity to significantly reduce
the time required to compute scores over all pairs [4]. Al-
though their algorithm looks appropriate, it depends on the
pairwise similarity function being a proper metric, which
ours is not. More recently, Kang et al. presented PEGA-
SUS, a new framework which uses Hadoop MapReduce as
a substrate to process large-scale matrices [15]. PEGASUS
appears to operate on dense matrix representations, whereas

we do not generate a such a representation except as final
output of the offline computation.

6. CONCLUSIONS AND FUTURE WORK
We have shown that we can reformulate the traditional

Relevance Model to allow for much of the computation to
occur offline. Using this modification we can significantly
improve retrieval performance over an unexpanded query
with a slight additive increase in query-processing time. We
have also discovered that the offline computed scores can
be binned with no discernible negative impact on retrieval
performance. This evidence suggests that we may be able
to store less than 1% of the unique scores in a matrix row
while sacrificing nothing in retrieval effectiveness.

Additionally, we can save space by dropping low-quality
columns from the matrix. More importantly, we can reduce
the computational requirements of calculating the matrix
by trying to accurately predict the high-quality document
pairs and only producing values for those entries. We exper-
imented with several methods to achieve this goal. Results
indicate that at least one method, the Highpass algorithm,
shows considerable promise. We believe this work demon-
strates the potential of our approach towards improving effi-
ciency of theoretically sound query expansion. Furthermore,
this work represents a significant step in bridging the gap be-
tween applying statistical pseudo-relevance feedback in a lab
setting versus using it in the real world.

Although we have made progress towards achieving our
goal, we see several avenues for continuing work based on
the results here. We believe that we can improve the ratio
of NDCGrow vs. build time for the approximate algorithms.
We have yet to consider different term weighting functions
for I to see if another function may improve coverage over
the desired set for each row. The Highpass algorithm is a
good initial method to generate an approximate matrix, but
we intend to explore other algorithms that may result in a
better NDCGrow score using the same amount of build time.

Like the original Relevance Model, the fastRM’s retrieval
performance is linked to the performance of the initial re-
trieval. While we only experimented with the Language
Model here for the sake of speed comparisons, we are in-
terested how using a more effective ranking function for the
initial retrieval impacts the final performance of the fastRM.

Multiple variables require tuning in the system. While
we have learned some of their characteristics here, much re-
mains to be learned concerning their behavior and the rela-
tionships between them. We would like to develop some way
to auto-tune these parameters based on collection statistics.

Ultimately, we would like some function that translates
the amount of information loss between the “truth” matrix
and the approximated matrix and the resulting performance.
In short, given approximated matrix A and collection C we
would like some function f(A, C) that provides a measure of
quality of A, so we can have some confidence that using A
will in fact provide some benefit to retrieval without actually
testing the matrix against a set of judged queries, which may
not always be available.

7. ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelli-

gent Information Retrieval, in part by NSF IIS-0910884, and
in part by NSF CLUE IIS-0844226. Any opinions, findings

and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
those of the sponsor.

REFERENCES
[1] N. Abdul-Jaleel, J. Allan, W. B. Croft, F. Diaz,

L. Larkey, X. Li, M. D. Smucker, , and C. Wade.
Umass at trec 2004 — novelty and hard. In
Proceedings of the Thirteenth Text Retrieval
Conference (TREC-13), Gaithersburg, MD, USA,
2004. NIST.

[2] V. N. Anh and A. Moffat. Simplified similarity scoring
using term ranks. In SIGIR ’05: Proceedings of the
28th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 226–233, New York, NY, USA, 2005. ACM.

[3] V. N. Anh and A. Moffat. Pruned query evaluation
using pre-computed impacts. In SIGIR ’06:
Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 372–379, New York, NY,
USA, 2006. ACM.

[4] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In WWW ’07: Proceedings of
the 16th international conference on World Wide Web,
pages 131–140, New York, NY, USA, 2007. ACM.

[5] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Commun. ACM,
18(9):509–517, 1975.

[6] A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. Comput.
Netw. ISDN Syst., 29(8-13):1157–1166, 1997.

[7] S. Dasgupta and Y. Freund. Random projection trees
and low dimensional manifolds. Technical report, San
Diego, CA, USA, 2007.

[8] S. Dasgupta and Y. Freund. Random projection trees
and low dimensional manifolds. In STOC ’08:
Proceedings of the 40th annual ACM symposium on
Theory of computing, pages 537–546, New York, NY,
USA, 2008. ACM.

[9] F. Diaz and D. Metzler. Improving the estimation of
relevance models using large external corpora. In
SIGIR ’06: Proceedings of the 29th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 154–161,
New York, NY, USA, 2006. ACM.

[10] T. Elsayed, J. Lin, and D. W. Oard. Pairwise
document similarity in large collections with
mapreduce. In HLT ’08: Proceedings of the 46th
Annual Meeting of the Association for Computational
Linguistics on Human Language Technologies, pages
265–268, Morristown, NJ, USA, 2008. Association for
Computational Linguistics.

[11] J. Friedman, J. L. Bentley, and R. A. Finkel. An
algroithm for finding best matches in logarithmic
expected time. Technical report, Stanford University,
Stanford, CA, USA, 1976.

[12] P. Indyk. A small approximately min-wise independent
family of hash functions. In SODA ’99: Proceedings of
the tenth annual ACM-SIAM symposium on Discrete
algorithms, pages 454–456, Philadelphia, PA, USA,
1999. Society for Industrial and Applied Mathematics.

[13] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. In STOC ’98: Proceedings of the
thirtieth annual ACM symposium on Theory of
computing, pages 604–613, New York, NY, USA, 1998.
ACM.

[14] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

[15] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
Pegasus: A peta-scale graph mining system. Data
Mining, IEEE International Conference on, 0:229–238,
2009.

[16] V. Lavrenko and J. Allan. Real-time query expansion
in relevance models. IR 473, University of
Massachusetts Amherst, University of Massachusetts
Amherst, 2006.

[17] V. Lavrenko and W. B. Croft. Relevance based
language models. In SIGIR ’01: Proceedings of the
24th annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 120–127, New York, NY, USA, 2001. ACM.

[18] J. Lin. Brute force and indexed approaches to pairwise
document similarity comparisons with mapreduce. In
SIGIR ’09: Proceedings of the 32nd international
ACM SIGIR conference on Research and development
in information retrieval, pages 155–162, New York,
NY, USA, 2009. ACM.

[19] D. Metzler and W. B. Croft. A markov random field
model for term dependencies. In SIGIR ’05:
Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 472–479, New York, NY,
USA, 2005. ACM.

[20] D. Metzler and W. B. Croft. Latent concept expansion
using markov random fields. In SIGIR ’07:
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 311–318, New York, NY,
USA, 2007. ACM.

[21] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In SIGIR ’98:
Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 275–281, New York, NY,
USA, 1998. ACM.

[22] P. Ratanaworabhan, J. Ke, and M. Burtscher. Fast
lossless compression of scientific floating-point data. In
DCC ’06: Proceedings of the Data Compression
Conference, pages 133–142, Washington, DC, USA,
2006. IEEE Computer Society.

[23] J. J. ROCCHIO. Relevance feedback in information
retrieval. SMART Retrieval System Experimens in
Automatic Document Processing, 1971.

[24] C. Silpa-Anan and R. Hartley. Optimised kd-trees for
fast image descriptor matching. In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1–8, June 2008.

[25] M. D. Smucker, J. Allan, and B. Carterette. A
comparison of statistical significance tests for
information retrieval evaluation. In CIKM ’07:
Proceedings of the sixteenth ACM conference on

Conference on information and knowledge
management, pages 623–632, New York, NY, USA,
2007. ACM.

[26] T. Strohman. Efficient Processing of Complex Features
for Information Retrieval. PhD thesis, University of
Massachusetts Amherst, University of Massachusetts
Amherst, December 2007.

[27] T. Strohman, D. Metzler, H. Turtle, and W. B. Croft.
Indri: a language-model based search engine for
complex queries. Proceedings of the International
Conference on Intelligent Analysis, 2005.

[28] C. Zhai and J. Lafferty. Model-based feedback in the
language modeling approach to information retrieval.
In CIKM ’01: Proceedings of the tenth international
conference on Information and knowledge
management, pages 403–410, New York, NY, USA,
2001. ACM.

