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Abstract

The use of information retrieval systems in networked en-
vironments raises a new set of issues that have received lit-
tle attention. These issues include ranking document col-
lections for relevance to a query, selecting the best set of
collections from a ranked list, and merging the document
rankings that are returned from a set of collections. This
paper describes methods of addressing each issue in the in-
ference network model, discusses their implementation in
the INQUERY system, and presents experimental results
demonstrating their effectiveness.

1 Introduction

Retrospective document retrieval is usually described as the
task of searching a single collection of documents to produce
a list of documents ranked in order of relevance to a partic-
ular query. The need to search multiple collections in dis-
tributed environments is becoming increasingly important
as the sizes of individual collections grow and network infor-
mation services proliferate. Distributed collections can be
relatively homogeneous, as in the case where a large single
collection is partitioned and distributed over a local network
to improve search efficiency. They can also be very heteroge-
neous in that wide-area network services can make hundreds
or even thousands of collections available for searching.

Searching a distributed collection presents a number of
unique problems. One approach would be to treat the dis-
tributed collections as a single, large, “virtual” collection.
Every collection would be searched individually and then
the results would be combined or merged to produce a sin-
gle ranked list. One problem with this approach is how
to merge the individual ranked lists. The other problems
have to do with the economic aspects of searching. It will
generally be too expensive in terms of both computer and
communication resources and the user’s time to search ev-
ery collection in a distributed environment. Some systems
make this clear by making charges for searching dependent
on the number of collections searched.

When many collections are available in distributed envi-
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ronment, therefore, a decision must be made about which
of them to search. A retrieval system should provide tech-
niques that can make this decision automatically, because
users may be unable or unwilling to make selections by ex-
haustively examining long lists of the available collections.
Having selected the collections to search, the retrieval sys-
tem must also provide techniques for effectively merging the
individual ranked lists of documents that are produced.

This paper describes how these issues can be addressed
in aretrieval system based on the inference net, a probabilis-
tic model of information retrieval. In the next section, we
describe related work on collection selection and merging of
ranked results. In Section 3, we describe how the inference
network can be used to rank collections for relevance to a
query. Section 4 presents a method for accurately merging
the results from different collections based on the collection
ranking. The results in Section 5 show that it is possible
to select subsets of the available collections for searching
without affecting retrieval effectiveness. Section 6 describes
several efficiency optimizations for distributed searching. In
the final section, we summarize the results and discuss some
unsolved problems.

2 Related Work

Users of commercial retrospective information retrieval sys-
tems have always faced the collection selectionproblem. The
user must either search all collections or choose the subset
to be searched. Experienced users, for example librarians
acting as intermediaries, may draw upon their past experi-
ence or reference aids to help in deciding which collections
to search. Many less experienced choose to search all avail-
able collections rather than take the time to select a subset
by trial-and-error.!

Some service providers manually group their collections
into sets with common themes, for example newspaper col-
lections or appellate court decisions. Danzig, et al, showed
how to automatically maintain similar groupings in dis-
tributed environments [3]. They used broker agents that
maintained centralized indices for particular subjects by pe-
riodically querying remote collections. Both of these ap-
proaches simplify collection selection for users whose infor-
mation needs can be anticipated to some extent.

The EXPERT CONIT retrieval system [7] is an early ex-
ample of automating collection selection. EXPERT decided
on a query-by-query basis which collections were most ap-
propriate, albeit for a relatively static set of homogeneous

! Personal communication from a commercial retrieval service.



collections. It used rule-based inferencing to match the in-
formation need to a knowledge-base describing document
collections, producing a ranked list of collections.
Voorhees, et al, explored ranking collections using the
similarity of a new query to training queries [13]. Relevance
judgements for the most similar training queries determine
whether, and how much, to retrieve from each collection.
This technique may be practical for relatively static collec-
tions, but obtaining relevance judgements could be problem-
atic for widely distributed and dynamic collections.
GLOSS [5] estimates the number of potentially relevant
documents in collection C for a Boolean AND query @ as
|C| - Htéqiié—‘l, where t is a term in @, df, is the number

of documents in C containing ¢, and |C| is the number of
documents in C. The GLOSS approach is easily applied to
large numbers of dynamic collections, because GLOSS stores
only term frequency information about each collection. It’s
effectiveness is not known yet, due to limited evaluation and
the lack of support for other forms of query.

Moffat, et al, used a centralized index on blocks of B
documents in individual collections [8]. For example, each
block might be 10 documents concatenated together. A new
query first retrieves block identifiers from the centralized
index, then searches the highly ranked blocks to retrieve
documents. This approach worked well for retrieving small
numbers of documents, but caused a significant decrease in
precision and recall when 1,000 documents had to be re-
trieved.

Once a set of collections is chosen, the retrieval system
must decide how to combine search results from each collec-
tion into a single ranking. This task is simple if the results
are an unordered set of documents, but it is more difficult
if results are ranked lists of documents. Some have success-
fully used document scores from the different collections to
create a merged ranking [6; 8], but others have had problems
with this approach [4].

Voorhees, et al, call this the collection fusion problem,
and describe two solutions [13]. One solution is to interleave
the rankings, in a round-robin fashion. A second solution is
uneven interleaving, biased by the expected relevance of the
collection to the query. The latter approach was substan-
tially more effective in experiments with the TREC collec-
tion.

3 Ranking Collections With Inference Networks

Inference networks are a probabilistic approach to infor-
mation retrieval [12; 11]. The traditional use of inference
networks for document retrieval is a directed acyclic graph
in which documents are represented by leaves, and the root
node represents an information need (Figure 1).

A major part of the collection selection problem is rank-
ing collections for a given information need. Ranking col-
lections can be addressed by an inference network in which
the leaves (the d nodes in Figure 1) represent document
collections, and the representation (r) nodes represent the
terms that occur in the collection. The probabilities that
flow along the arcs can be based upon statistics that are
analogous to tf and tdf in normal document retrieval; for
example, document frequency df (the number of documents
containing the term) and inverse collection frequency icf
(the number of collections containing the term). We call
this type of inference network a collection retrieval infer-
ence network, or CORI net for short, to distinguish it from
the more common document retrieval inference networks.

Document
Network

Query
Network

Figure 1: A simple document retrieval inference network.

A CORI net has moderate storage requirements if only
document frequency (df) and inverse collection frequency
(icf) are stored.? The CORI net for one 1.2 gigabyte collec-
tion (TREC Volume 1) would be about 5 megabytes, assum-
ing simple compression algorithms. In this case, the CORI
net is about about 0.4% the size of the original collection.

One advantage of using the inference network for rank-
ing collections is that one system is used for ranking both
documents and collections. It is not necessary to design new
file organizations or algorithms. Instead, document retrieval
becomes a four step process:

1. Use the query to retrieve a ranked list of collections,
2. Select the top group of collections,

3. Search the top group of collections, in parallel or se-
quentially, and

4. Merge the results from the various collections into a
single ranking.

Steps 1 and 3 can be performed by a single algorithm oper-
ating on different indices.

To the retrieval algorithm, a CORI network looks like
a document retrieval inference network with very big doc-
uments; each ‘document’ is a surrogate for a complete col-
lection. Search complexity is comparable to searching small
collections of abstracts. A CORI network for 3,000 docu-
ment collections is comparable to searching the well-known
collection of CACM abstracts. The ‘tf’ (df) and ‘idf’ (icf)
values are higher, but that does not affect the computational
complexity of retrieval. There are also many more inverted
lists, but only those that match terms in the query are ac-
cessed.

The effectiveness of this approach to ranking collections
was evaluated using the INQUERY retrieval system [11;
12; 2] and the 3 gigabyte TREC document collection. The
TREC collection is heterogeneous, containing 17 subcollec-
tions from different sources and/or periods of time (Table
1). The subcollections vary widely in size, in number of
documents, and in average document length. Experiments
were conducted with 100 queries developed for TREC top-
ics 51-150 during previous TREC and TIPSTER evaluations

[1].

2The inference network can incorporate proximity information and
operators, but it is impractical to do so for collection ranking.




Table 1: The TREC document collections used for experi-
ments. The TREC volume number is shown in parentheses.

Docu- Mega—
Name ments Words bytes
AD 88 (2) 79,019 21,425,011 249
AP 89 (1) 84,678 22,407,342 267
AP 90 (3 78,321 21,555,502 249
DOE (1) 226,087 17,201,000 193
Fed. Reg. ’88 (2) 19,860 20,068,562 219
Fed. Reg. 89 (1) 25,960 23,444,637 272
Patent (3) 6,711 19,624,651 254
SIM 91 (3) 90,257 36,441,456 301
WSJ ’87 (1) 46,448 11,562,767 132
WSJ ’88 (1) 39,904 9,738,438 109
WSJ *89 (1) 12,380 3,307,151 38
WSJ *90 (2) 21,705 6,500,181 73
WSJ 91 (2) 52,652 12,418,568 146
WSJ 92 (2) 10,163 2,880,247 35
Ziff 1 (1) 75,180 20,374,002 254
7Ziff 2 (2) 56,020 15,637,443 184
Ziff 3 (3) 161,021 44,120,132 362

Table 2: The average optimal rank of the TREC Volume 1
collections for topics 51-100 and 101-150.

WSJ AP WSJ WSJ FR
87 '89 '88 '89 DOE 7Ziff ’'89
51-100 2.3 2.6 2.9 4.7 4.9 53 5.4

101-150 2.4 2.0 2.9 4.5 4.6 4.9 6.6

The mean-squared error metric was used to compare the
effectiveness of variations to the basic collection ranking al-
gorithms. The mean-squared error of the collection ranking
for a single query is calculated as:

ﬁ - Biec(0; — R:)?

where:
O; = optimal rank for collection 7, based on the
number of relevant documents it contained
(the collection with the largest number of
relevant documents is ranked 1, the collection
with second largest number of relevant
documents is ranked 2, and so on),
R; = the rank for collection ¢ determined by the
retrieval algorithm, and
C = the set of collections being ranked.
The mean-squared error metric has the advantage that it is
easy to understand (an optimal result is 0), and it does not
require labeling a collection ‘relevant’ or ‘not relevant’ for
a particular query. The average optimal rank O; for each
collection in TREC Volume 1 is shown in Table 2.
INQUERY’s algorithms for ranking documents have
been documented extensively [11; 12; 2; 1], so this discussion
is confined to the changes necessary to rank collections. The
changes were confined initially to replacing tf with df and
idf with icf, as discussed above, and with replacing the max-
imum term frequency in a document statistic (maz_tf) with
the maximum document frequency in a collection (maz_df).
Hence, the belief p(rg|c;) in collection ¢; due to observing

term 7y is determined by:

log(df + 0.5)

T = dt+(1-di)- log(maz_df + 1.0) (1)

log (|c|c-|}o.5)
I' = gucr+10) (2)
p(reles) = db+(1—db)-T-I (3)

where:
is the number of documents in ¢; containing r,

maz_df is the number of documents containing the
most frequent term in c;,

|C| is the number of collections,

cf is the number of collections containing term rg,

ds is the minimum term frequency component
when term rx occurs in collection c;,

ds is the minimum belief component when term

7 occurs in collection c;.
This is a variation of the well-known tf.idf approach to rank-
ing documents, with values normalized to remain between 0
and 1, and further modified by default term frequency (d:)
and default belief (ds) values. d; and d; default to 0.4.

The probabilistic query operators that combine the be-
liefs accruing from the query terms remained unchanged
[11; 12]. The proximity operators were replaced by strict
Boolean AND operators, due to the lack of proximity infor-
mation in CORI nets (discussed in Section 6.2).

This approach was used to rank TREC volume 1 collec-
tions for topics 51-100. The mean-squared error, averaged
over 50 queries, was 2.3471. The rankings for about 75% of
the queries were nearly perfect; the rankings for the other
25% were more disorganized, and accounted for most of the
error. No pattern was apparent to explain why some queries
yielded such poor rankings.

One possible problem in applying the default formulas
for ranking documents to ranking collections is the use of
the maz_df statistic to scale df. Although we have argued
that ranking collections is analogous to ranking documents,
there are differences. The reason for ranking collections is
not to find collections about a particular subject; it is to
find collections containing as many documents as possible
about the subject. Scaling df by maz_df tends to obscure
small (and not-so-small) sets of interesting documents in
large collections.

Recent experiments with document retrieval suggest that
it may be better to scale tf by tf+ K, for some small K [10].
The analogue for this task would be to scale df by df + K,

replacing Equation 1 above with Equation 4 below.

daf

T = dt+(1—dt)-

When ranking documents, it makes sense to make K a func-
tion of document length. However, when ranking collections,
it may make more sense to let K be more sensitive to the
number, and not the percentage, of documents about the
subject. It may also make sense to let K be large, because
the df values will generally be large.

We defined K = k- ((1—b6) 4+ b:cw/cw), where k and b
are constants, cw is the number of words in the collection,
and cw is the mean cw of the collections being ranked. The
constant k controls the magnitude of K. Varying b from 0 to
1 increases the sensitivity of K to the size of the collection.

This approach was used to rank TREC volume 1 collec-
tions for topics 51-100. Experiments were conducted with
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Figure 2: The effect on mean-squared error of varying K (TREC Volume 1 collections, topics 51-100)). Ina) b =0 as k is

varied. In b) k = 200 as b is varied.

values of k ranging from 1 to 300 (Figure 2a), and with
values of b ranging from 0 to 1 (Figure 2b). The best com-
bination of values for this set of queries and collections is
k = 200,b = 0.75.

The mean-squared error, averaged over 50 queries, for
this combination was 1.4586, which is 38% better than the
mean-squared error obtained when scaling df by maz_df.
The collection rankings improved for 30 queries, some
quite dramatically. The rankings for 8 queries deteriorated
slightly. The rankings for 12 queries did not change.

A mean-squared error of 1.4586 is not perfect, but it is
good. Analysis of the results reveals few serious mistakes.
Most of the mistakes were due to mixing up the rankings
of collections containing nearly equal numbers of relevant
documents. These cases were counted as errors, but they
would not be noticeable to a user. Indeed, although further
improvement is possible, it is likely to yield diminishing re-
turns.

4 Merging Results

Ranking collections is only part of the problem. After a
set of collections is searched, the ranked results from each
collection must be merged into a single ranking.

If only the document rankings are available, the results
from each collection can be interleaved [13]. This solution
is not satisfying, for it is unlikely that all of the collections
have equal numbers or proportions of relevant documents.
However, it is difficult to do anything more sophisticated
without more information than just the document rankings.

Many IR systems return not only a ranking of docu-
ments, but a numeric score that indicates how well each
document matches the query. If the scores from different
collections are comparable, one can merge the set of rank-
ings based upon the document scores (raw score merge).

With some techniques, the scores from different collec-
tions may not be directly comparable. For example, al-
though the idf weights for many words are relatively consis-
tent across different collections, the idf weights of words such
as computer, tort and cholesterol will vary widely among
technical, legal and medical collections. This can viewed

as desirable, because the idf represents the term’s impor-
tance in a particular collection. It can also be viewed as
undesirable, because an important query term can behave
erratically, rewarding the random mention of a term in one
collection and penalizing its common use in another [4].

The problem of incomparable scores can be overcome in
some cases by normalizing statistics such as idf for the set
of collections being searched [6]. The intent is to normalize
document scores to obtain precisely the same results that
would be obtained if the individual document collections
were merged into a single unified collection. The difficulty
of normalizing document scores for a set of collections de-
pends upon the retrieval algorithms employed. For the in-
ference network architecture, normalizing scores requires a
preprocessing step prior to query evaluation. In the pre-
processing step, the system obtains from each collection the
statistics about how many documents each query term or
proximity operator matches. The statistics are merged to
obtain a normalized idf. The query and the normalized idfs
are sufficient to then retrieve documents with comparable
scores from disparate collections.

Normalizing document scores can entail significant com-
munication and computational costs when collections are
distributed across a wide-area network. An alternative to
both simple interleaving and normalized scores is merging
based on weighted scores. Weights can be based upon a
document’s score and/or the collection ranking information.
This approach offers the computational simplicity of simple
interleaving while overcoming some of its disadvantages.

The weight w, below, is an example of how one might
weight results from different collections. We have used the
collection’s score, instead of its rank, because we believe that
similar collections should have similar weights.

w=1+|C|-1=2
5
where:
|C| = the number of collections searched,
s = the collection’s score, and
g = the mean of the collection scores.

Each document is ranked based upon the product of its score



Table 3: Different techniques for merging results from different collections (TREC Volume 1, topics 51-100).

Interpolated Recall - Precision Averages (50 queries):
Normalized Interleaved Raw Score Weighted
Merge Merge Merge Merge
0% 88.37 78.95 (—10.7) 83.14 (—5.9) 85.92 (—2.8)
10% 65.99 38.67 (—41.4) 60.08 (—9.0) 65.15 (—1.3)
20% 57.49 2042 (-48.8) 5249 (-8.7) 5821  (+1.3)
30% 51.23 24.76 (—51.7) 45.88 (—10.4) 51.84 (+1.2)
40% 45.63 20.13 (—55.9) 4053 (—11.2) 45.92  (+0.6)
50% 38.65 14.64 (—62.1) 34.23 (—11.4) 39.50 (-|-2 2)
60% 32.95 10.74 (—67.4) 2757 (-16.3) 32.83 (—0.4)
70% 26.25 6.81 (—74.1) 21.83 (—16.8) 2628  (+0.1)
80% 17.31 429 (-75.2) 15.24 (—12.0) 18.22 (+5.3)
90% 8.36 1.43 (—-82.9) 6.71 (—19.7) 10.64 (+27.3)
100% 1.22 033 (-73.0) 1.18 (-3.3) 1.25 (+2.5)
Average precision (non-interpolated) over all rel docs
37.76 17.54 (-53.5) 33.67 (—10.8) 38.18  (+1.1)
Precision:

5 docs: 69.60 52.80 (—24.1) 63.60 (—8.6) 67.60 (—2.9)
10 docs: 65.00 43.20 (-33.5) 59.20 (—8.9) 64.20 (—1.2)
15 docs: 62.93 38.00 (—39.6) 59.47 (—5.5) 62.00 (—1.5)
20 docs: 62.10 37.30 (-39.9) 56.20 (—9.5) 61.60 (—0.8)
30 docs: 59.00 35.40 (—40.0) 53.67 (—9.0) 59.33 (+0.6)

100 docs: 46.76 29.82 (-36.2) 43.66 (—6.8) 47.76  (+2.1)
R-Precision (precision after R (= num_rel for a query) docs retrieved):
Exact: 41.96 25.42 (-39.4) 38.67 (—7.8) 4246 (+1.2)

and the weight w for its collection. This algorithm favors
documents from collections with high scores, but also en-
ables a good document from a poor collection to be ranked
highly.

These four approaches to merging results, interleaving,
raw scores, normalized scores and weighted scores, were com-
pared in a series of experiments using the collections and
queries described in Section 3. Experiments were conducted
with two query sets (51-100 and 101-150) on TREC Vol-
ume 1 (7 collections), Volume 2 (6 collections), Volume 3
(4 collections), Volumes 142 (13 collections), and Volumes
14243 (17 collections). Results are shown for Volume 1,
and Volumes 1+2+43. The normalized scores approach was
treated as the baseline, because it is equivalent to the “single
database” paradigm that has been the norm in information
retrieval. The experimental results are contained in Tables
3-5.

Both 11 point recall/precision and absolute precision at
various cutoffs are included, to give a clear picture of behav-
ior at both low and high recall. Recall and precision were
calculated by the TREC trec2_eval program using just the
top 1000 documents from the merged ranking. This ap-
proach treats all documents above rank 1000 as ranked last,
giving a very pessimistic view of high recall behavior.

In each experiment, simple interleaving of document
rankings was extremely ineffective, producing dramatic
losses in average precision. This result is not surprising,
because interleaving has the effect of boosting the rankings
of random documents from collections with few relevant doc-
uments.

Merging based on raw document scores from each collec-
tion was significantly worse than ranking based on normal-
ized document scores, causing losses from 10-20% in aver-
age precision. The only difference between the normalized
and unnormalized scores was the idf component. This re-
sult confirms previous research suggesting that unnormal-
ized idfs can give misleading results [4].

Ranking based on document scores and collection-

specific weights was about as effective as ranking based on
normalized scores. It produced small improvements in most
levels of recall for queries 51-100 on the TREC 1 collections;
small losses in most levels of recall for queries 101-150 on
the TREC 1 collections; and small changes in precision at
most levels of recall for queries 51-100 on the TREC 1+2+3
collections. In general, our experience with weighted rank-
ings was small changes at low recall, and occasionally erratic
behavior at high recall.

We view these results as extremely encouraging. They
suggest that it is possible to get the accuracy of rankings
based on normalized scores without the computational ef-
fort.

5 Collection Selection

In the experiments described above, all collections were
searched, and their results used to create the final document
rankings. However, in distributed environments, one rarely
has the resources to search every collection. It is more likely
that one searches an index of collections, obtains a rank-
ing, and then searches the top few collections for interesting
documents.

There are any number of ways to decide how far down
the collection rankings to go. One could choose the top n,
any collection with a score greater than some threshold, or
the top group as defined by some clustering method. We
investigated the latter approach.

A single-pass algorithm [9] was used to cluster the col-
lection rankings for each query. Collections were clustered
on the basis of their scores, as determined by the collec-
tion ranking algorithm (Section 3). The cluster difference
threshold was low (0.0012), creating clusters that tended
to be smaller than necessary. The seven TREC Volume 1
collections produced an average of 4.04 clusters for topics
51-100 and 4.06 clusters for topics 101-150. It was rare for a
collection with a significant number of relevant documents
to be excluded from the top 2 clusters.



Table 4: Different techniques for merging results from different collections (TREC Volume 1, topics 101-150).

Interpolated Recall - Precision Averages (50 queries):
Normalized Interleaved Raw Score Weighted
Merge Merge Merge Merge
0% 84.05 80.36 (—4.4) 8291 (—1.4) 79.64 (—5.2)
10% 61.62 42.65 (-30.8) 57.25 (-7.1) 60.76 (—1.4)
20% 54.66 33.35 (—39.0) 49.94 (—8.6) 53.35 (—2.4)
30% 49.54 27.72 (-44.0) 45.16 (—8.8) 4819 (-2.7)
40% 4476 22.75 (—49.2) 38.72 (—13.5) 41.86 (—6.5)
50% 38.18 18.26 (-52.2) 32.71 (—14.3) 37.03 (-3.0)
60% 32.68 14.57 (-55.4) 27.82 (—14.9) 30.92 (-5.4)
70% 26.13 854 (—67.3) 22.05 (—15.6) 25.30 (—3.2)
80% 19.01  4.62 (—75.7) 16.46 (—13.4) 18.47 (—2.8)
90% 1066 1.66 (—84.4) 9.40 (-11.8) 9.70 (—9.0)
100% 1.47 035 (-76.2) 139 (-5.4) 1.15 (—21.8)
Average precision (non-interpolated) over all rel docs
36.98 20.48 (-44.6) 33.22 (—10.2) 35.60 (—3.7)
Precision:

5 docs: 63.20 54.40 (—13.9) 60.80 (—3.8) 62.00 (—1.9)
10 docs: 58.80 50.00 (—15.0) 55.80 (—5.1) 5820 (—1.0)
15 docs: 59.13 43.73 (—26.0) 54.00 (—8.7) 56.00 (—5.3)
20 docs: 57.30 41.00 (-28.4) 5230 (-8.7) 55.50 (—3.1)
30 docs: 55.60 38.47 (—30.8) 50.27 (—9.6) 53.80 (—3.2)

100 docs: 43.92 29.06 (-33.8) 40.04 (—8.8) 43.34 (-1.3)
R-Precision (precision after R (= num_rel for a query) docs retrieved):
Exact: 39.85 26.50 (—33.5) 36.96 (—7.3) 3847 (—3.5)

The effect on recall and precision was noticeable, but not
significant at low recall. We summarize the results, rather
than providing complete recall/precision tables, due to space
limitations. With topics 51-100, the difference between us-
ing the two best clusters of collections (an average of 4.04
collections) and using all 7 collections was less than —5%
at all document cutoffs from 5 to 1,000. The difference in
exact R-precision was —0.9%. The difference in average 11
point precision was —2.2%. The effect on topics 101-150 was
more noticeable, with differences > 5.0% at and above the
200 document cutoff. The difference in exact R-precision
was —5.6%, and the difference in average 11 point precision
was —9.1%, both reflecting significant deterioration in high
recall results.

It is not surprising that eliminating collections reduces
recall. There will occasionally be errors in the collection
rankings, or a few relevant documents in marginal collec-
tions. In our opinion it is more significant, and encouraging,
that precision at low recall is relatively unaffected when the
number of collections searched is reduced by 43%. Few in-
teractive users will care about a drop in recall at rank 200.
Those that do can choose to search more collections.

6 Optimization

In this section we discuss several decisions that can affect
the efficiency of collection ranking and merging rankings.

6.1 Represent a Collection With a Subset of Terms

One could create a smaller collection retrieval inference net
by keeping only a subset of the terms that appear in the
collection. An example would be to keep only the most
frequent. An experiment with TREC Volume 1 and topics
51-100 investigated the effect of building inference nets with
different percentages of the most frequent terms in the col-
lection. Figure 3a shows the mean-squared error, averaged
over 50 queries. Figure 3b shows the effect on average 11

point precision. The results suggest that it is necessary to
store at least the 20% most frequent terms, and that there
is some advantage to storing all of the terms.

6.2 Proximity Information

The INQUERY system [2], which is based on the inference
network model, extends the inference network formalism to
include proximity operators. One could also use term prox-
imity information for collection ranking, but it would require
that the location of each term in each document in each col-
lection be stored in the CORI index. Although it is possible
to do so, the CORI net for one collection would become
about 30% the size of the original collection.

6.3 Retrieving Fewer Documents

If a user wants to retrieve n documents from a set of C
collections, one could retrieve n documents from each col-
lection, merge the rankings, and then discard everything
below rank n. However, this approach is costly if collections
are distributed widely across networks, because (C — 1) -n
documents are retrieved, sent across the network, and then
discarded without a user seeing them [13]. This cost raises
the question of whether it is possible to safely retrieve fewer
than n documents from collections with low ranks or scores.

We have experimented with a heuristic that uses the col-
lection ranking information to decide how much to retrieve
from each collection. The number of documents R retrieved
from the #’th ranked collection is:

2-(14+C—1q)
i Gl
C-(C+1)
where Me[1.0, ©tL], and M - n is the number of documents
to be retrieved from all collections.
This heuristic is a linear function that allocates a pre-

determined number of document retrievals (M -n) across C
collections. If C =5 and M = 2, the first collection retrieves



Table 5: Different techniques for merging results from different collections (TREC Volumes 1, 2 and 3, topics 51-100).

Interpolated Recall - Precision Averages (50 queries):
Normalized Interleaved Raw Score Weighted
Merge Merge Merge Merge
0% 86.50 77.15 (—10.8) 84.41 (—2.4) 86.54 (+0.0)
10% 59.90 33.81 (—43.6) 54.04 (-9.8) 60.09 (+0.3)
20% 50.96 2451 (—51.9) 45.88 (—10.0) 50.30 (—1.3)
30% 43.32 16.28 (—62.4) 3891 (-10.2) 42.04 (-3.0)
40% 33.78 10.06 (—70.2) 29.35 (—13.1) 35.04 (+3.7)
50% 2467 7.01 (-71.8) 19.71 (-20.1) 23.47 (-4.9)
60% 16.12  4.44 (—725) 12.95 (—19.7) 16.61  (+3.0)
70% 12.19  2.04 (—83.3) 10.86 (—10.9) 11.53 (—5.4)
80% 7.44 041 (-94.5) 555 (-25.4) 6.45 (—13.3)
90% 3.20 033 (-89.7) 253 (—209) 2.76 (—13.8)
100% 0.00  0.00 (Inf)  0.00 (Inf)  0.00 (Inf)
Average precision (non-interpolated) over all rel docs
28.28 12.34 (-56.4) 25.11 (—11.2) 27.91 (—1.3)
Precision:

5 docs: 68.80 60.00 (—12.8) 64.40 (—6.4) 68.00 (—1.2)
10 docs: 67.00 53.40 (-20.3) 61.60 (—8.1) 66.20 (—1.2)
15 docs: 64.67 42.00 (-35.1) 59.47 (—8.0) 6453 (-0.2)
20 docs: 63.40 40.90 (-35.5) 57.60 (—9.1) 62.80 (—0.9)
30 docs: 61.27 39.80 (-35.0) 57.93 (—5.5) 61.33 (+0.1)

100 docs: 53.80 32.76 (—39.1) 49.80 (-7.4) 54.40 (+1.1)
R-Precision (precision after R (= num_rel for a query) docs retrieved):
Exact: 36.99 22.86 (-38.2) 3454 (—6.8) 36.66 (—0.9)
0.67 - n documents, the second retrieves 0.53 - n documents, results.

the third retrieves 0.40 - n, the fourth retrieves 0.27 - nn, and
the fifth retrieves 0.13 - n. More documents are retrieved as
M is increased, allowing the user or system to trade cost for
safety.

In experiments with TREC volume 1 and topics 51-150,
the total number of documents retrieved to produce a final
list of 1000 was reduced from 4,050 to 2000 (a 51% savings),
with only minimal impact on recall and precision. There
was almost no change in which documents were ranked 1 to
500 for each query. The average 11 point precision changed
—0.1% for topics 51-100, and +1.0% for topics 101-150.

We also explored the effect of retrieving different num-
bers of documents by varying M from 1 to 3 by 0.5. For
the TREC volume 1 collections, all values produced nearly
identical results for ranks 1 to 200. At M = 2, they were
identical down to rank 500. M = 3 produced slightly better
results between ranks 500 and 1,000, on both query sets,
than smaller values of M. Similar results were obtained,
with slightly higher values of M (e.g. M = 3 instead of
M = 2), for the full set of 17 TREC collections.

These results are encouraging, but they are based on rel-
atively accurate methods of ranking and selecting collections
for a query. When accurate methods are available, compu-
tation and communication costs can be minimized by re-
trieving fewer documents from each collection. When there
is doubt about the collection ranking, it may be worth the
added cost to retrieve more documents from each collection.

7 Conclusion

As information retrieval systems are applied in networked
environments to widely distributed document collections,
the systems will need to provide collection ranking, collec-
tion selection and results merging capabilities. It is desirable
to provide these capabilities efficiently and transparently, so
that users can, if they choose, maintain the illusion of a
single ‘virtual’ collection returning a single, coherent set of

This paper describes efficient algorithms for providing
these capabilities in systems based on the inference network
model of information retrieval. They enable a system to
automatically and efficiently rank collections for relevance to
a query, select a subset of them, search the subset efficiently,
and then accurately merge the results. The effectiveness
of the algorithms is demonstrated in experiments with the
INQUERY information retrieval system and the TREC set
of document collections.

The experimental results are encouraging because sim-
ple methods were quite effective with collections that varied
widely in size and content. However, they must be viewed
as preliminary, because only 17 collections were involved.
These methods will be equally efficient with hundreds or
thousands of collections, but it is not known whether they
will be equally effective.

Distributed collections present several other problems
that we have not addressed. In our work, all of the col-
lections used the same stemming algorithm, stopword list,
and query processing techniques. When these differ, as they
will in collections on wide-area networks, several problems
become more difficult. It is less obvious how to represent
each collection in the collection retrieval inference network.
It is not clear how to provide information to the user about
how the information need was transformed into a struc-
tured query, because the transformation may be collection-
specific. Finally, it is unclear how to perform relevance feed-
back when the set of relevant documents is scattered across
a set of collections with different representations.

The work described in this paper, although positive and
encouraging, is merely the first step.
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Figure 3: The effect of building CORI nets from only the most frequent terms (TREC Volume 1 collections, topics 51-100).
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