
Searching Distributed CollectionsWith Inference NetworksJames P. Callan Zhihong Lu W. Bruce CroftComputer Science Department, University of MassachusettsAmherst, MA 01003-4610, USAfcallan,zlu,croftg@cs.umass.eduAbstractThe use of information retrieval systems in networked en-vironments raises a new set of issues that have received lit-tle attention. These issues include ranking document col-lections for relevance to a query, selecting the best set ofcollections from a ranked list, and merging the documentrankings that are returned from a set of collections. Thispaper describes methods of addressing each issue in the in-ference network model, discusses their implementation inthe INQUERY system, and presents experimental resultsdemonstrating their e�ectiveness.1 IntroductionRetrospective document retrieval is usually described as thetask of searching a single collection of documents to producea list of documents ranked in order of relevance to a partic-ular query. The need to search multiple collections in dis-tributed environments is becoming increasingly importantas the sizes of individual collections grow and network infor-mation services proliferate. Distributed collections can berelatively homogeneous, as in the case where a large singlecollection is partitioned and distributed over a local networkto improve search e�ciency. They can also be very heteroge-neous in that wide-area network services can make hundredsor even thousands of collections available for searching.Searching a distributed collection presents a number ofunique problems. One approach would be to treat the dis-tributed collections as a single, large, \virtual" collection.Every collection would be searched individually and thenthe results would be combined or merged to produce a sin-gle ranked list. One problem with this approach is howto merge the individual ranked lists. The other problemshave to do with the economic aspects of searching. It willgenerally be too expensive in terms of both computer andcommunication resources and the user's time to search ev-ery collection in a distributed environment. Some systemsmake this clear by making charges for searching dependenton the number of collections searched.When many collections are available in distributed envi-To appear at the 18th Annual International ACM SIGIRConference on Research and Development in InformationRetrieval. Copyright c1995, Association for ComputingMachinery. All Rights Reserved.

ronment, therefore, a decision must be made about whichof them to search. A retrieval system should provide tech-niques that can make this decision automatically, becauseusers may be unable or unwilling to make selections by ex-haustively examining long lists of the available collections.Having selected the collections to search, the retrieval sys-tem must also provide techniques for e�ectively merging theindividual ranked lists of documents that are produced.This paper describes how these issues can be addressedin a retrieval system based on the inference net, a probabilis-tic model of information retrieval. In the next section, wedescribe related work on collection selection and merging ofranked results. In Section 3, we describe how the inferencenetwork can be used to rank collections for relevance to aquery. Section 4 presents a method for accurately mergingthe results from di�erent collections based on the collectionranking. The results in Section 5 show that it is possibleto select subsets of the available collections for searchingwithout a�ecting retrieval e�ectiveness. Section 6 describesseveral e�ciency optimizations for distributed searching. Inthe �nal section, we summarize the results and discuss someunsolved problems.2 Related WorkUsers of commercial retrospective information retrieval sys-tems have always faced the collection selectionproblem. Theuser must either search all collections or choose the subsetto be searched. Experienced users, for example librariansacting as intermediaries, may draw upon their past experi-ence or reference aids to help in deciding which collectionsto search. Many less experienced choose to search all avail-able collections rather than take the time to select a subsetby trial-and-error.1Some service providers manually group their collectionsinto sets with common themes, for example newspaper col-lections or appellate court decisions. Danzig, et al, showedhow to automatically maintain similar groupings in dis-tributed environments [3]. They used broker agents thatmaintained centralized indices for particular subjects by pe-riodically querying remote collections. Both of these ap-proaches simplify collection selection for users whose infor-mation needs can be anticipated to some extent.The EXPERT CONIT retrieval system [7] is an early ex-ample of automating collection selection. EXPERT decidedon a query-by-query basis which collections were most ap-propriate, albeit for a relatively static set of homogeneous1Personal communication from a commercial retrieval service.1



collections. It used rule-based inferencing to match the in-formation need to a knowledge-base describing documentcollections, producing a ranked list of collections.Voorhees, et al, explored ranking collections using thesimilarity of a new query to training queries [13]. Relevancejudgements for the most similar training queries determinewhether, and how much, to retrieve from each collection.This technique may be practical for relatively static collec-tions, but obtaining relevance judgements could be problem-atic for widely distributed and dynamic collections.GLOSS [5] estimates the number of potentially relevantdocuments in collection C for a Boolean AND query Q asjCj � �t�Q dftjCj , where t is a term in Q, dft is the numberof documents in C containing t, and jCj is the number ofdocuments in C. The GLOSS approach is easily applied tolarge numbers of dynamic collections, because GLOSS storesonly term frequency information about each collection. It'se�ectiveness is not known yet, due to limited evaluation andthe lack of support for other forms of query.Mo�at, et al, used a centralized index on blocks of Bdocuments in individual collections [8]. For example, eachblock might be 10 documents concatenated together. A newquery �rst retrieves block identi�ers from the centralizedindex, then searches the highly ranked blocks to retrievedocuments. This approach worked well for retrieving smallnumbers of documents, but caused a signi�cant decrease inprecision and recall when 1,000 documents had to be re-trieved.Once a set of collections is chosen, the retrieval systemmust decide how to combine search results from each collec-tion into a single ranking. This task is simple if the resultsare an unordered set of documents, but it is more di�cultif results are ranked lists of documents. Some have success-fully used document scores from the di�erent collections tocreate a merged ranking [6; 8], but others have had problemswith this approach [4].Voorhees, et al, call this the collection fusion problem,and describe two solutions [13]. One solution is to interleavethe rankings, in a round-robin fashion. A second solution isuneven interleaving, biased by the expected relevance of thecollection to the query. The latter approach was substan-tially more e�ective in experiments with the TREC collec-tion.3 Ranking Collections With Inference NetworksInference networks are a probabilistic approach to infor-mation retrieval [12; 11]. The traditional use of inferencenetworks for document retrieval is a directed acyclic graphin which documents are represented by leaves, and the rootnode represents an information need (Figure 1).A major part of the collection selection problem is rank-ing collections for a given information need. Ranking col-lections can be addressed by an inference network in whichthe leaves (the d nodes in Figure 1) represent documentcollections, and the representation (r) nodes represent theterms that occur in the collection. The probabilities thatow along the arcs can be based upon statistics that areanalogous to tf and idf in normal document retrieval; forexample, document frequency df (the number of documentscontaining the term) and inverse collection frequency icf(the number of collections containing the term). We callthis type of inference network a collection retrieval infer-ence network, or CORI net for short, to distinguish it fromthe more common document retrieval inference networks.

�� ��d1?@@@@R�� ��d2?@@@@R: : : �� ��dj�1����	 @@@@R�� ��dj?DocumentNetwork �� ��r1? �� ��r2? �� ��r3����	 ?HHHHHHHHj: : : �� ��rk?�� ��c1HHHHHHHHHj�� ��c2@@@@@R�� ��c3? : : : �� ��cm����������QueryNetwork �� ��qFigure 1: A simple document retrieval inference network.A CORI net has moderate storage requirements if onlydocument frequency (df) and inverse collection frequency(icf) are stored.2 The CORI net for one 1.2 gigabyte collec-tion (TREC Volume 1) would be about 5 megabytes, assum-ing simple compression algorithms. In this case, the CORInet is about about 0.4% the size of the original collection.One advantage of using the inference network for rank-ing collections is that one system is used for ranking bothdocuments and collections. It is not necessary to design new�le organizations or algorithms. Instead, document retrievalbecomes a four step process:1. Use the query to retrieve a ranked list of collections,2. Select the top group of collections,3. Search the top group of collections, in parallel or se-quentially, and4. Merge the results from the various collections into asingle ranking.Steps 1 and 3 can be performed by a single algorithm oper-ating on di�erent indices.To the retrieval algorithm, a CORI network looks likea document retrieval inference network with very big doc-uments; each `document' is a surrogate for a complete col-lection. Search complexity is comparable to searching smallcollections of abstracts. A CORI network for 3,000 docu-ment collections is comparable to searching the well-knowncollection of CACM abstracts. The `tf ' (df) and `idf ' (icf)values are higher, but that does not a�ect the computationalcomplexity of retrieval. There are also many more invertedlists, but only those that match terms in the query are ac-cessed.The e�ectiveness of this approach to ranking collectionswas evaluated using the INQUERY retrieval system [11;12; 2] and the 3 gigabyte TREC document collection. TheTREC collection is heterogeneous, containing 17 subcollec-tions from di�erent sources and/or periods of time (Table1). The subcollections vary widely in size, in number ofdocuments, and in average document length. Experimentswere conducted with 100 queries developed for TREC top-ics 51-150 during previous TREC and TIPSTER evaluations[1].2The inference network can incorporate proximity information andoperators, but it is impractical to do so for collection ranking.2



Table 1: The TREC document collections used for experi-ments. The TREC volume number is shown in parentheses.Docu{ Mega{Name ments Words bytesAP '88 (2) 79,919 21,425,011 249AP '89 (1) 84,678 22,407,342 267AP '90 (3) 78,321 21,555,502 249DOE (1) 226,087 17,201,000 193Fed. Reg. '88 (2) 19,860 20,068,562 219Fed. Reg. '89 (1) 25,960 23,444,637 272Patent (3) 6,711 19,624,651 254SJM '91 (3) 90,257 36,441,456 301WSJ '87 (1) 46,448 11,562,767 132WSJ '88 (1) 39,904 9,738,438 109WSJ '89 (1) 12,380 3,307,151 38WSJ '90 (2) 21,705 6,500,181 73WSJ '91 (2) 52,652 12,418,568 146WSJ '92 (2) 10,163 2,880,247 35Zi� 1 (1) 75,180 20,374,002 254Zi� 2 (2) 56,920 15,637,443 184Zi� 3 (3) 161,021 44,120,132 362Table 2: The average optimal rank of the TREC Volume 1collections for topics 51-100 and 101-150.WSJ AP WSJ WSJ FR'87 '89 '88 '89 DOE Zi� '8951-100 2.3 2.6 2.9 4.7 4.9 5.3 5.4101-150 2.4 2.0 2.9 4.5 4.6 4.9 6.6The mean-squared error metric was used to compare thee�ectiveness of variations to the basic collection ranking al-gorithms. The mean-squared error of the collection rankingfor a single query is calculated as:1jCj � �i�C(Oi � Ri)2where:Oi = optimal rank for collection i, based on thenumber of relevant documents it contained(the collection with the largest number ofrelevant documents is ranked 1, the collectionwith second largest number of relevantdocuments is ranked 2, and so on),Ri = the rank for collection i determined by theretrieval algorithm, andC = the set of collections being ranked.The mean-squared error metric has the advantage that it iseasy to understand (an optimal result is 0), and it does notrequire labeling a collection `relevant' or `not relevant' fora particular query. The average optimal rank Oi for eachcollection in TREC Volume 1 is shown in Table 2.INQUERY's algorithms for ranking documents havebeen documented extensively [11; 12; 2; 1], so this discussionis con�ned to the changes necessary to rank collections. Thechanges were con�ned initially to replacing tf with df andidf with icf , as discussed above, and with replacing the max-imum term frequency in a document statistic (max tf) withthe maximum document frequency in a collection (max df).Hence, the belief p(rk jci) in collection ci due to observing

term rk is determined by:T = d t+ (1� d t) � log(df + 0:5)log(max df + 1:0) (1)I = log � jCj+0:5cf �log (jCj+ 1:0) (2)p(rk jci) = d b+ (1� d b) � T � I (3)where:df is the number of documents in ci containing rk,max df is the number of documents containing themost frequent term in ci,jCj is the number of collections,cf is the number of collections containing term rk,dt is the minimum term frequency componentwhen term rk occurs in collection ci,db is the minimum belief component when termrk occurs in collection ci.This is a variation of the well-known tf:idf approach to rank-ing documents, with values normalized to remain between 0and 1, and further modi�ed by default term frequency (dt)and default belief (db) values. dt and db default to 0.4.The probabilistic query operators that combine the be-liefs accruing from the query terms remained unchanged[11; 12]. The proximity operators were replaced by strictBoolean AND operators, due to the lack of proximity infor-mation in CORI nets (discussed in Section 6.2).This approach was used to rank TREC volume 1 collec-tions for topics 51-100. The mean-squared error, averagedover 50 queries, was 2.3471. The rankings for about 75% ofthe queries were nearly perfect; the rankings for the other25% were more disorganized, and accounted for most of theerror. No pattern was apparent to explain why some queriesyielded such poor rankings.One possible problem in applying the default formulasfor ranking documents to ranking collections is the use ofthe max df statistic to scale df . Although we have arguedthat ranking collections is analogous to ranking documents,there are di�erences. The reason for ranking collections isnot to �nd collections about a particular subject; it is to�nd collections containing as many documents as possibleabout the subject. Scaling df by max df tends to obscuresmall (and not-so-small) sets of interesting documents inlarge collections.Recent experiments with document retrieval suggest thatit may be better to scale tf by tf+K, for some small K [10].The analogue for this task would be to scale df by df +K,replacing Equation 1 above with Equation 4 below.T = d t+ (1� d t) � dfdf +K (4)When ranking documents, it makes sense to make K a func-tion of document length. However, when ranking collections,it may make more sense to let K be more sensitive to thenumber, and not the percentage, of documents about thesubject. It may also make sense to let K be large, becausethe df values will generally be large.We de�ned K = k � ((1� b) + b � cw=cw), where k and bare constants, cw is the number of words in the collection,and cw is the mean cw of the collections being ranked. Theconstant k controls the magnitude of K. Varying b from 0 to1 increases the sensitivity of K to the size of the collection.This approach was used to rank TREC volume 1 collec-tions for topics 51-100. Experiments were conducted with3
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Figure 2: The e�ect on mean-squared error of varying K (TREC Volume 1 collections, topics 51-100)). In a) b = 0 as k isvaried. In b) k = 200 as b is varied.values of k ranging from 1 to 300 (Figure 2a), and withvalues of b ranging from 0 to 1 (Figure 2b). The best com-bination of values for this set of queries and collections isk = 200; b = 0:75.The mean-squared error, averaged over 50 queries, forthis combination was 1.4586, which is 38% better than themean-squared error obtained when scaling df by max df .The collection rankings improved for 30 queries, somequite dramatically. The rankings for 8 queries deterioratedslightly. The rankings for 12 queries did not change.A mean-squared error of 1.4586 is not perfect, but it isgood. Analysis of the results reveals few serious mistakes.Most of the mistakes were due to mixing up the rankingsof collections containing nearly equal numbers of relevantdocuments. These cases were counted as errors, but theywould not be noticeable to a user. Indeed, although furtherimprovement is possible, it is likely to yield diminishing re-turns.4 Merging ResultsRanking collections is only part of the problem. After aset of collections is searched, the ranked results from eachcollection must be merged into a single ranking.If only the document rankings are available, the resultsfrom each collection can be interleaved [13]. This solutionis not satisfying, for it is unlikely that all of the collectionshave equal numbers or proportions of relevant documents.However, it is di�cult to do anything more sophisticatedwithout more information than just the document rankings.Many IR systems return not only a ranking of docu-ments, but a numeric score that indicates how well eachdocument matches the query. If the scores from di�erentcollections are comparable, one can merge the set of rank-ings based upon the document scores (raw score merge).With some techniques, the scores from di�erent collec-tions may not be directly comparable. For example, al-though the idf weights for many words are relatively consis-tent across di�erent collections, the idfweights of words suchas computer, tort and cholesterol will vary widely amongtechnical, legal and medical collections. This can viewed

as desirable, because the idf represents the term's impor-tance in a particular collection. It can also be viewed asundesirable, because an important query term can behaveerratically, rewarding the random mention of a term in onecollection and penalizing its common use in another [4].The problem of incomparable scores can be overcome insome cases by normalizing statistics such as idf for the setof collections being searched [6]. The intent is to normalizedocument scores to obtain precisely the same results thatwould be obtained if the individual document collectionswere merged into a single uni�ed collection. The di�cultyof normalizing document scores for a set of collections de-pends upon the retrieval algorithms employed. For the in-ference network architecture, normalizing scores requires apreprocessing step prior to query evaluation. In the pre-processing step, the system obtains from each collection thestatistics about how many documents each query term orproximity operator matches. The statistics are merged toobtain a normalized idf. The query and the normalized idfsare su�cient to then retrieve documents with comparablescores from disparate collections.Normalizing document scores can entail signi�cant com-munication and computational costs when collections aredistributed across a wide-area network. An alternative toboth simple interleaving and normalized scores is mergingbased on weighted scores. Weights can be based upon adocument's score and/or the collection ranking information.This approach o�ers the computational simplicity of simpleinterleaving while overcoming some of its disadvantages.The weight w, below, is an example of how one mightweight results from di�erent collections. We have used thecollection's score, instead of its rank, because we believe thatsimilar collections should have similar weights.w = 1 + jCj � s� �s�swhere:jCj = the number of collections searched,s = the collection's score, and�s = the mean of the collection scores.Each document is ranked based upon the product of its score4



Table 3: Di�erent techniques for merging results from di�erent collections (TREC Volume 1, topics 51-100).Interpolated Recall - Precision Averages (50 queries):Normalized Interleaved Raw Score WeightedMerge Merge Merge Merge0% 88.37 78.95 (�10.7) 83.14 (�5.9) 85.92 (�2.8)10% 65.99 38.67 (�41.4) 60.08 (�9.0) 65.15 (�1.3)20% 57.49 29.42 (�48.8) 52.49 (�8.7) 58.21 (+1.3)30% 51.23 24.76 (�51.7) 45.88 (�10.4) 51.84 (+1.2)40% 45.63 20.13 (�55.9) 40.53 (�11.2) 45.92 (+0.6)50% 38.65 14.64 (�62.1) 34.23 (�11.4) 39.50 (+2.2)60% 32.95 10.74 (�67.4) 27.57 (�16.3) 32.83 (�0.4)70% 26.25 6.81 (�74.1) 21.83 (�16.8) 26.28 (+0.1)80% 17.31 4.29 (�75.2) 15.24 (�12.0) 18.22 (+5.3)90% 8.36 1.43 (�82.9) 6.71 (�19.7) 10.64 (+27.3)100% 1.22 0.33 (�73.0) 1.18 (�3.3) 1.25 (+2.5)Average precision (non-interpolated) over all rel docs37.76 17.54 (�53.5) 33.67 (�10.8) 38.18 (+1.1)Precision:5 docs: 69.60 52.80 (�24.1) 63.60 (�8.6) 67.60 (�2.9)10 docs: 65.00 43.20 (�33.5) 59.20 (�8.9) 64.20 (�1.2)15 docs: 62.93 38.00 (�39.6) 59.47 (�5.5) 62.00 (�1.5)20 docs: 62.10 37.30 (�39.9) 56.20 (�9.5) 61.60 (�0.8)30 docs: 59.00 35.40 (�40.0) 53.67 (�9.0) 59.33 (+0.6)100 docs: 46.76 29.82 (�36.2) 43.66 (�6.6) 47.76 (+2.1)R-Precision (precision after R (= num rel for a query) docs retrieved):Exact: 41.96 25.42 (�39.4) 38.67 (�7.8) 42.46 (+1.2)and the weight w for its collection. This algorithm favorsdocuments from collections with high scores, but also en-ables a good document from a poor collection to be rankedhighly.These four approaches to merging results, interleaving,raw scores, normalized scores and weighted scores, were com-pared in a series of experiments using the collections andqueries described in Section 3. Experiments were conductedwith two query sets (51-100 and 101-150) on TREC Vol-ume 1 (7 collections), Volume 2 (6 collections), Volume 3(4 collections), Volumes 1+2 (13 collections), and Volumes1+2+3 (17 collections). Results are shown for Volume 1,and Volumes 1+2+3. The normalized scores approach wastreated as the baseline, because it is equivalent to the \singledatabase" paradigm that has been the norm in informationretrieval. The experimental results are contained in Tables3-5.Both 11 point recall/precision and absolute precision atvarious cuto�s are included, to give a clear picture of behav-ior at both low and high recall. Recall and precision werecalculated by the TREC trec2 eval program using just thetop 1000 documents from the merged ranking. This ap-proach treats all documents above rank 1000 as ranked last,giving a very pessimistic view of high recall behavior.In each experiment, simple interleaving of documentrankings was extremely ine�ective, producing dramaticlosses in average precision. This result is not surprising,because interleaving has the e�ect of boosting the rankingsof random documents from collections with few relevant doc-uments.Merging based on raw document scores from each collec-tion was signi�cantly worse than ranking based on normal-ized document scores, causing losses from 10-20% in aver-age precision. The only di�erence between the normalizedand unnormalized scores was the idf component. This re-sult con�rms previous research suggesting that unnormal-ized idfs can give misleading results [4].Ranking based on document scores and collection-

speci�c weights was about as e�ective as ranking based onnormalized scores. It produced small improvements in mostlevels of recall for queries 51-100 on the TREC 1 collections;small losses in most levels of recall for queries 101-150 onthe TREC 1 collections; and small changes in precision atmost levels of recall for queries 51-100 on the TREC 1+2+3collections. In general, our experience with weighted rank-ings was small changes at low recall, and occasionally erraticbehavior at high recall.We view these results as extremely encouraging. Theysuggest that it is possible to get the accuracy of rankingsbased on normalized scores without the computational ef-fort.5 Collection SelectionIn the experiments described above, all collections weresearched, and their results used to create the �nal documentrankings. However, in distributed environments, one rarelyhas the resources to search every collection. It is more likelythat one searches an index of collections, obtains a rank-ing, and then searches the top few collections for interestingdocuments.There are any number of ways to decide how far downthe collection rankings to go. One could choose the top n,any collection with a score greater than some threshold, orthe top group as de�ned by some clustering method. Weinvestigated the latter approach.A single-pass algorithm [9] was used to cluster the col-lection rankings for each query. Collections were clusteredon the basis of their scores, as determined by the collec-tion ranking algorithm (Section 3). The cluster di�erencethreshold was low (0.0012), creating clusters that tendedto be smaller than necessary. The seven TREC Volume 1collections produced an average of 4.04 clusters for topics51-100 and 4.06 clusters for topics 101-150. It was rare for acollection with a signi�cant number of relevant documentsto be excluded from the top 2 clusters.5



Table 4: Di�erent techniques for merging results from di�erent collections (TREC Volume 1, topics 101-150).Interpolated Recall - Precision Averages (50 queries):Normalized Interleaved Raw Score WeightedMerge Merge Merge Merge0% 84.05 80.36 (�4.4) 82.91 (�1.4) 79.64 (�5.2)10% 61.62 42.65 (�30.8) 57.25 (�7.1) 60.76 (�1.4)20% 54.66 33.35 (�39.0) 49.94 (�8.6) 53.35 (�2.4)30% 49.54 27.72 (�44.0) 45.16 (�8.8) 48.19 (�2.7)40% 44.76 22.75 (�49.2) 38.72 (�13.5) 41.86 (�6.5)50% 38.18 18.26 (�52.2) 32.71 (�14.3) 37.03 (�3.0)60% 32.68 14.57 (�55.4) 27.82 (�14.9) 30.92 (�5.4)70% 26.13 8.54 (�67.3) 22.05 (�15.6) 25.30 (�3.2)80% 19.01 4.62 (�75.7) 16.46 (�13.4) 18.47 (�2.8)90% 10.66 1.66 (�84.4) 9.40 (�11.8) 9.70 (�9.0)100% 1.47 0.35 (�76.2) 1.39 (�5.4) 1.15 (�21.8)Average precision (non-interpolated) over all rel docs36.98 20.48 (�44.6) 33.22 (�10.2) 35.60 (�3.7)Precision:5 docs: 63.20 54.40 (�13.9) 60.80 (�3.8) 62.00 (�1.9)10 docs: 58.80 50.00 (�15.0) 55.80 (�5.1) 58.20 (�1.0)15 docs: 59.13 43.73 (�26.0) 54.00 (�8.7) 56.00 (�5.3)20 docs: 57.30 41.00 (�28.4) 52.30 (�8.7) 55.50 (�3.1)30 docs: 55.60 38.47 (�30.8) 50.27 (�9.6) 53.80 (�3.2)100 docs: 43.92 29.06 (�33.8) 40.04 (�8.8) 43.34 (�1.3)R-Precision (precision after R (= num rel for a query) docs retrieved):Exact: 39.85 26.50 (�33.5) 36.96 (�7.3) 38.47 (�3.5)The e�ect on recall and precision was noticeable, but notsigni�cant at low recall. We summarize the results, ratherthan providing complete recall/precision tables, due to spacelimitations. With topics 51-100, the di�erence between us-ing the two best clusters of collections (an average of 4.04collections) and using all 7 collections was less than �5%at all document cuto�s from 5 to 1,000. The di�erence inexact R-precision was �0.9%. The di�erence in average 11point precision was �2.2%. The e�ect on topics 101-150 wasmore noticeable, with di�erences > 5:0% at and above the200 document cuto�. The di�erence in exact R-precisionwas �5.6%, and the di�erence in average 11 point precisionwas �9.1%, both reecting signi�cant deterioration in highrecall results.It is not surprising that eliminating collections reducesrecall. There will occasionally be errors in the collectionrankings, or a few relevant documents in marginal collec-tions. In our opinion it is more signi�cant, and encouraging,that precision at low recall is relatively una�ected when thenumber of collections searched is reduced by 43%. Few in-teractive users will care about a drop in recall at rank 200.Those that do can choose to search more collections.6 OptimizationIn this section we discuss several decisions that can a�ectthe e�ciency of collection ranking and merging rankings.6.1 Represent a Collection With a Subset of TermsOne could create a smaller collection retrieval inference netby keeping only a subset of the terms that appear in thecollection. An example would be to keep only the mostfrequent. An experiment with TREC Volume 1 and topics51-100 investigated the e�ect of building inference nets withdi�erent percentages of the most frequent terms in the col-lection. Figure 3a shows the mean-squared error, averagedover 50 queries. Figure 3b shows the e�ect on average 11

point precision. The results suggest that it is necessary tostore at least the 20% most frequent terms, and that thereis some advantage to storing all of the terms.6.2 Proximity InformationThe INQUERY system [2], which is based on the inferencenetwork model, extends the inference network formalism toinclude proximity operators. One could also use term prox-imity information for collection ranking, but it would requirethat the location of each term in each document in each col-lection be stored in the CORI index. Although it is possibleto do so, the CORI net for one collection would becomeabout 30% the size of the original collection.6.3 Retrieving Fewer DocumentsIf a user wants to retrieve n documents from a set of Ccollections, one could retrieve n documents from each col-lection, merge the rankings, and then discard everythingbelow rank n. However, this approach is costly if collectionsare distributed widely across networks, because (C � 1) � ndocuments are retrieved, sent across the network, and thendiscarded without a user seeing them [13]. This cost raisesthe question of whether it is possible to safely retrieve fewerthan n documents from collections with low ranks or scores.We have experimented with a heuristic that uses the col-lection ranking information to decide how much to retrievefrom each collection. The number of documents R retrievedfrom the i'th ranked collection is:R(i) = M � n � 1 + C � i�Cj=1j =M � n � 2 � (1 + C � i)C � (C + 1)where M�[1:0; C+12 ], and M � n is the number of documentsto be retrieved from all collections.This heuristic is a linear function that allocates a pre-determined number of document retrievals (M �n) across Ccollections. If C = 5 andM = 2, the �rst collection retrieves6



Table 5: Di�erent techniques for merging results from di�erent collections (TREC Volumes 1, 2 and 3, topics 51-100).Interpolated Recall - Precision Averages (50 queries):Normalized Interleaved Raw Score WeightedMerge Merge Merge Merge0% 86.50 77.15 (�10.8) 84.41 (�2.4) 86.54 (+0.0)10% 59.90 33.81 (�43.6) 54.04 (�9.8) 60.09 (+0.3)20% 50.96 24.51 (�51.9) 45.88 (�10.0) 50.30 (�1.3)30% 43.32 16.28 (�62.4) 38.91 (�10.2) 42.04 (�3.0)40% 33.78 10.06 (�70.2) 29.35 (�13.1) 35.04 (+3.7)50% 24.67 7.01 (�71.6) 19.71 (�20.1) 23.47 (�4.9)60% 16.12 4.44 (�72.5) 12.95 (�19.7) 16.61 (+3.0)70% 12.19 2.04 (�83.3) 10.86 (�10.9) 11.53 (�5.4)80% 7.44 0.41 (�94.5) 5.55 (�25.4) 6.45 (�13.3)90% 3.20 0.33 (�89.7) 2.53 (�20.9) 2.76 (�13.8)100% 0.00 0.00 (Inf) 0.00 (Inf) 0.00 (Inf)Average precision (non-interpolated) over all rel docs28.28 12.34 (�56.4) 25.11 (�11.2) 27.91 (�1.3)Precision:5 docs: 68.80 60.00 (�12.8) 64.40 (�6.4) 68.00 (�1.2)10 docs: 67.00 53.40 (�20.3) 61.60 (�8.1) 66.20 (�1.2)15 docs: 64.67 42.00 (�35.1) 59.47 (�8.0) 64.53 (�0.2)20 docs: 63.40 40.90 (�35.5) 57.60 (�9.1) 62.80 (�0.9)30 docs: 61.27 39.80 (�35.0) 57.93 (�5.5) 61.33 (+0.1)100 docs: 53.80 32.76 (�39.1) 49.80 (�7.4) 54.40 (+1.1)R-Precision (precision after R (= num rel for a query) docs retrieved):Exact: 36.99 22.86 (�38.2) 34.54 (�6.6) 36.66 (�0.9)0:67 � n documents, the second retrieves 0:53 � n documents,the third retrieves 0:40 � n, the fourth retrieves 0:27 � n, andthe �fth retrieves 0:13 � n. More documents are retrieved asM is increased, allowing the user or system to trade cost forsafety.In experiments with TREC volume 1 and topics 51-150,the total number of documents retrieved to produce a �nallist of 1000 was reduced from 4,050 to 2000 (a 51% savings),with only minimal impact on recall and precision. Therewas almost no change in which documents were ranked 1 to500 for each query. The average 11 point precision changed�0.1% for topics 51-100, and +1.0% for topics 101-150.We also explored the e�ect of retrieving di�erent num-bers of documents by varying M from 1 to 3 by 0.5. Forthe TREC volume 1 collections, all values produced nearlyidentical results for ranks 1 to 200. At M = 2, they wereidentical down to rank 500. M = 3 produced slightly betterresults between ranks 500 and 1,000, on both query sets,than smaller values of M . Similar results were obtained,with slightly higher values of M (e.g. M = 3 instead ofM = 2), for the full set of 17 TREC collections.These results are encouraging, but they are based on rel-atively accurate methods of ranking and selecting collectionsfor a query. When accurate methods are available, compu-tation and communication costs can be minimized by re-trieving fewer documents from each collection. When thereis doubt about the collection ranking, it may be worth theadded cost to retrieve more documents from each collection.7 ConclusionAs information retrieval systems are applied in networkedenvironments to widely distributed document collections,the systems will need to provide collection ranking, collec-tion selection and results merging capabilities. It is desirableto provide these capabilities e�ciently and transparently, sothat users can, if they choose, maintain the illusion of asingle `virtual' collection returning a single, coherent set of

results.This paper describes e�cient algorithms for providingthese capabilities in systems based on the inference networkmodel of information retrieval. They enable a system toautomatically and e�ciently rank collections for relevance toa query, select a subset of them, search the subset e�ciently,and then accurately merge the results. The e�ectivenessof the algorithms is demonstrated in experiments with theINQUERY information retrieval system and the TREC setof document collections.The experimental results are encouraging because sim-ple methods were quite e�ective with collections that variedwidely in size and content. However, they must be viewedas preliminary, because only 17 collections were involved.These methods will be equally e�cient with hundreds orthousands of collections, but it is not known whether theywill be equally e�ective.Distributed collections present several other problemsthat we have not addressed. In our work, all of the col-lections used the same stemming algorithm, stopword list,and query processing techniques. When these di�er, as theywill in collections on wide-area networks, several problemsbecome more di�cult. It is less obvious how to representeach collection in the collection retrieval inference network.It is not clear how to provide information to the user abouthow the information need was transformed into a struc-tured query, because the transformation may be collection-speci�c. Finally, it is unclear how to perform relevance feed-back when the set of relevant documents is scattered acrossa set of collections with di�erent representations.The work described in this paper, although positive andencouraging, is merely the �rst step.AcknowledgementsThis research was partially supported by the NSF Center forIntelligent Information Retrieval at the University of Mas-sachusetts, Amherst.7
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