
Learning to Select Rankers

Niranjan Balasubramanian and James Allan
Department of Computer Science

University of Massachusetts Amherst
140 Governors Drive, Amherst, MA 01003, USA

niranjan@cs.umass.edu, allan@cs.umass.edu

ABSTRACT
Combining evidence from multiple retrieval models has been widely
studied in the context of of distributed search, metasearch and rank
fusion. Much of the prior work has focused on combining retrieval
scores (or the rankings) assigned by different retrieval models or
ranking algorithms. In this work, we focus on the problem of
choosing between retrieval models using performance estimation.
We propose modeling the differences in retrieval performance di-
rectly by using rank-time features – features that are available to the
ranking algorithms – and the retrieval scores assigned by the rank-
ing algorithms. Our experimental results show that when choosing
between two rankers, our approach yields significant improvements
over the best individual ranker.

Categories and Subject Descriptors: H.3 [Information Storage
and Retrieval]: Information Search and Retrieval

General Terms: Algorithms, Experimentation, Theory

Keywords: Combining Searches, Learning to Rank, Metasearch

1. INTRODUCTION
Combining evidence from multiple sources has been studied in

various contexts [2, 1, 4, 6]. The basic premise for combining
evidence from multiple retrieval models is that there is no single
model that performs the best on all queries. Several rank fusion [7]
and rank aggregation [4] approaches have been proposed to re-rank
documents based on retrieval scores (or rankings) obtained from
individual rankers. However, most of these approaches either learn
a fixed (query independent) set of weights that are used to com-
bine document scores or utilize a voting scheme for combining the
rankings.

Instead of learning to combine document scores in a query de-
pendent manner, we consider the problem of selecting a ranker for a
given query. We propose a simple framework that directly predicts
the differences in effectiveness between the results of different re-
trieval models. In particular, we consider the web-search scenario,
where a large number of features are often combined using sophis-
ticated learning to rank algorithms (rankers). For the sake of sim-
plicity, we assume that we have access to two different rankers that
operate on the same set of features. We formally define the ranker
selection problem as follows:

Problem Definition. Given two rankers, Ra and Rb, we choose
one ranker to be the baseline ranker (say Rb) – either arbitrarily, or
based on the prior knowledge about the average performance of the

Copyright is held by the author/owner(s).
SIGIR’10, July 19–23, 2010, Geneva, Switzerland.
ACM 978-1-60558-896-4/10/07.

rankers. Then, for each query, the selection problem is to determine
whether to use the baseline ranker Rb or the alternate ranker Ra.

This problem definition and the selection framework that we pro-
pose can be extended to the scenario where we have access to mul-
tiple alternate rankers.

Ranker Selection Framework. We propose a simple frame-
work for directly predicting the difference between the performance
of two rankers(Rb and Ra) in terms of average precision (AP). We
use the retrieval scores and the features of the top ranked docu-
ments (referred as retrieval features henceforth) to train a regres-
sor. In addition to being closely related to the performance of the
rankers, these features are also easy to compute, compared to typi-
cal performance prediction measures such as Clarity [3].

As shown in Figure 1, for a given test query, we first rank docu-
ments using both rankers. Then, for each ranked list, we compute
mean and variance of the scores and the standard deviation of the
retrieval features to generate aggregate feature vectors. The differ-
ence between the two aggregate vectors is input to the regressor
which predicts the difference in effectiveness (AP(Ra) - AP(Rb)).
If the predicted difference is positive, then we select the alternate
ranker, otherwise, we use the baseline ranker.

DocumentDocument
Ra 

Results

Doc 1
f1,f2,...,fn

Doc k
f1,f2,...,fn

Score 1

Score k

... ...
Aggregator a11,a12,...,a1n

...
al1,al2,...,aln

Ra Features

AP(Ra)
> 

 AP(Rb) ?

DocumentDocument
Rb 

Results

Doc 1
f1,f2,...,fn

Doc k
f1,f2,...,fn

Score 1

Score k

... ...
Aggregator b11,b12,...,b1n

...
bl1,bl2,...,bln

Ra Features

Regressor

Figure 1: Ranker Selection Process

2. EXPERIMENTS
To evaluate our ranker selection approach, we use the LETOR

3.0 dataset [8] built on top of the TREC Gov2 collection. We con-
duct 5-fold cross validation experiments on a set of 225 queries
created for the TREC named page finding tasks (NP 2003 and
NP 2004). We use the results from three ranker baselines: Rank-
Boost [5], Regression, and FRank [9]. To create features for the se-
lection framework, we use the published test runs1 for these rankers
to obtain the document scores for top 10 ranking documents, and
the list of 64 features that are available as part of LETOR. We use
a non-linear Random Forest regression model for our experiments.
We compare the rankers using mean-average precision (MAP).

1http://research.microsoft.com/en-
us/um/beijing/projects/letor/letor3baseline.aspx



In terms of MAP, RankBoost is the best individual ranker, fol-
lowed by FRank and Regression. Table 1 shows the potential for
the use of query dependent ranker selection for named page finding.
For example, RankBoost outperforms Regression on 90 queries,
but performs worse on nearly half as many. Furthermore, we see
that an oracle selection method can provide nearly 30% improve-
ment over Regression, and nearly 15% improvement over FRank
and 12% improvement over RankBoost.

Table 1: Potential for Improvement using Ranker Selection. Rb –
Baseline ranker (RankBoost), Ra – Alternate ranker. Worse and Better
indicate the number of queries for which Ra is worse than Rb in terms
of MAP and vice versa. RankBoost has a MAP of 0.6596

Ra MAP(Ra) Worse Better Oracle Selection
Regression 0.5476 90 42 0.7096
FRank 0.6429 62 45 0.7316

We conduct two sets of selection experiments one with Rank-
Boost as the baseline ranker, and the other with RankBoost as the
alternate ranker. Even though the rankers train on differences in
performance, the distribution of the positive and negative differ-
ences change for each setting, thereby leading to different behavior
in terms of the achieved improvements.

Table 2: Ranker Selection effectiveness on a set of 225 name page
finding queries on the Gov2 collection. Rb – Baseline ranker, Ra – Al-
ternate ranker. MAP (Rs) indicates the MAP achieved with ranker se-
lection. Underline indicates best MAP. * indicates significant improve-
ments over Regression/FRank when using a paired t-test with p < 0.05

Rb Ra MAP(Rb) MAP(Ra) MAP(Rs)
Regression RankBoost 0.5476 0.6596 0.6623∗

FRank RankBoost 0.6429 0.6596 0.6591∗

RankBoost Regression 0.6596 0.5476 0.6722∗

RankBoost FRank 0.6596 0.6429 0.6607∗

Results of the two selection experiments are tabulated in Ta-
ble 2. When using RankBoost as the alternate ranker, selection
yields improvements over both Regression and FRank. This is
in part because RankBoost performs better than both these algo-
rithms for most queries. However, selection does not provide sub-
stantial improvements over RankBoost, the best individual ranker.
On the other hand, when using RankBoost as the baseline ranker
and Regression as the alternate ranker, we obtain substantial im-
provements using selection. Interestingly, even though FRank has a
higher MAP compared to Regression, using FRank as the alternate
ranker yields smaller improvements. This suggests that effective-
ness of the selection also depends on the type of ranking algorithm
used, in addition to the performance of the ranker itself.

The distribution of gains achieved for ranker selection between
RankBoost and Regression is shown in Figures 2 (a) and (b). In
both cases, we see that for a large fraction of the queries, choos-
ing the alternate ranker results in gains, and very few cases result
in losses. When using RankBoost as the baseline ranker, selec-
tion uses Regression for a small number of queries (28), and pro-
vides gains for subset (14), but the choice results in fewer losses
(4). However, when using RankBoost as the alternate ranker, se-
lection uses RankBoost for a large number of queries (198), out of
which 83 queries result in gains and 29 result in losses. This sug-
gests that while ranker selection yields substantial gains, it can also
benefit from limiting losses due to poor selection. For example,
thresholding on the predicted differences can reduce the number of
queries for which the alternate ranker is queried.

D
iff

er
en

ce
 in

 A
P

−
0.

6
−

0.
2

0.
0

0.
2

0.
4

0.
6

(a) Rb: RankBoost

D
iff

er
en

ce
 in

 A
P

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

(b) Rb: Regression

Figure 2: Distribution of Ranker Selection Gains: (a) When using
RankBoost as the baseline and (b) When using RankBoost as the alter-
nate ranker

3. CONCLUSIONS
In this paper, we proposed a simple learning approach for query-

dependent selection of rankers. Our selection framework utilizes
rank-time features – features that are available to the ranking al-
gorithms during ranking. For selecting between two rankers, our
experimental results show that a simple regression model that di-
rectly predicts differences in effectiveness, can achieve substantial
improvements over the best individual ranker. As part of future
work, we plan to investigate selection between multiple rankers us-
ing more sophisticated features for performance prediction.

4. ACKNOWLEDGMENTS
This work was supported in part by the Center for Intelligent

Information Retrieval and in part by NSF IIS-0910884. Any opin-
ions, findings and conclusions or recommendations expressed here
are the authors’ and do not necessarily reflect those of the sponsor.

5. REFERENCES
[1] B. T. Bartell, G. W. Cottrell, and R. K. Belew. Automatic combination

of multiple ranked retrieval systems. In SIGIR ’94: Proceedings of the
17th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 173–181, 1994.

[2] W. B. Croft. Incorporating different search models into one document
retrieval system. SIGIR Forum, 16(1):40–45, 1981.

[3] S. Cronen-Townsend, Y. Zhou, and W. B. Croft. Predicting query
performance. In SIGIR ’02: 25th Annual ACM SIGIR Conference
Proceedings, pages 299–306, 2002.

[4] M. Farah and D. Vanderpooten. An outranking approach for rank
aggregation in information retrieval. In SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 591–598, 2007.

[5] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting
algorithm for combining preferences. J. Mach. Learn. Res., 4, 2003.

[6] J. H. Lee. Combining multiple evidence from different properties of
weighting schemes. In SIGIR ’95: Proceedings of the 18th annual
international ACM SIGIR conference on Research and development in
information retrieval, pages 180–188, 1995.

[7] D. Lillis, F. Toolan, R. Collier, and J. Dunnion. Probfuse: a
probabilistic approach to data fusion. In SIGIR ’06: Proceedings of
the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 139–146, 2006.

[8] T. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset
for research on learning to rank for information retrieval. In
Proceedings of SIGIR 2007 Workshop on Learning to Rank for
Information Retrieval, pages 3–10, 2007.

[9] M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma. Frank: a
ranking method with fidelity loss. In SIGIR ’07: Proceedings of the
30th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 383–390, 2007.


