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ABSTRACT

Probabilistic databases play a crucial role in the management and

understanding of uncertain data. However, incorporating probabil-

ities into the semantics of incomplete databases has posed many

challenges, forcing systems to sacrifice modeling power, scalabil-

ity, or restrict the class of relational algebra formula under which

they are closed. We propose an alternative approach where the

underlying relational database always represents a single world,

and an external factor graph encodes a distribution over possible

worlds; Markov chain Monte Carlo (MCMC) inference is then used

to recover this uncertainty to a desired level of fidelity. Our ap-

proach allows the efficient evaluation of arbitrary queries over prob-

abilistic databases with arbitrary dependencies expressed by graph-

ical models with structure that changes during inference. MCMC

sampling provides efficiency by hypothesizing modifications to pos-

sible worlds rather than generating entire worlds from scratch. Queries

are then run over the portions of the world that change, avoiding

the onerous cost of running full queries over each sampled world.

A significant innovation of this work is the connection between

MCMC sampling and materialized view maintenance techniques:

we find empirically that using view maintenance techniques is sev-

eral orders of magnitude faster than naively querying each sampled

world. We also demonstrate our system’s ability to answer rela-

tional queries with aggregation, and demonstrate additional scala-

bility through the use of parallelization.

1. INTRODUCTION
A growing number of applications output large quantities of un-

certain data. For example, sensor networks produce imprecise read-

ings and information extraction systems (IE) produce errorful rela-

tional records. Despite their inevitable inaccuracies, these types of

automatic prediction systems are becoming increasingly important.

This is evident by the sheer number of repositories culled from

the web by IE systems: CiteSeer, REXA, DbLife, ArnetMiner,

and Google Scholar. Probabilistic databases (PDBs) are a natu-

ral framework for storing this uncertain output, but unfortunately

most current PDBs do not achieve the difficult balance of expres-

.

sivity and efficiency necessary to support such a range of scalable

real-world structured prediction systems.

Indeed, there is an inherent tension between the expressiveness

of a representation system and the efficiency of query evaluation.

Many recent approaches to probabilistic databases can be charac-

terized as residing on either pole of this continuum. For example,

some systems favor efficient query evaluation by restricting mod-

eling power with strict independence assumptions [8, 9, 1]. Other

systems allow rich representations that render query evaluation in-

tractable for a large portion of their model family [15, 29, 24, 25].

In this paper we combine graphical models and MCMC sampling

to provide a powerful combination of expressive freedom and effi-

cient query evaluation over arbitrary relational queries.

Graphical models are a widely used framework for representing

uncertainty and performing statistical inference in a myriad of ap-

plications, including those in computational biology [26], natural

language processing [16], computer vision [30], information ex-

traction [21], and data integration [33]. These models are becom-

ing even more accessible with the proliferation of many general

purpose probabilistic programming languages [23, 19, 17]. Factor

graphs are a particular type of representation for graphical models

that serve as an umbrella framework for both Bayesian networks

and Markov random fields, and are capable of representing any ex-

ponential family probability distribution.

Unfortunately, graphical models have been largely overlooked as

a choice for representing uncertainty in probabilistic databases. In

rare cases, connections have been drawn between graphical models

and PDBs [15, 7], and only recently have they been used explicitly

in either the representation [29], or in the mechanism for query

evaluation [24, 25]. However, these systems are in practice severely

limited by the #P-hard problem of query evaluation and would not

scale to the types of sophisticated models and large data crucial to

many real-world problems [21, 6, 33].

We distinguish ourselves from these lines of work in several im-

portant ways. First, we directly address the problem of intractable

query evaluation and propose an approximate any-time approach

that scales both to dense factor graphs and large amounts of data.

Second, we avoid the issue of closing factor graph semantics un-

der relational algebra operators giving us the ability to evaluate any

relational algebra query (including aggregation). Third, we eval-

uate our approach on a difficult real-world information extraction

problem on which exact statistical inference is intractable (even in

the graphical model framework). We are able to achieve this with

a query evaluation technique based on MCMC sampling. This is

in contrast to previous sampling approaches, which use traditional

generative Monte Carlo methods [5, 13]. The Monte Carlo sam-

pling method of MCDB [13] requires knowing the normalization
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constant for each function; unfortunately, for general factor graphs

this problem is as difficult as computing marginals (#P-hard). On

the other hand MCMC samplers hypothesize local changes to worlds,

avoiding the need to know the normalizer. Additionally, MCMC

enables us to track tuples affected by local changes and we exploit

this information to efficiently re-evaluate the queries—avoiding the

need to re-run the full query from scratch over each sampled world.

Indeed we demonstrate query evaluation on such a factor graph

(where computing the normalization constant is intractable) and

show that our MCMC sampler based on view maintenance tech-

niques reduces running time by several orders of magnitude over

the simple approach of running the full query over each hypothe-

sized world. We also empirically demonstrate our ability to scale

these intractable models to large datasets with tens of millions of

tuples and show further scalability through parallelization. Finally,

we demonstrate our evaluator’s ability to handle aggregate queries.

After introducing related work, the rest of the paper is organized

as follows: first we describe our representation, introduce factor

graphs, and use information extraction as a running pedagogical ex-

ample and application of our approach (although it more generally

applies to other problems that can be modeled by factor graphs).

We then introduce query evaluation techniques, including the ma-

terialized view maintenance approach advocated in this paper. Fi-

nally, we present experimental results demonstrating scalability to

both large data and highly correlated PDBs.

2. RELATED WORK
Because early theoretical work on incomplete data focuses largely

on algebras and representation systems (e.g., [3, 12]), it was only

natural to extend this line of thinking to probabilities [2, 34, 15,

10, 8]. However, this extension is quite difficult since the proba-

bilities in query results must include expressions derived from the

confidence values originally embedded in the database. Systems

meeting these theoretical conditions must overcome a set of chal-

lenges that are often satisfied at the expense of modeling-power or

understandability.

Although there is a vast body of work on probabilistic databases,

graphical models have largely been ignored until recently. The

work of Sen et al. [24, 25] casts query evaluation as inference

in a graphical model and BayesStore [29] makes explicit use of

Bayesian networks to represent uncertainty in the database. While

expressive, generative Bayesian networks have difficulty represent-

ing the types of dependencies handled automatically in discrimina-

tive models [16], motivating a database approach to linear chain

conditional random fields [28]. We, however, present a more gen-

eral representation based on factor graphs, an umbrella framework

for both Bayesian networks and conditional random fields. Per-

haps more importantly we directly address the problem of scal-

able query evaluation in these representations—with an MCMC

sampler—whereas previous systems based on graphical models are

severely restricted by this bottleneck. Furthermore our approach

can easily evaluate any relational algebra query without the need to

close the graphical model under the semantics of each operator.

There has also been recent interest in using sampling methods to

estimate tuple marginals or rankings. For example, the MystiQ [5]

system uses samplers to estimate top-k rankings [22]. Joshi and

Jermaine apply variance reduction techniques to obtain better sam-

ple estimates [14]. MCDB [13] employs a generative sampling ap-

proach to hypothesize possible worlds. However, these approaches

are based on feed-forward Monte Carlo techniques and therefore

cannot take advantage of the Markovian nature of MCMC meth-

ods. The MCDB system does use the concept of “tuple bundles”

to exploit overlap across possible worlds, but this approach is dif-

ficult to implement because it requires custom query optimization

code and redefining operators over bundles of tuples (requiring over

20,000 lines of C++ code; in contrast our approach is able to treat

the DBMS as a blackbox and still exploit overlap between sam-

ples). Furthermore, MCDB requires an additional pre-processing

step to compute the overlap. In MCMC sampling, the overlap is

determined automatically as a byproduct of the procedure. This

allows our method to employ ideas from DBMS view materializa-

tion technology to take advantage of the overlap between possible

worlds. To the best of our knowledge, we are the first Markov-

chain Monte Carlo sampler for estimating probabilities in proba-

bilistic databases [31]. We are also the first to combine graphical

models and sampling techniques into a single cohesive probabilis-

tic database representation system.

3. REPRESENTATION
In our approach, the underlying relational database always stores

a single possible world (a setting to all the random variables), en-

abling us to run any relational algebra query. Database objects such

as fields, tuples, and attributes represent random variables, how-

ever, the factor graph expresses complex statistical relationships

between them. As required, we can recover uncertainty to a de-

sired level of fidelity through Markov chain Monte Carlo (MCMC),

which hypothesizes changes to random variable values that rep-

resent samples of possible worlds. As this underlying database

changes, we execute efficient queries on the modified portions of

worlds and obtain an increasingly accurate approximation of the

probabilistic answers. Another advantage of a graphical model ap-

proach is that it enables automatic learning over the database—avoiding

the need to tune weights by hand.

We begin by describing factor graphs and the well known pos-

sible worlds semantics, where the uncertain database is a set of

possible worlds W , and each w ∈W is a deterministic instance of

the uncertain DB. Following tradition, we endow W with a proba-

bility distribution π : W → [0, 1] s.t.
∑

w∈W
π(w) = 1, yielding

a distribution over possible worlds.

3.1 Factor Graphs
In our approach π is encoded by a factor graph, a highly expres-

sive representation that can encode any exponential family proba-

bility distribution (including Bayesian and Markov networks). In-

deed their success in areas such as natural language processing,

protein design, information extraction, physics, and machine vi-

sion attest to their general representational power. Factor graphs

can succinctly capture relationships between random variables with

complex dependencies, making them a natural choice for relational

data.

Mathematically, a factor graph (parametrized by θ) is a bipar-

tite graph whose nodes consist of the pair Gθ = 〈V,Ψ〉 where

V = X ∪ Y is the set of random variables: X is the set of ob-

served variables, and Y is the set hidden variables; Ψ = {ψk} is

the set of factors.

Random Variables

Intuitively, random variables represent the range of values that an

uncertain object in the database may acquire. Each hidden variable

Yi ∈ Y is associated with a domain DOM(Yi) representing the

range of possible values for Yi. For example, the domain could be

binary {yes,no}, enumerations {tall, grande, venti} or real-valued

{r ∈ ℜ|r ≥ 4}. Observed variables are fixed to a particular value

in the domain and can be considered a constant. For simplicity, and

without loss of generality, we will assume that random variables

are scalar-valued (vector and set valued variables can be re-written



as a combination of factors and variables).

In our notation, capital letters with a subscript (e.g., Yi, Xi) rep-

resent a single random variable, and lowercase letters (e.g., yi)

represent a value from the corresponding variable’s domain: yi ∈
DOM(Yi). We use the notation Xi = xi to indicate that variable

Xi is taking on the value xi. Finally, we use superscripts to denote

sets (of arity represented by the superscipt): the notation Xr = xr

means the set of variables {Xi, Xi+1, · · · , Xi+r} take on the val-

ues (Xi = xi, Xi+1 = xi+1, · · · , Xi+r = xr+1) where it is

implicitly assumed that xi is a value from Xi’s domain. Capital

letters without a subscript refer to the entire variable space (Y is all

hidden variables and X is all observables).

Factors

Factors model dependencies between the random variables. In fact,

multiple factors may govern the behavior of the same variable by

expressing preferences for certain assignments to that variable over

others. This flexible overlapping structure is powerful for modeling

real world relational data.

Formally, each factor ψ : xm × yn → ℜ+ maps assignments

to subsets of observed variables xm ⊆ DOM(X) and hidden vari-

ables yn ⊆ DOM(Y ) to a non-negative real-valued scalar. Intu-

itively, factors measure the compatibility of settings to a group of

variables, providing a measurement of the uncertainty that the par-

ticular assignment contributes to the world. For an example, see

Figure 1.

Typically, factors are computed as a log-linear combination of a

sufficient statistic (or feature function) φk and corresponding pa-

rameter θk as ψk(x
m, yn) = exp (φk(x

m, yn) · θk). Where φ

are user-specified features for representing the underlying data and

θ are corresponding real-valued weights measuring each features

impact. There are a number of available methods from machine

learning and statistics for automatically determining these weights

(avoiding the need for manual tuning).

Given the above definitions, the factor graph Gθ expresses a prob-

ability distribution (parametrized by θ, and conditioned onX) πG :
X × Y → [0, 1] s.t.

∑

y∈DOM(Y ) πG(y|x) = 1. More specifically,

if the graph decomposes into a set of factors Ψ (where each ψ ∈ Ψ
has a factor-specific arity of s+ t) then the probability distribution

πG is given as:

πG(Y = y|X = x; θ) =
1

ZX

∏

ψ∈Ψ

ψ(ys, xt) (1)

where ZX =
∑

y∈Y

∏n

k=1 ψk(y
s, xt) is an input-dependent nor-

malizing constant ensuring that the distribution sums to 1. Note

two special cases: if X is empty then G is a Markov random field,

and when factors are locally normalized G is a Bayesian network.

3.2 Possible Worlds
An uncertain database D is a set of relations R = {Ri} each

with schema Ski (of arity k) containing attributesRi.a1, · · · , Ri.ak.

Each attribute is equipped with a finite domain DOM(Ri.a1) (a

field is certain if its value is known, otherwise it is uncertain). A de-

terministic tuple t for relationRi is a realization of a value for each

attribute t = 〈v1, · · · , vk〉 for constants v1 ∈ DOM(a1) · · · vk ∈
DOM(ak). Let T be the set of all such tuples for all such relations

in the database. Then the set of all (unrestricted) worlds realizable

by this uncertain database is WD = {w | w ⊆ T}.
Let each field in the database be a random variable whose do-

main is the same as the field’s attribute’s domain. A deterministic

field is an observed variable X and an uncertain field is a hidden

variable Y . Because each field is interpreted as a random variable

with a domain equivalent to its attribute’s, the hypothesis space of

the random variables (X and Y ) contain the set of possible worlds.

Deterministic factors can model constraints over arbitrary sets of

variables by outputting 1 if the constraint is satisfied, and 0 if it is

violated (rendering such a world world impossible). We then for-

mally define W to be all possible worlds with respect to the factor

graph’s probability distribution π:

W = {w ∈WD | πG(w) > 0} (2)

3.3 Example
We show two information extraction problems in Figure 1 as rep-

resented in our approach. The top three panes show named entity

recognition (NER), and the bottom three panes show entity resolu-

tion (disambiguation). NER is the problem of identifying mentions

of real-world entities in a text document; e.g., we might identify

that “Clinton” is a person entity and “IBM” is an organization en-

tity. The problem is usually cast as sequence labeling, where each

input sentence is divided into a token sequence, and each word

(token) in the sequence is treated as an observed variable with a

corresponding hidden variable representing the label (entity type)

that we are trying to predict. To model this problem with a fac-

tor graph, we use factor templates to express relationships between

different types of random variables; in our NER example, we ex-

press three such relationships (Pane B). The first is a relationship

between observed strings and hidden labels at each position in the

sequence (called the emission dependency: e.g., this models that

the string “Clinton” is highly correlated with the label “person”).

The second is a relationship between labels that neighbor in the se-

quence (known as transition or 1st order Markov dependency: for

example, it is likely that a person label will follow a person label

because people have first and last names), the final dependency is

over each label, modeling the fact that some labels are more fre-

quent than others. Given the template specifications, the graph can

be unrolled onto a database. Pane C shows the random variables

and factors instantiated over the possible world initially shown in

Pane A. The probability of this world is simply a product of all the

factors (black boxes) illustrated in Pane C.

The bottom row of Figure 1 shows the problem of entity resolu-

tion. Once mentions of named entities have been identified, entity

resolution clusters them into real-world entities. The database in

pane C shows a single possible world, the templated factor graph

in Pane D models relationships between the mentions, allowing de-

pendencies over entire clusters of mentions, dependencies between

mentions in the same cluster (modeling that mentions in clusters

should be cohesive), and dependencies between variables in differ-

ent clusters (modeling that mentions in separate clusters should be

distant). Finally, Pane E shows the graph unrolled on the database;

once again, the score of this possible world is proportional to the

product of factors in the unrolled graph. These examples simply

serve as an illustration, in practice we will exploit the benefits of

MCMC inference to avoid instantiating the factor graphs over the

entire database.

3.4 MetropolisHastings
Metropolis-Hastings (MH) [18, 11] is an extremely general MCMC

framework used for estimating intractable probability distributions

over large state spaces. One advantage of MCMC is that it can pro-

duce samples from the probability distribution π without knowl-

edge of the normalization constant ZX (which is #P-hard to com-

pute). We will see in this section that Metropolis-Hastings has

many advantages, allowing us to avoid the need to instantiate the





Pr[t ∈ Q(W )] = lim
n→∞

1

n

n
∑

i

1t∈Q(wi∼π(·)) (5)

and estimate Pr[t ∈ Q(WG)] by using a finite n. Given equation 5,

one approach is to draw independent samples w ∼iid π, requiring

a generative process that must completely instantiate each possible

world (for example, as done in MCDB [13]). However, generating

a possible world may be expensive in practice, motivating our ap-

proach of using Markov-chain Monte Carlo to generate samples by

equivalently hypothesizing modifications to possible worlds.

There are two primary advantages of using a sampling approach

for estimating marginals. The first is that as n goes to infinity, the

approximation becomes correct, allowing a trade-off between time

and fidelity: intuitively some applications are time sensitive and re-

quire only course estimates of query marginals, while in others high

fidelity is extremely important. The second important property of

sampling methods is that they are query agnostic. That is, we need

not concern ourselves with closing the factor-graph representation

over every hypothetical query operator. For example, sampling

methods trivially handle aggregate extensions to relational algebra

because sampling from a graph returned as a query answer would

be equivalent to sampling from the original graph.

Up to this point, we have formally described our representation

for the possible worlds, the probability distribution, and have posed

a query evaluation problem of interest. We now focus our attention

to solving this query evaluation problem in our framework. We

first overview background material, then describe a basic sampling

method. Finally, at the end of this section, we describe the main

algorithm of this article: Metropolis Hastings sampling with mate-

rialized view maintenance.

4.1 Basic MH Query Evaluation
We now precisely define how to use Metropolis-Hastings to ob-

tain marginal probabilities for tuples in query answers. In particu-

lar, we use Algorithm 2 to hypothesize a series of modifications to

worlds. Queries are then executed over hypothesized worlds, and

the marginal probabilities are computed according to Equation 5 .

We should note that consecutive samples in MH are highly depen-

dent; in situations such as ours, where collecting counts is expen-

sive (requires executing the query), it is prudent to increase inde-

pendence by collecting tuple counts only every k samples (a tech-

nique known as thinning). Choosing k is an open and interesting

domain-specific problem. We present our basic MCMC sampling

method in Algorithm 3 (Appendix).

Another interesting scientific question is how to inject query spe-

cific knowledge directly into the proposal distribution. For exam-

ple, a query might target an isolated subset of the database, then the

proposal distribution only has to sample this subset; this can be (1)

provided by an expert with domain-specific knowledge, (2) gener-

ated by analyzing the structure of the graph and query, or even (3)

learned automatically through exploration. However, thoroughly

exploring this idea is beyond the scope of this paper.

Finally, there is an interesting balance between the traditional

ergodic theorems of MCMC and DBMS-sensitive cost issues aris-

ing from disk-locality, caching, and indexing etc. For example, the

ergodic theorems imply that every MCMC sample be used to com-

pute an estimate. However, faced with the fact that each sample is

non-trivial to compute (requires executing a query), we must bal-

ance the dependency of the samples with the expected costs of the

queries. Adaptively adjusting k to respond to these various issues

is one type of optimization that may be applied to this problem.

Algorithm 1 Query Evaluation with Maintenance Techniques

1: Input:

initial world w0,
number of samples per query: k

2: Initialization:

//run full query to get initial results
s← Q(w0)
//initial counts for marginals

m← mi =

{

1 if mi ∈ s

0 o.w.

//initial normalizing constant for marginals
z ← 1
w ← w0

3: for i = 1, . . . , number of steps do

4: (w′,∆−,∆+)←MetropolisHastings(w,k)
5: s← s−Q′(w,∆−) ∪Q′(w,∆+)

6: m← mi +

{

1 if mi ∈ s

0 o.w.

7: z ← z + 1
8: end for
9: return 1

z
m

4.2 MH Sampling with View Maintenance
Often, executing queries over a relational database is an expen-

sive resource consuming task. One way of obtaining tuple counts is

to run the query over each sampled world; however MCMC enables

us to do much better. Recall that consecutive samples in MCMC

are actually dependent; in fact, as illustrated in Figure 2, a world

w′ is the result of a small modification to the original world w.

We use this figure to directly motivate the relevance of material-

ized view maintenance [4]. Rather than run the original (expensive)

query over each consecutive sample, the query is run only once on

the initial world, then for each subsequent sample, a modified query

is run over the difference ∆ and previous world w. That is, we can

exploit the semantics of set operations to obtain an equivalent ex-

pression for the same answer set. Following the work of Blakeley

et al. [4], we recursively express the answer set as:

Q(w′) = Q(w)−Q′(w,∆−) ∪Q′(w,∆+) (6)

where Q′(w,∆±) is inexpensive because |∆±| ≪ |w| and Q(w)
is inexpensive because it can be recursively expressed as repeated

applications of Equation 6 (bottoming out at the base case of the

initial world which is the only world that must be exhaustively

queried).

We discuss briefly some view materialization techniques. First,

observe that a selection σ(w′) can be re-written:

σ(w′) ≡ σ(w)− σ(∆−) ∪ σ(∆+)

and Cartesian products can similarly be re-written as:

w
′
.R1 × w

′
.R2 ≡ w.R1 × w.R2

− w.R1 ×∆−
.R2

∪ w.R1 ×∆+
.R2

where ∆− is the original setting of the tuples, ∆+ is the new set-

ting, and the notation w.R1 is read as: relation R1 from world w.

Traditional results from relational algebra allow joins to be rewrit-

ten as a Cartesian product and a selection. Further, it is not difficult

to conceive how additional relational operators such as various ag-

gregators can be re-written in terms of the sets ∆− and ∆+.
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Algorithm 2 Random Walk with Metropolis Hastings (n steps)

1: Input:

Initial world w,

number of steps n

2: for i = 1, . . . , n do

3: w′ ∼ q(w)
4: if true ∼ α(w′, w) then

5: w ← w′

6: end if

7: return w

8: end for

9.3 BIO Labels for Named Entity Recognition
BIO labels allow textual mentions to be composed of more than

one token by prefixing the labels with a B-<T> indicating that the

token is beginning a mention of type <T>, and I-<T> indicating

the token is continuing a mention of type<T>; and an O indicating

the word is not any type of mention.

As an example, if we annotate the sentence he saw Hillary Clin-

ton speak as:

he (B-PER), saw (O), Hillary (B-PER), Clinton (I-PER), speaks O

then the sentence is interpreted as having two mentions: he and

Hillary Clinton. Note that I-<T> can follow B-<U> if and only if

T = U , otherwise, the interpretation is meaningless. This suggests

we could devise a more intelligent jump function that takes this

constraint into account.

9.4 Query Evaluation
Here we show the basic components of query evaluation. First

a Metropolis-Hastings random walk is presented in Algorithm 2.

The algorithm takes an initial world w0, then executes n proposals,

resulting in a random walk, ending in some final world w’.

Next we show the basic query evaluation method (Algorithm 3).

This method evaluates a queryQ on the probabilistic database. Re-

call that the database always stores a single possible world and is

initialized to some world w. To collect a sample, k MH walksteps

are taken to transition the database to some new worldw′. Then the

query Q is executed over this deterministic world and tuple-counts

are collected. This process is repeated n times. Note that this is

the basic MH query evaluator that does not exploit the overlap be-

tween consecutive MCMC samples; the more sophisticated view-

maintenance evaluator is described in the body of this manuscript.

Algorithm 3 Basic Query Evaluation Method

1: Input:

initial world w0,

number of steps n

number of samples per query: k

2: Initialization:

//initial state

w ← w0

//initial marginal counts

m← 0

//initial normalizing constant for marginals

z ← 0
3: for i = 1, . . . , n do

4: //run MH for k steps beginning on world w

w ←MetropolisHastings(w,k)

5: //run query on sampled world

s← Q(w)
6: //increase counts

m← mi +

{

1 if mi ∈ s

0 o.w.

7: z ← z + 1
8: end for

9: return 1
z
m
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