
Right-branching Tree Transformation for Eager Dependency Parsing

Xiaoye Wu and David A. Smith

Center for Intelligent Information Retrieval

Department of Computer Science

University of Massachusetts

Amherst, MA 01003, U.S.A.

{xiaoye,dasmith}@cs.umass.edu

Abstract

This paper presents a reversible trans-

formation on dependency trees that pro-

duces purely right-branching structures.

On their own, these structures are eas-

ier for stack-based shift-reduce parsers

to learn. We describe experiments train-

ing parsers on the transformed trees,

parsing raw text, and then reversing the

transformation on the results to evalu-

ate. While these conditions do not signif-

icantly change parsing accuracy, a parser

tailored to exploit the greater predictabil-

ity of the transformed trees is able to

run ten times faster than the widely-

used MaltParser system, while using the

same modeling and learning infrastruc-

ture. We conclude with experiments that

explore further search strategies enabled

by the transformed structures.

1 Introduction

Current research in data-driven dependency

parsing can be separated into graph-based and

transition-based methods (Nivre and McDon-

ald, 2008). Graph-based methods view depen-

dency parsing a sentence as a structured predic-

tion problem whose output is a single (labeled)

directed graph. The features of this structured

prediction model encode constraints about which

edges, pairs, of edges, etc., should appear in this

graph. If these constraints apply only to sin-

gle edges, O(n3) algorithms optimally solve this

graph-prediction problem for both projective and

non-projective trees. Higher-order constraints

can improve empirical accuracy and linguistic

plausibility—at the cost of making optimal pro-

jective parsing slower and non-projective parsing

intractable (McDonald and Satta, 2007). Many

state-of-the-art graph-based methods thus turn

to approximate inference techniques (McDonald

and Pereira, 2006; Smith and Eisner, 2008; Mar-

tins et al., 2009).

Transition-based dependency parsers, in con-

trast, aim to select the a sequence of appropriate

actions to take during a tree construction pro-

cess (Nivre, 2008). This tree-construction of-

ten proceeds from the beginning to the end of

the input sentence (incrementally), which more

plausibly models human sentence processing.

Transition-based parsers have the additional ad-

vantage that parsing time for projective trees

is linearly dependent on the length of sentence

(quadratic for non-projective). Among transition

based parsers, stack-based shift-reduce parsers

have shown state-of-art performance by making

shift and attachment decisions based on local

features.

There is, however, a fundamental asymme-

try in these stack-based incremental algorithms.

When a token is a left branch child of its parent,

meaning it appears before its dependency par-

ent in the sentence, the parser does not have any

knowledge of its parent and must make a shift

decision based on the absence of certain features

on the stack. On the other hand, when the par-

ent precedes the child token, the parser makes

an attachment decision based on the presence of

certain features. In a sense, the shift decision on

a left branching child delays its attachment un-

til some expected features show up. Successful





function transform(dependency tree s)

for every token t in s:

while head(t) appears after t:

for every token c between t and head(t):

if head(c) equals head(t):

mark deprel(c) as relocated

set head(c) to t

exchange deprel(t) with deprel of(head(t))

mark deprel(head(t)) as reversed

let h = head(t)

set head(t) to head(head(t))

set head(h) to t

Figure 2: Algorithm to transform to original to

right-branching trees.

function reverse(dependency tree s)

for every token t in s in reverse order:

while deprel(t) is marked as reversed:

for every token c between t and head(t):

if head(c) equals head(t)

and deprel(c) is relocated:

unmark deprel(c) as relocated

set head(c) to t

exchange deprel(t) with deprel(head(t))

unmark deprel(head(t)) as reversed

let h = head(t)

set head(t) to head(head(t))

set head(h) to t

Figure 3: Algorithm to reverse right-branching

transformation.

result of their transformations F (a), F (b) will

obviously be different. Let head(a) denote the

head token of a, then the transformation guaran-

tees that: 1. head(a) is the only token whose

dependency relationship is marked as reversed

in F (a); 2. any token aj where j < index of

head(a) is a child of a0 with its dependency re-

lationship marked as relocated in F (a); 3. any

token ak where j > index of head(a) remains

a child of head(a) with its dependency relation-

ship unchanged in F (a). It is straight-forward to

see that if a 6= b in any way, F (a) cannot be the

same as F (b). The proof for the reverse transfor-

mation is similar.

3 Experiment 1: Learnability of

transformed trees

A parser that deals with right branching trees

needs only two kinds of actions: right-arc and

reduce. The transformation in effect incorpo-

rates lookahead into the parsing algorithm. For

example, the original parser must wait until a

noun shows up after a determiner to fully link up

the attachments. When parsing right-branching

trees, in contrast, an eager parser will immedi-

ately attach the determiner to the stack and wait

for a noun to attach to the determiner with a re-

versed arc. The set of dependency arcs a token

accepts are determined by the token itself and all

potential head tokens that can take the token as

a left descendant, and making an arc is the same

as expecting a specific type of head.

3.1 Experimental setup

Empirically, we have found that this transfor-

mation improves the predictability of arcs. The

experiment set-up is as follows: we take sec-

tion 2 to 22 of the Penn treebank converted into

a dependency treebank (Johansson and Nugues,

2007) as training data, and section 23 as testing

data. We first train a standard MaltParser (Nivre,

2008) and test it on the test set. We then train the

same configuration of MaltParser on the trans-

formed training set and test the parser on the

transformed test set. Finally, we attempt to re-

verse the transformation on the output of the sec-

ond parser and test it on the original test set. The



training/test reg./reg. xfm./xfm. rev./reg.

labeled attachment 78.98 80.97 77.63

unlabeled attachment 82.79 87.87 81.72

label accuracy 83.93 84.62 83.87

Table 1: Percentage accuracy scores of different training-test set-ups. reg. = regular, xfm. = trans-

formed, rev. = reverse-transformed

results are summarized in table 1.

As can be seen, head, label and combined

accuracy all went up for transformed parser on

transformed test data. Unlabeled attachment

score is most visibly enhanced, probably due to

the reduction of attachment structural variations.

The majority of phrases are now depth-one right-

branching subtrees, and attaching to the first to-

ken of the phrase is an easy decision to make.

Recognition of the internal structure now relies

on the correct label on the dependency arc. For

example, the noun phrase “the stock market” has

an ambiguous attachment for the determiner. In

a regular tree, the parser must learn not to hastily

attach the determiner to “stock” if there is an-

other noun after it. In the transformed tree, the

parser always attach “stock” to “the”, but it must

make the correct decision that this attachment is

relocated, rather than reversed.

There is a further migration of ambiguity ob-

served in the results. For example, the head at-

tachment of determiners is among the top fre-

quent errors in both type of tree parses, but for

different reasons. In regular trees, a noun phrase

that involves a long sequence of NMODs cre-

ates a problem for determiner attachment. On

the other hand, the error in transformed trees is

accompanied by visible improvements of head

attachment of nouns. This reflects the fact that

the first token of a phrase, such as a determiner,

is the head of a phrase in the transformed trees.

The difficulty of predicting the parent token of a

noun phrase now rests on the determiner instead

of the noun in the phrase. A similar effect is seen

in the enhancement of head attachment accuracy

of verbs, whose preceding subjects now bear the

burden of ambiguity.

The results above are evidence that the trans-

formation of trees improves head and label pre-

dictability. We have also proved that the transfor-

mation is a bijection, so parsing transformed sen-

tences is in theory as difficult as parsing original

sentences. One can imagine many non-reversible

transformation that would improve predictabil-

ity: trees that attached each word to its prede-

cessor would be extremely easy to learn! But

the one-to-one relationship between original and

transformed trees in the current setup precludes

such degenerate cases.

When the transformation is reversed, however,

the improvements are lost; therefore the reverse

transformation must amplify the errors made in

the attachments. There are two ways the reverse

transformation amplify errors. The first is when

a reversed attachment is erroneously made, every

relocated attachment right before the reversed at-

tachment will also be attached to the wrong head

in this case. The second type of degradation

comes from improper dependency sequences. In

a properly transformed tree, any relocated or re-

versed attachment to a head token must occur

after regular attachments, and any relocated at-

tachment cannot be the last attachment of the

head token. Failure to adhere to these rules will

leave vestigial relocated attachments in the re-

versed tree and possibly generate ill-formed non-

projective structures. The MaltParser obviously

cannot ensure a proper attachment sequence, as

it only makes highly local decisions.

4 Experiment 2: A parser for

right-branching dependency trees

The added constraints of the transformed trees

prompt us to modify the existing shift-reduce

parser by training separate prediction models for

when the head token previously emitted a regu-

lar, relocated, or reversed arc. This modification

is based on the fact that the type of arcs a token



emits is conditioned on the previous arc it has

previously emitted. When a token emits a relo-

cated arc, it must next emit another relocated arc

or a reversed arc, and it cannot be reduced. When

a token emits a reversed arc, it cannot emit a reg-

ular arc afterwards, and it is much more likely

to be reduced off the stack. We can treat these

different “distributions” as the normal, relocated,

and reversed state of the stack and train a classi-

fication model for each of them. These modifi-

cations aim to improve the parser performance

in two ways: first, represent the decision “distri-

bution” more accurately by imposing additional

state conditions. Secondly, the constraints on

the actions the parser can take will hopefully re-

duce ill-formatted trees that cannot be correctly

reverse-transformed.

We built a new right-branching (RB) parser

that uses three different prediction models for

three states of the stack. Although we did not

explicitly implement a backtracking mechanism,

the MaltParser style “look ahead” features pro-

vide limited effect of a backtracking system. In

theory a parser that parses right branching trees

only needs to extract features from the stack and

the first token on the input buffer, but look-ahead

features allow the parser to choose a state more

carefully.

There exist some correspondences between

features of MaltParser and features of our new

parser, but many of the MaltParser features are

no longer needed. All features extracted from

left children are no longer useful, as there are

no left children. None of the tokens in the input

buffer have any dependency arcs attached, and

functions like “the head of a token” are translated

to “the previous token on stack”. A crucial dif-

ference in features is that while MaltParser uses

features such as “the POS tag of i-th token on

the stack”, our parser uses “the true POS tag of

the i-th token on the stack”. The “true token”

of a token is defined as follows: if a token has

never emitted a reversed arc, its true token is it-

self; otherwise its true head is its last child whose

attachment label is reversed. The notion of true

head ensures that arcs are decided on relevant

information. For example, if the first three to-

kens of the sentence “the stock market crashed”

are parsed, after appropriate reductions, “the” is

the only token left there as the head of the noun

phrase. The decision to attach “crashed” to the

stack token “the” is essentially the decision to at-

tach the head of the noun phrase, “market”, to the

verb “crashed” as its subject. Here the true token

of “the” is appropriately the syntactical head of

the noun phrase, “market”, which replaces the

features of “the” to help the parser to make the

correct attachment. Another modified feature is

ranged look ahead features, which signal the ex-

istence of certain features in some ranges of the

input buffer. The ranged feature that looks for

all POS tags from the second to the forth token

on the input buffer is used in the right-branching

parser.

For the RB parser, we used a feature set that

roughly corresponds to the one used by the de-

fault MaltParser, as listed in table 2. Since all

the left-child features originally employed by

MaltParser are no longer useful, we allowed the

parser to extract the POS tag of one more token

in the stack. This is justified by the fact that a left

child of a stack token in MaltParser will end up

as a token deeper in the stack in the RB parser,

emitting a reversed arc.

The performance of the RB parser closely

matches that of MaltParser (table 3). The la-

beled attachment score is 78.53, insignificantly

lower than MaltParser. Unlabeled attachment

score becomes 82.42; label accuracy becomes

84.68, higher than MaltParser’s 83.93. As ex-

pected, we nearly eliminated the vestigial arcs

in the parser output compared to that of a Malt-

Parser trained with transformed trees (14 versus

224). The labeled attachment, unlabeled attach-

ment and label scores of transformed output over

transformed test set are 81.51, 87.90 and 85.35,

respectively. The same improvements of head

and label predictability are observed. Ambigu-

ity (e.g. between determiners and nouns) also

shifted similarly to the results of experiment 1.

A final point of interest is that the RB parser

achieves higher accuracies on smaller amounts

of training data.

Although on the full training set the transfor-



MaltParser RB Parser

form(input[0]) form(input[0])

form(input[1]) form(input[1])

form(stack[0]) form(stack[0])

form(head(stack[0])) form(stack[1])

POStag(input[0]) POStag(input[0])

POStag(input[1]) POStag(input[1])

POStag(input[2]) POStag(input[2])

POStag(input[3]) POStag(input[3])

POStag(stack[0]) POStag(stack[0])

POStag(stack[1]) POStag(stack[1])

POStag(stack[3])

deprel(stack[0]) deprel(stack[0])

deprel(ldep(stack[0])) deprel(rdep(stack[0]))

deprel(rdep(stack[0]))

deprel(ldep(input[0]))

Table 2: Corresponding features employed by MaltParser and Right-Branching Parser

mation does not significantly improve parsing

accuracy, it has a large advantage in parsing time.

On a 2.1GHz processor, we ran the RB parser

and MaltParser on all 24 sections of the Penn

Treebank WSJ corpus. The RB parser spent 75.5

seconds to read and parse all 49,208 sentences,

of which just under 64 seconds are spent on pars-

ing. The transformation and reversal of all sen-

tences took 24 seconds each. The sum of these

is still smaller than the MaltParser by a factor of

ten, which parsed the whole set in 996 seconds.

Although both the MaltParser and the RB parser

use the logistic regression learner in LIBLIN-

EAR (Fan et al., 2008), the light weight of our

RB parser implementation may have contributed

to this speed-up. More importantly, the transfor-

mation on average lowers the number of possible

actions given each parsing state, since left-attach

actions are no longer used. Upon close examina-

tion, we discovered the set of possible actions is

particularly small when the stack state is “relo-

cated” or “reversed”.

5 Experiment 3: Oracle experiment on

the RB parser for a potential

backtracking algorithm

The evaluations so far have shown that the trans-

formation and reversal does not hurt the perfor-

mance of a greedy (eager) shift-reduce parser

based on local decisions. If we allow a slightly

more global decision approach, for example

beam search or backtracking, the transformation

has the potential to greatly improve the accuracy

and learnability of the parser. Particle filtering,

which can be thought of as a stochastic variant

of beam search, has also been shown to enhance

parser performance (Levy et al., 2009).

Backtracking works as a depth-first analogue:

the parser hypothesizes an attachment and pro-

ceed until it discovers the attachment causes dif-

ficulties in later parts of the sentence. We be-

lieve that the right-branching transformation can

further improve parsing performance when com-

bined with these techniques. There are two rea-

sons this is likely to be the case. The first reason

is that many attachment errors are amplified in

the reverse transformation. The amplified errors

often result in vestigial arcs and non-projective

structures after reversal, which are found in the

reversed output of both MaltParser (trained on

right-branching trees) and RB parser. These

facts lead us to believe that if we can reduce the

amplification of errors introduced in the rever-

sal process, we will improve the performance.

More global algorithms, such as beam search

and backtracking, will force the parsed trees



training size 1 sec. xfm. 1 sec. rev. 4 sec. xfm. 4 sec. rev. 20 sec. xfm. 20 sec. rev.

MaltParser N/A 67 (73,74) N/A 73 (78,79) N/A 79 (83,84)

RB Parser 74 (84,79) 71 (77,78) 77 (86,82) 74 (80,80) 82 (88,85) 79 (82,85)

Oracle Parser 78 (88,81) 75 (82,81) 81 (89,84) 77 (83,83) 84 (90,87) 81 (85,86)

Table 3: Comparison between MaltParser, RB parser, and the oracle parser that knows when to

backtrack. The evaluation shows labeled attachment scores, unlabeled attachment scores, and label

accuracies, in that order. The RB parser can learn more quickly from smaller amounts of training

data.

to respect the constraints of transformed trees

and eliminate structures that are not properly re-

versible. For example, when the parser runs into

the situation that no appropriate reversed arc can

be made after a series of relocated arcs, it should

backtrack to where the first relocated arc was

made. If we ensure the attachments are proper,

we will preserve more of the enhancement from

increased attachment predictability.

The second reason is best illustrated with an

oracle experiment. Suppose we have a back-

tracking parser that parses right-branching trees.

When the top token of the input buffer is attached

to and therefore moved to the stack, the correct

label of the attachment is actually the label on

the arc accepted by its true token. For exam-

ple, in the sentence “Eve ate the apple”, “the” at-

taches to “ate” as the OBJ. This decision reflects

that the parser expects a noun to head the deter-

miner. In a backtracking system, a parser may

hypothesize a few possible heads for each token

it moves onto the stack, and eventually rejects all

but one hypothesis. This is equivalent to treating

each token as several hypothesized true tokens.

Our oracle experiment is set up to explore the ef-

fect of this backtracking. As an ideal case, we

assume the system can always reject the incor-

rect hypothesis, so when a token is to be moved

onto the stack (and thereafter), we allow the fea-

ture extractor to extract its true token in the gold

tree (which may be farther down the input buffer

than the parser can see). This simulates picking

a hypothesis (the correct one) the backtracking

system makes.

The comparison between this parser and Malt-

Parser trained with one and four sections of tree-

bank are summarized in table 3. The result is

significantly better than the standard MaltParser

and the RB parser. The output of the oracle

parser still contains a few vestigial arcs. Ill-

formatted structures are formed when the parser

model predicts a reversed arc but reaches the

end of the sentence, so the reversed arc is never

realized. Were true backtracking implemented,

we can further improve performance by getting

rid of these types of mistakes. The parser also

sees enhancements in both precision and recall

of binned head direction (table 4) and longer dis-

tance head attachments (table 5).

6 Conclusion

The right-branching transformation is a one-to-

one mapping from an ordinary labeled syntactic

dependency tree to a right-branching tree. The

transformation eliminates the asymmetry of in-

formation between left and right children at the

cost of a larger set of labels. The transformed

trees exhibit an increase in attachment head and

label predictability, although this improvement

is not fully carried over once the transformed

parser output is reversed. A shift-reduce parser

specifically tailored to deal with right-branching

trees only needs to have right-attach and reduc-

tion actions, which results on average in smaller

decision spaces and therefore faster parsing. Our

implementation of the parser is a factor of ten

faster than the widely used shift-reduce Malt-

Parser, while matching its performance.

The right-branching transformation also

clearly has potential to help build a high per-

formance shift-reduce dependency parser. Its

improvement on predictability of attachment

head and labels can be carried over if the parser

implements a more global decision strategy such



direction
recall precision

Malt OP Malt OP

to root 73.93 88.13 80.17 87.08

left 94.24 96.09 92.93 95.86

right 92.00 94.86 92.80 95.27

Table 4: Precision and recall of binned head direction, a comparison between MaltParser and the

Oracle Parser (OP), trained on 20 sections of the Penn Treebank.

distance
recall precision

Malt OP Malt OP

1 93.53 91.08 94.06 94.81

2 86.39 88.30 85.47 88.18

3-6 76.08 78.95 80.18 80.50

7+ 63.66 75.47 51.25 53.25

Table 5: Precision and recall of binned head distance, a comparison between MaltParser and the

Oracle Parser (OP), trained on 20 sections of the Penn Treebank.

as beam search or backtracking.

7 Acknowledgement

This work was supported in part by the Cen-

ter for Intelligent Information Retrieval, in part

by NSF IIS-0910884, and in part by NEH grant

#HD-50794-09. Any opinions, findings and con-

clusions or recommendations expressed in this

material are those of the authors and do not nec-

essarily reflect those of the sponsor.

References

Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. 2008. Liblinear: A library for large
linear classification. JMLR, 9:1871–1874.

Johansson, Richard and Pierre Nugues. 2007. Ex-
tended constituent-to-dependency conversion for
English. In NODALIDA.

Levy, Roger, Florencia Reali, and Thomas L. Grif-
fiths. 2009. Modeling the effects of memory on
human online sentence processing with particle fil-
ters. In NIPS.

Martins, Andre, Noah Smith, and Eric Xing. 2009.
Concise integer linear programming formulations
for dependency parsing. In ACL, pages 342–350.

McDonald, Ryan and Fernando Pereira. 2006. On-
line learning of approximate dependency parsing
algorithms. In EACL.

McDonald, Ryan and Giorgio Satta. 2007. On the
complexity of non-projective data-driven depen-
dency parsing. In IWPT, pages 121–132.

Nivre, Joakim and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In ACL, pages 950–958.

Nivre, Joakim. 2008. Algorithms for deterministic
incremental dependency parsing. Computational
Linguistics, 34(4):513–553.

Smith, David A. and Jason Eisner. 2008. Depen-
dency parsing by belief propagation. In EMNLP,
pages 145–156.


