
Evaluating Text Reuse Discovery on the Web

ABSTRACT
Text reuse detection aims to identify duplicates, reformulations or
partial rewrites of a given text. Some previous research has
focused on determining text reuse instances accurately on local
corpora. However, the practical usage of finding text reuse on the
web has remained largely untested. In this work, we 1) introduce a
novel text reuse searching interface for the web, based on a
previously proposed architecture, 2) evaluate its feasibility for
hasty users, and 3) investigate techniques to improve both
effectiveness and efficiency. Our results show that exhaustive
query submission using n-grams can dramatically reduce the
execution time with only small losses in accuracy.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Retrieval Models

General Terms
Algorithms, Performance, Design, Experimentation.

Keywords
Text reuse, information flow, web search.

1. INTRODUCTION
The ease of accessibility to information sources, mainly in the
web environment, has brought several problems. One of these is
that users often encounter large amounts of the same or similar
information being reused, quoted, or even plagiarized. To explore
the sources of these statements, determine if it has been
plagiarized, or just to check when similar things have been said
before, some method of tracking information flow is needed.
Since text reuse spans a large portion of the similarity spectrum
which ranges from topical similarity to exact duplicates [8], text
reuse detection techniques are an essential part of addressing this
issue.

Text reuse may occur by copying a whole statement or a segment
of it, or even by paraphrasing the original passage. Figure 1 shows
a representative instance of text reuse. Rather than just being
topically related to the source, the reused text typically shares
more information with the source. On the other hand, it is not
necessarily an exact copy either. Due to this characteristic of text
reuse, the behavior of typical search engines and much of the
research on plagiarism and duplicate detection [2, 3, 4, 10] are not

sufficiently effective for text reuse detection.

Finding text reuse on the web would be a novel search task for
daily internet users. In this task, the queries are mostly long text
segments (i.e. sentences or paragraphs selected from documents),
which contain more information about the context of the user’s
current interest than a typical web query. In other words, the task
corresponds to a new information seeking behavior where context
from the surrounding document text and the long query can be
used to improve effectiveness.

Although there has been some recent studies about how to detect
text reuse, most of them was conducted on relatively small and
homogenous datasets [5, 6, 7, 9]. The proposed methods are
useful for information analysts who work on particular datasets
that might be created by crawling specific web pages, but they are
impractical for use on the web directly due to the huge size of the
web environment. Approaches to finding text reuse instances on
the web have been recently suggested by Bendersky et al. [1]. To
the best of our knowledge, however, the practical applicability of
a text reuse detection system for the web has never been
investigated.

In this paper, we evaluate the accuracy and time efficiency of the
text reuse architecture proposed by Bendersky et al. [1], to
discover the advantages and drawbacks of such a system, and to
address the problems that arise in the web environment. We show
that it is possible to build an interactive text reuse search interface
that works in just a few seconds, using simple but effective n-
gram based methods instead of the more complex noun chunking
method described in [1]. We also implement a user interface as a
Firefox extension, to facilitate text reuse discovery while
browsing the web.

 The rest of the paper is organized as follows. In the next section,
we explain the architecture of the text reuse detection system for
the web. In Section 3, we describe the experimental setup used for
the evaluations. Subsequently, we discuss the results in Section 4.
Section 5 briefly introduces a potential interface design for the
architecture and discusses how it would be useful from different
perspectives. We conclude in Section 6.

Source

U.S. troops found Saddam Hussein hiding in a hole.

Text Reuse Instance

Soldiers of the 4th Infantry Division found Saddam hiding in a
dirt hole outside the town of Tikrit.

Figure 1. A typical text reuse instance. The second sentence

is not just a paraphrase of the source sentence; it also

contains some additional information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

2. SYSTEM OVERVIEW
Due to the huge size of the web, computationally complex text
reuse detection methods (e.g. sentence retrieval techniques),
cannot be applied to the whole web. Thus, the architecture first
creates an initial document set, and then applies the methods to
this relatively small corpus. Choosing which documents to
retrieve initially, downloading these documents, and finally doing
the sentence-level retrieval are labeled as Step 1, 2, and 3
respectively in Figure 2. We analyze each step thoroughly.

As illustrated in Figure 2, the input query is first passed to a
“Query Formulator” module, which formulates various queries
based on the input and acquires the resulting URLs via a search
API. The purpose of this step is to build a small but rich initial
document dataset in terms of the containment of possible text
reuse instances. Then, the chosen URLs in the first step are
downloaded from the web in Step 2. Finally, these downloaded
documents are split into sentences and sentence retrieval methods
are applied at the last step. The performance of the whole system
initially depends on which documents are retrieved at Step 1, and
finally the sentence retrieval method. Therefore, we investigate
different approaches for both steps.

2.1 Retrieval Methods

2.1.1 Document Level Retrieval
To create the initial document set we applied the iterative

chunking (IC) method proposed in [1], and a simpler method
based on the query n-grams (QN). Since the similarity
measurement for potential text reuse instances based on trigram
overlap was shown to be quite successful [7], we also decided to
investigate n-gram based approach in general. The idea in both
approaches is to generate a number of queries related to the
original one, then to use them for collecting an initial document
set which potentially contains the reuse instances of the query.

Briefly, the IC method works as follows. First, the whole query
with quotation marks is submitted to the search API, then, the
resulting URLs are put in U (the URL set). After that, the query

is split into noun chunks and each noun chunk is assigned a
weight using the number of results the search API returns for that
individual chunk. Then these noun chunks are sorted in
descending order based on their weights. Removing the last chunk
in the list, the remaining chunks are submitted altogether as a
query in each iteration. This operation is repeated until there are at
least two noun chunks remaining. The resulting URL’s after each
query submission are also put in U. If the same URL is returned

multiple times, its score is incremented by one on each
occurrence. Figure 3 illustrates this process.

The QN method also uses the same idea but with slight
differences. When the whole query with quotation marks is

submitted to the search API, the resulting URLs are put in U (the

URL set) with a score equal to the query length. This high score
assignment for the exact matches guarantees those URLs to be
ranked higher than non-exact matching URLs. Subsequently, each
n-gram segment of the query with quotation marks is submitted to
the API. The resulting URLs are also put in U. The scores of the

URLs are updated in the same way as in IC approach.

Finally, we rank the URLs by their scores to produce document
level retrieval results.

2.1.2 Sentence Level Retrieval
For sentence-level retrieval, we used a set theoretic method called
word overlap (WO) and the mixture model (MX) method as
described in [1]. We chose these two methods because having
competitive performance [Metzler], WO is quite intuitive, and
MX runs faster, which was also shown to have better performance
compared to similar complex methods [1].

Given a query q and a candidate sentence s, the WO based
similarity is calculated as follows:

(1)

where |q∩s| is the number of words that appear both in q and s.
Since this method does not depend on the word ordering, it has
the flexibility of capturing unordered text units that exact
matching cannot capture.

MX method uses the well-established language modeling
approach with smoothing. Basically, it calculates the similarity of
a query q to a sentence s based on the probability that q is
generated by s. This probability is given in Equation 2.

(2)

It also incorporates the probability of q being generated by the
document containing s, namely doc(s), and a smoothing factor
using the collection statistics C. Altogether, the similarity of a
candidate sentence to the query is calculated as follows:

(3)

Figure 2. Schematic diagram of the text reuse architecture for

the web. Document retrieval, document downloading, and

sentence retrieval steps are labeled as Step 1, 2, and 3

respectively.

U <- “U.S. troops found Saddam Hussein hiding in a hole.”

Chunks <- “U.S. troops”, “Saddam Hussein”, “a hole”
Weights <- 22,000,000 , 37,500,000 , 69,600,000
U <- “a hole” + “Saddam Hussein” + “U.S. troops”

U <- “a hole” + “Saddam Hussein”

Figure 3. The steps of creating the initial document set using

the IC method. In each iteration the lowest weighted noun

chunk is removed until just two chunks remain.

Table 1. Execution times (averaged over 25 queries) and

NDCG@10 scores for the document-level retrieval methods.

(*) indicates statistical significant difference (two-tailed t-

test, p<0.05) between the marked method and Yahoo!

(Unquoted) method which is used as the baseline.

Retrieval Method Execution time (sec) NDCG@10
Yahoo! (Unquoted) <0.5 0.584
Yahoo! (Quoted) <0.5 0.623
Iterative Chunking (IC) 7.62 0.466
Query 2-grams (Q2) 3.31 0.649
Query 4-grams (Q4) 3.26 0.729*
Query 6-grams (Q6) 2.48 0.728*
Query 8-grams (Q8) 1.84 0.705*

Table 2. Running times and NDCG@10 values for the different

configurations of text reuse architecture. The configuration

format is as follows: Doc-level Ret. Method + (# of documents

downloaded at Step 2) + Sent-level Ret. Method. (*) is used as

in Table 1.

Configuration
Step1

(sec)

Step2

(sec)

Step3

(sec)

Total

(sec)

NDCG

@10

IC+(~216)+WO 7.62 42.38 28.79 54.22 0.696*
IC+(~216)+MX 7.62 42.38 9.65 59.65 0.693*
Q4+(50)+MX 3.26 17.08 2.67 23.01 0.717*
Q4+(100)+MX 3.26 24.23 3.05 30.54 0.725*
Q4+(500)+MX 3.26 64.69 14.24 82.19 0.742*
Q4+(~842)+MX 3.26 111.04 18.27 132.57 0.754*

where λ1+λ2+λ3 = 1. The involvement of the document helps more
contextual data to be taken into account in the similarity score
calculation. Finally, the collection statistics is used to avoid zero
probabilities.

Once we have the similarity scores of each sentence in the
document collection, we rank the sentences and present the
highest ranking ones as potential text reuse instances.

3. EXPERIMENTAL SETUP
In our experiments, we used 25 queries consisting of sentences
from news articles, definitions, and quotations. In order to
perform the web search task, we used a publicly available search
API, BOSS1, which supports unlimited query submission and
returns top 50 results. In the sentence retrieval step, we used
Indri2 to build the document index and to run the queries.

We adopted the three similarity classes used in [1] to judge the
accuracy of the results. These categories are labeled as C3 for
near-duplicate sentences, C2 for reformulations or partial rewrites
of the query, and C1 for topically similar results. Based on these
categories, we measured the NDCG@10 (normalized discounted
cumulative gain at rank 10) scores as described in [1], which is a
commonly used performance metric in web retrieval. All these
evaluations are done manually.

We ran all the experiments on a computer running Windows 7
Ultimate with an Intel Core i7-920 CPU @ 3.7 GHz, and 6GB of
DDR3 RAM @ 555MHz. The implementation was done in
Python using multi-threaded programming wherever convenient.

4. RESULTS AND DISCUSSION
Initially, we submitted each query to Yahoo! both in quoted and
unquoted form to force exact matches and observe the default
behavior. The scores of its results are used for comparison
purposes. Table 1 lists the NDCG@10 scores and the execution
times for each document-level retrieval method.

As shown in Table 1, using an n-gram (n=4, 6, and 8) approach
for document-level retrieval performs significantly better than the
unquoted Yahoo! method. It is worth mentioning that the IC
approach performed slightly better than Yahoo! without the
quotes in [1], but our results are different. This is probably due to
the changes in the Yahoo! search engine and to the use of a
different query set for the evaluations.

For the sentence-level experiments we used the datasets produced
by the proposed IC method [1], and the best performing Q4
method. Table 2 shows that both WO and MX approaches
perform equally well in terms of accuracy when the IC dataset is
used. However, MX runs quite faster (~10sec versus ~29sec). The
slowness of WO did not affect the total running time because the
WO process was performed in parallel with Step 2. However,
since it requires more computational power, we used the MX
method for our further experiments.

Although applying the MX approach on the Q4 dataset slightly
improved its effectiveness (see Q4+(~842)+MX in Table 2), the
total execution time dramatically increased. As a potential
solution, we limited the number of URLs to be downloaded at

1 http://developer.yahoo.com/search/boss/
2 http://www.lemurproject.org/indri/

Step 2 using different cut-off levels (e.g., use top 50 documents
for Step 2). Table 2 shows that besides the huge time gain by this
limitation, the accuracy loss is insignificant. On the other hand,
Q4 itself, at the document-level, already has a better accuracy
compared to the low cut-off levels and IC-prefixed configurations.

Our observations and experimental results stress that the main
challenge in text reuse discovery on the web is how to identify the
websites containing the reused texts. Once a good initial set of
documents are obtained, using different sentence retrieval
techniques do not make much difference in the overall
effectiveness of the system.

There is a trade-off between the accuracy of results we want to
obtain and how fast we want the system to work. Depending on
the requirements, even document-level retrieval using n-grams
might satisfy the users. Thus, building an interactive text reuse
detection system for the web seems to be feasible.

In terms of effectiveness, according to our analysis of search
results, the n-gram based approach boosts the performance
particularly if the reuse is a form of partial rewrite. Raw Yahoo!
search fails due to the length and wordiness of the queries. Also,
Yahoo! with quotes is very vulnerable to even slight changes in
sentences. Figure 4 exemplifies this issue.

Source: Nicolas Sarkozy has been inaugurated President of

France, and in his first official speech as head of state, he called

for tolerance and a return to the values of work, effort and

respect.

Text Reuse: French President Nicolas Sarkozy in his

inauguration speech Wednesday said he wanted to unite France, a

nation that needed to fight against its fear of the future and

'rehabilitate the values of work, effort, merit and respect.'

Figure 4. A reuse instance that Yahoo! fails to capture.

Figure 5. Reuse results presented on a timeline. Each bar represents a webpage, lastly modified in the corresponding time slot.

Figure 6. Ranked List presentation. This style is more helpful for finding more accurate reuse instances.

5. USER INTERFACE FOR TEXT REUSE

SEARCH
The user interface we designed as an extension to Firefox
enables the users to highlight any text segment on the browser
screen to be used as a query and to search for its reuse instances
by clicking the “Search” button. The results are presented in
either timeline format that assists the user for finding the
potential origin of the query, or in ranked list format which sorts
the results based on their reuse likelihood scores.

As Figure 5 illustrates, when the user points to a bar with the
mouse on the timeline, the title and the matching sentence in the
corresponding webpage is printed right above the timeline. It
helps the user to skim through the results faster. Providing the
same set of information, the ranked list style facilitates finding
more likely reuse instances, as shown in Figure 6. In both styles,
clicking on a result makes the browser open that corresponding
webpage. Briefly, this new interface helps the users to
accomplish a new search task while browsing the web.

6. CONCLUSION AND FUTURE WORK
Our work focused on a new information seeking behavior on the
web which incorporates more contextual information to the
queries. We investigated the practicality of a text reuse
architecture for the web, showing that a fast and potentially
useful text reuse search engine can be built with just a slight loss
of accuracy. Lastly, we created a Firefox extension3 which
allows the user to find the text reuse instances of any highlighted

3 ftp://133t.gotdns.com/incoming/TxtReuse-bundle.xpi

text unit on the web. Our study is novel in that for the first time
we bring the concerns of the development of a practical text
reuse engine forward. In the future, we are planning to explore
more document-level and sentence-level retrieval techniques to
improve the performance of the given architecture.

7. REFERENCES
[1] M. Bendersky and W. B. Croft. Finding text reuse on the web. In

Proc. of WSDM, 262-271, 2009.

[2] Y. Bernstein and J. Zobel. A Scalable System for Identifying Co-
derivative Documents. In Proc.of SPIRE, 55-67, 2004.

[3] A. Broader. Identifying and Filtering Near-Duplicate Documents.
In Proc. of CPM, 1-10, 2000.

[4] M. S. Charikar. Similarity estimation techniques from rounding
algorithms. In Proc. of STOC, 380-388, 2002.

[5] P. D. Clough, R. Gaizauskas, S. L. Piao, and Y. Wilks. METER:
Measuring text reuse. In Proc. of the 40th Annual Meeting for the

ACL, 152-159, 2002.

[6] O. A. Hamid, B. Behzadi, S. Christoph, and M. R. Henzinger.
Detecting the origin of text segments efficiently. In Proc. of

WWW, 61-70, 2009.

[7] C. Lyon, J. Malcolm, and B. Dickerson. Detecting short passages
of similar text in large document collections. In Proc. of EMNLP,
118-125, 2001.

[8] D.Metzler, Y. Bernstein, W. B. Croft, A. Moffat, and J. Zobel.
Similarity measures for tracking information flow. In Proc. of

CIKM, 517-524, 2005.

[9] J. Seo and W. B. Croft. Local text reuse detection. In Proc. of

SIGIR, 571-578, 2008.

[10] N. Shivakumar and H. Garcia-Molina. SCAM: Copy detection
mechanisms for digital documents. In Proc. of Digital Libraries,
1995.

