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ABSTRACT

When search engine users have trouble finding information,
they may become frustrated, possibly resulting in a bad ex-
perience (even if they are ultimately successful). In a user
study in which participants were given difficult information
seeking tasks, half of all queries submitted resulted in some
degree of self-reported frustration. A third of all successful
tasks involved at least one instance of frustration. By mod-
eling searcher frustration, search engines can predict the cur-
rent state of user frustration and decide when to intervene
with alternative search strategies to prevent them from be-
coming more frustrated, giving up, or switching to another
search engine. We present several models to predict frustra-
tion using features extracted from query logs and physical
sensors. We are able to predict frustration with a mean av-
erage precision of 66% from the physical sensors, and 87%
from the query log features.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search pro-
cess

General Terms

Experimentation, Measurement

Keywords

user modeling, searcher frustration, query logs, emotional
sensors

1. INTRODUCTION
In this work, we investigate searcher frustration. We con-

sider a user frustrated in the context of information retrieval
(IR) when their search process is impeded. A frustration
model capable of predicting how frustrated searchers are
throughout their search is useful retrospectively as an effec-
tiveness measure. More importantly, it allows for real-time
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system intervention to help frustrated searchers, hopefully
preventing users from leaving for another search engine or
abandoning the search altogether.

This work investigates what aspects of users’ interactions
with the search engine during a task can be used to pre-
dict frustration. Depending on the level of frustration, we
may wish to change the underlying retrieval algorithm or
the user interface. For example, one source of difficulty in
retrieval is a user’s inability to sift through the results pre-
sented for a query [12, 16]. One way that a system could
adapt to address this kind of frustration is to show the user
a conceptual breakdown of the results: rather than listing
all results, group them based on the key concepts that best
represent them [12]. Using a well worn example, if a user
enters ‘java’, they can see the results based on ‘islands’, ‘pro-
gramming languages’, ‘coffee’, etc. Of course, most search
engines already strive to diversify result sets, so documents
relating to all of these different facets of ‘java’ are present,
but they might not be clear to some users, causing them to
become frustrated.

An example from the IR literature of a system that adapts
based on a user model is work by White et al. [14]. They
used implicit relevance feedback to detect changes in users’
information needs and alter the retrieval strategy based on
the degree of change. The focus of our work is to detect
frustrated behavior, and adapt the system based on the type
of frustration, regardless of the information need itself.

The goals for our line of research are as follows: first,
determine how to detect a user’s level of frustration; sec-
ond, determine what the key causes or types of frustration
are; and third, determine the kinds of system interventions
that can reduce different types of frustration. This work ex-
plores the question of whether frustration can be accurately
predicted and what features derived from query logs and
physical sensors are the most useful in doing so.

Our contributions include (1) the first user study of frus-
tration in web search (2) a publicly available data set of the
data collected, and (3) a comparison of on-line models de-
rived from sensor and query log data to predict frustration.

The remainder of this paper is organized as follows. In
Section 2 we discuss related work from the IR, intelligent
tutoring systems (ITS), and information science (IS) litera-
ture. We then describe the task and evaluation in Section 3,
followed by a description of the user study we conducted is
listed in Section 4. In Section 5 we describe the models used
followed in Section 6 by a description and analysis of the
experiments. We end with a summary and future work in
Section 7.



2. RELATED WORK
In this section, we first describe frustration in the context

of IR. We then detail four areas of related work: searcher
satisfaction modeling, work carried out in the field of ITS
where frustration has been modeled, and various work per-
taining to user modeling in IR, such as predicting when users
will switch to another search engine. These works helped to
shape the user study we conducted and the models used to
predict searcher frustration.

2.1 Frustration in Information Retrieval
We define frustration in the context of IR as the imped-

iment of search progress. Xie and Cool [16] explored help-
seeking or problematic situations that arise in searching dig-
ital libraries. They identified fifteen types of help-seeking
situations that their 120 novice participants encountered.
The authors’ use of ‘help-seeking situations’ aligns well with
our definition of frustration, since the issues encountered by
the subjects impeded their search progress. The authors
created a model of the factors that contribute to these help-
seeking situations from the user, task, system, and interac-
tion aspects. The qualitative nature of the study is useful
in designing general help systems for digital library systems.
However, there was no attempt to model frustration using
logged interaction data, which is the goal of our work.

In a study examining how children search the Internet,
Druin et al. [7] found that all of the twelve participants ex-
perienced frustration while searching. The authors point
out that children make up one of the largest groups of Inter-
net users, making frustration a major concern. In a similar
study, Bilal and Kirby [2] compared the searching behav-
ior of graduate students and children on Yahooligans! They
found that over 50% of graduate students and 43% of chil-
dren were frustrated and confused during their searches. In
addition, they found that while graduate students quickly
recovered from “breakdowns” (where users were unable to
find results for a keyword search), children did not.

2.2 Satisfaction in Information Retrieval
While frustration prediction has not been directly stud-

ied in the field of IR, searcher satisfaction has. Satisfaction
in search can have different meanings [1, 8, 9]. We define
searcher satisfaction as the fulfillment of a user’s information
need. While satisfaction and frustration are closely related,
they are distinct. As a consequence, searchers can ultimately
satisfy their information need, but still have been quite frus-
trated in the process [3].

In previous work, satisfaction has been examined at the
task or session level1 [1, 8, 9, 10]. These satisfaction models
only cover user satisfaction after a task has been completed,
not while a task is in progress. As such, satisfaction models
are useful for retrospective analysis and improvement, but
not as a real-time predictor. In contrast, a frustration model
that is defined throughout a search, these real-time solutions
are available.

In web search study, Fox et al. [8] found there exists an
association between query log features and searcher satisfac-
tion, with the most predictive features being click-through,
the time spent on the search result page, and the manner
in which a user ended a search. They also analyzed brows-

1We will consider task and session interchangeable in this
research.

ing patterns and found some more indicative of satisfaction
than others, such as entering a query, clicking on one result,
and then ending the task. Clicking four or more results was
more indicative of dissatisfaction.

Huffman and Hochster [10] found a relatively strong cor-
relation with session satisfaction using a linear model en-
compassing the relevance of the first three results returned
for the first query in a search task, whether the information
need was navigational, and the number of events in the ses-
sion. In a similar study of search task success, Hassan et al.
[9] used a Markov model of search action sequences to pre-
dict success at the end of a task. The model outperformed
a method using the DCG of the first query’s result set, sug-
gesting that general relevance is not sufficient to model sat-
isfaction, but a model of the interactions derivable from a
query log is better.

2.3 Frustration in Tutoring Systems
While we have not found any discussion of predicting frus-

tration in the IR literature, we did find studies that model
frustration in the ITS literature. Cooper et al. [4] describe a
study in which students using an intelligent tutoring system
were outfitted with four sensors: a mental state camera that
focused on the student’s face, a skin conductance bracelet,
a pressure sensitive mouse, and a chair seat capable of de-
tecting posture.

Cooper et al. found that across the three experiments
they conducted, the mental state camera was the best stand-
alone sensor to use in conjunction with the tutoring inter-
action logs for determining frustration. However, using fea-
tures from all sensors and the interaction logs performed
best. They used step-wise regression to develop a model for
describing each emotion. In another study using the same
sensors, but different features, Kapoor, Burleson, and Picard
[11] created a model that was capable of classifying when the
user of an ITS was going to click an I’m frustrated! button
with 79% accuracy and a chance accuracy of 58%.

2.4 User Modeling in Information Retrieval
In this section, we summarize several models used in IR

prediction tasks that rely, at least in part, on query log
data [6, 9, 10, 15]. We are specifically interested in the types
of model used (e.g., linear regression) and the key features.

Huffman and Hochster [10] used a regression model using
the relevance of the top three results returned for the first
query, the type of information need, and the number of ac-
tions in the session to predict session satisfaction. Hassan
et al. [9] used a Markov model to predict task success and
found that sequences of actions, as well as the time between
the actions, were good predictors.

Downey et al. [6] created a Bayesian dependency network
model using sequences of browsing actions parameterized by
a long list of user, session, query, result click, non-search ac-
tion, and temporal features to predict the next action in a
search sequence. The model predicts the next user action
given the previous n actions. They found that using an ac-
tion history with more than just the immediately preceding
action was not helpful, and in fact hurt performance.

White and Dumais [15] explored search engine switching.
Their goal was “not to optimize the model but rather to de-
termine the predictive value of the query/session/user fea-
ture classes for the switch prediction challenge.” They used
a logistic regression model that encompassed query, session,



and user level features. They found that using all three fea-
ture classes outperformed all other combination of feature
classes and did much better than the baseline for most re-
call levels.

3. TASK AND EVALUATION
In this section, we outline the details of the frustration

modeling task and describe how we handle evaluation of the
task.

3.1 Task
Our goal is to predict whether a user is frustrated at the

end of each query interaction during a session. We define a
query interaction as all interactions between a user and the
the browser pertaining to a specific query up until either
another query is entered or the session ends. We will refer
to these as searches. The session consists of one or more
searches directed at fulfilling a specific information need or
task. We will refer to these as tasks. At the end of a search,
we ask, “Is the user frustrated at this point of the task?” To
make the prediction, we can derive features from the search
just completed or from all the searches conducted in the
task so far. We refer to these feature sets as search and task
features, respectively. In addition, features can be derived
from a user’s other tasks, which we call user features.

In this paper, we consider frustration prediction as a bi-
nary task. However, multi-class prediction may also be use-
ful, using either regression or a multi-class machine learning
method. We also focus on general frustration, but predict-
ing types of frustration may also be useful, e.g., predicting
the fifteen types of frustration outlined by Xie and Cool [16].

3.2 Evaluation
In this section, we describe the metrics that we use to eval-

uate frustration models. Our ultimate goal is to use frustra-
tion models to decide when to intervene with the user. Since
many interaction methods with which we would like to in-
tervene are not typically used because of their undesirable,
frustration-causing attributes (i.e., interaction and latency),
we are interested in minimizing our false-positives (non-
frustrated searchers that our models say are frustrated),
potentially at the cost of recall. For that reason, our pre-
dominate evaluation metric is a macro-average (across users)
F-score with β = 0.5, which gives increased weight to preci-
sion over recall. We also use 11-point interpolated average
precision to compare models across users, regardless of score
threshold. This metric tells us how well, on average, a model
can rank instances of frustration by user.

Comparing across users rather than with a micro ap-
proach avoids one frustrated searcher in the test data skew-
ing the results. Un-weighted macro-averaging treats all users
equally. A desirable model is one that performs well across
all users, not just on one specific user. In Section 6 we re-
port macro accuracy, precision, Fβ=0.5, and mean average
precision (MAP). To be clear, MAP is uninterpolated, in
contrast to 11-point interpolated average precision.

We use an approximation of Fisher’s randomization test to
obtain a double sided p-value for significance. Using 100,000
trials for every model comparison, the error at α = 0.05 is
±0.001 (2% error) [13].

4. USER STUDY

1. What is the average temperature in [Dallas, SD/Albany, GA-
/Springfield, IL] for winter? Summer?

2. Name three bridges that collapsed in the USA since 2007.
3. In what year did the USA experience its worst drought? What

was the average precipitation in the country that year?
4. How many pixels must be dead on a MacBook before Apple will

replace the laptop? Assume the laptop is still under warranty.
5. Is the band [Snow Patrol/Greenday/State Radio/Goo Goo

Dolls/Counting Crows] coming to Amherst, MA within the
next year? If not, when and where will they be playing closest?

7. What was the best selling television (brand & model) of 2008?
8. Find the hours of the PetsMart nearest [Wichita,

KS/Thorndale, TX/Nitro, WV].
9. How much did the Dow Jones Industrial Average in-

crease/decrease at the end of yesterday?
10. Find three coffee shops with WI-FI in [Staunton, VA/Canton,

OH/Metairie, LA].
11. Where is the nearest Chipotle restaurant with respect to

[Manchester, MD/Brownsville, Oregon/Morey, CO]?
12. What’s the helpline phone number for Verizon Wireless in MA?
13. Name four places to get a car inspection for a normal passenger

car in [Hanover, PA/Collinwood, TN/Salem, NC].

Table 1: The information seeking tasks given to
users in the user study. Variations are included in
brackets.

In October 2009, we conducted a user study with thirty
participants from the University of Massachusetts Amherst.
The mean age of participants was 26. Most participants
were computer science or engineering graduates, others were
from English, kinesiology, physics, chemical engineering, and
operation management. Two participants were undergrad-
uates. All but three users reported a 5 (the highest) on a
five-point search experience scale; two reported a 3, and one
a 4. Seven participants were female and twenty-three were
male.

Each participant was asked to complete seven2 tasks from
a pool of twelve (several with multiple versions) and to spend
no more than seven minutes on each, though this was not
strictly enforced. The order of the tasks was determined
by four 12 × 12 latin squares, which removed order effects
from the study. Users were given tasks one at a time, so
they were unaware of the tasks later in the order. The tasks
were designed to be difficult to solve with a search engine
since the answer was not easily found on a single page. The
complete list of tasks is shown in Table 1.

The study relied on a modified version of the Lemur Query
Log Toolbar3 plugin for Firefox.4 At the beginning of a task,
participants had to click on a ‘Start Task’ button. This
would prompt them with the task and a brief questionnaire
about how well they understood the task and the degree to
which they felt they knew the answer. They were asked to
use any of four search engines: Bing, Google, Yahoo!, or
Ask.com and were allowed to switch at any time. Links to
these appeared on the toolbar and their order was random-
ized at the start of each task. Users were allowed to use tabs
within Firefox.

For every query entered, users were prompted to describe
their expectations for the query. Each time they navigated
away from a non-search page, they were asked the degree
(on a five-point scale) to which the page satisfied the task,

2Two participants completed eight tasks, but it took longer
than expected, so seven tasks were used from then on.
3http://www.lemurproject.org/querylogtoolbar/
4http://www.mozilla.com/en-US/firefox/firefox.html



Query Frustration None Extreme
Feedback value: 1 2 3 4 5

Frequency: 235 128 68 25 7
Percentage: 51% 28% 15% 5% 1%

Table 2: Distribution of user-reported frustration
for searches.

Task Success Bad Fair&Good Excellent Perfect
Feedback value: 1 2&3 4 5

Frequency: 14 66 48 83
Percentage: 7% 31% 23% 39%

Table 3: Distribution of user-reported task success.
An error in the logging software caused the ‘bad’
and ‘fair’ levels to be conflated.

with an option to evaluate later. At the end of a search (de-
termined by the user entering a new query or clicking ‘End
Task’), users were asked what the search actually provided
relative to their expectations, how well the search satisfied
their task (on a five point scale), how frustrated they were
with the task so far (on a five point scale), and, if they indi-
cated at least slight frustration (2–5 on the five-point scale),
we asked them to describe their frustration.

When users finished the task by clicking ‘End Task’, they
were asked to evaluate, on a five point scale, how successful
the session was, what their most useful query was, how they
would suggest a search engine be changed to better address
the task, and what other resources they would have sought
to respond to the task.

A total of 211 tasks were completed (one participant com-
pleted one fewer task because of computer problems), feed-
back was provided for 463 queries, and 711 pages were vis-
ited. On the frustration feedback scale, 1 means not frus-

trated at all and 5 is extremely frustrated. In Table 2 we
see that users reported frustration for around half of their
queries. In a preliminary analysis of the reasons partici-
pants gave for being frustrated, the most common sources
of frustration were: (1) off-topic results, (2) more effort
than expected, (3) results that were too general, (4) un-
corroborated answers, and (5) seemingly non-existent an-
swers.

4.1 Success and Frustration
We find that users become frustrated even when they suc-

ceed at their information seeking task. Table 3 shows the
breakdown of user-reported task success. The majority of
users reported their task to be satisfied at the ‘excellent’ or
‘perfect’ levels. Table 4 shows that while not finding the in-
formation can be frustrating, even when the information is
found, users can get frustrated. Users were successful in 62%
of all tasks, but experience some degree of frustration in over
a third of those successful tasks. This evidence supports the
exploration of frustration modeling and differentiates it from
task success or satisfaction prediction.

4.2 Individual Variation
Since we measure self-reported frustration, the results

may depend on the individual’s temperament as well as in-
trospection. In Figure 1 we see that individuals from the
test set do indeed vary in their self-reported frustration.
The training set shows a similar trend. One phlegmatic

Frustration No Frustration Total
Success 46 85 131
Failure 72 8 80

Total 118 93 211

Table 4: The number of tasks for which users were
highly successful (levels 4–5) or not versus whether
or not the task had any searchers for which the user
was at least somewhat frustration.

individual did not report any frustration for any task. In
our experimental section we will conduct leave-one-user-out
cross-validation to concentrate on the aspects of frustration
that generalize across users.

5. MODELING SEARCHER FRUSTRATION
In this section, we describe the models we use to predict

frustration. We consider a number of features that have been
used in previous studies, both in the IR and ITS fields. The
first set of features include those derived from a client-side
query log, while the second set includes those from three
physical sensors.

5.1 Query Log Features
The query log used in this study is client-side. Interac-

tions between the user and the Web were recorded by means
of a Firefox plugin, adapted from the Lemur Query Log
Toolbar. The toolbar captures data including page focuses,
click events, navigation events such as the back and for-
ward buttons, copy and paste actions, page scrolling, and
mouse movements, among others. Every event includes a
timestamp.

Given the section of the log that corresponds to a par-
ticular task, we can derive search and task features (Sec-
tion 3.1). The search features include search duration, pages
visited, length of query, and max page scroll, and others.
The task features include a summarization of the searches
for the current task seen up through the end of the most re-
cent search. They include aggregates of the search features,
such as task duration, queries entered, average search du-
ration, total pages visited, average pages visited per search,
etc. Due to space constraints, we have not included a full
listing of the forty-seven features. However, they are very
similar to features used in previous query log analyses [8, 15].

5.2 Sensor Features
We used three physical sensors in our study: a mental

state camera, a pressure sensitive mouse, and a pressure
sensitive chair. These are three of the four sensors used
by Cooper et al. [4]; we use the same features. The cam-
era software provides confidence values for six mental states:
agreeing, disagreeing, unsure, interested, thinking, and con-
fident. The mouse consists of six pressure sensors—two on
top and two on either side. Following Cooper et al. [4], we
calculate the following feature with the values:

mouse =

P6
i=1 MSi

1023
, (1)

where MS represents the six mouse sensors and the denomi-
nator is the maximum pressure reading provided by any one
sensor. This feature has a range from 0 to 6. Finally, the
chair has three pressure sensors on the back and three on the



seat. We derive three aggregate features: net seat change,
net back change, and leaning forward [4]:

netSeatChange(t) =
˛

˛

P3
i=1 SSi[t − 1] − SSi[t]

˛

˛ , (2)

netBackChange(t) =
˛

˛

P3
i=1 BSi[t − 1] − BSi[t]

˛

˛ , (3)

sitForward(t) =

8

>

<

>

:

0 if
W3

i=1 BSi > 200,

1 if
V3

i=1 200 ≥ BSi > −1,

NA otherwise,

(4)

where SS corresponds to the three seat sensors, BS the three
back sensors, and t is the time step at which the feature is
being computed. These were found to be useful features by
both Cooper et al. [4] and D’Mello et al. [5].

To derive features, we find the minimum, maximum,
mean, and standard deviation for each reading over some
time frame. Previous studies used window sizes of 150 sec-
onds preceding the aspect being predicted [4, 11]. In our
setting, we used three appropriate time frames: aggregating
the features from the beginning of the task, from the be-
ginning of the search, and thirty seconds preceding the end
of the search where we are predicting frustration. The first
two are equivalent to the query log task and search features,
respectively. In addition, we decided to use two versions of
the each window: one that ignored any segments of time
where a user was responding to a feedback prompt and a
version that used those time segments. See Section 4 for
details about the feedback prompts.

In total, this yields (6 camera readings + 1 mouse read-
ing + 3 chair readings) × {min | max | mean | stddev} ×
{task | search | 30-seconds} × {prompts | no-prompts} =
240 features.

5.3 Models
We consider two baselines for this study: (1) always pre-

dicting users are frustrated and (2) predicting they are frus-
trated only when they have abandoned their query (i.e., they
did not click on anything). We believe the latter is a rea-
sonable approximation of frustration.

We construct six additional models using logistic regres-
sion. All features were normalized per user prior to training.
One model uses all of the features from both the sensors and
the query logs and is referred to as QL+Sensors. Three of
the models are based on sequential forward feature selection
on just the query log features, just the sensor features, and
all the features. We name these SFS-QL, SFS-Sensors, and
SFS-QL+Sensors, respectively. The sequential forward se-
lection process starts with an empty feature set, considering
all of the features under consideration as ‘unused.’ On each
iteration of the algorithm, the unused feature that performs
best in combination with the current pool of ‘used’ features
is moved from the ‘unused’ to the ‘used’ pool. The algo-
rithm stops when no improvement in performance is made.
The ‘used’ features are the final selection.

We optimized our feature selection for Fβ=0.5 using macro
precision and recall at any logistic regression score thresh-
old. For example, if a subset of features achieved a macro
F-score of 0.6 with a score threshold of 0.5 and another sub-
set achieved an F-score of 0.7 at a score threshold of 0.4,
the latter would be selected and the corresponding thresh-
old noted. The features selected for each model are listed
in Table 5. For the query log features, task MaxQrCharLen

is the maximum length (in characters) of any query seen
so far in a task; task Duration is the time, in seconds, of

SFS-QL

task MaxQryCharLen, task Duration,
task QryPropUnq, search RsltsVisitedPrev,
task AvgPgMaxScroll

SFS-Sensors

task inclPrmpts thinkingConf-stddev,
wind30s inclPrmpts sitForward-max,
search inclPrmpts disagreeConf-stddev,
search noPrmpts agreeConf-mean,
task noPrmpts netSeatChange-mean

SFS-QL+Sensors

task Duration, task QryPropUnq,
wind30s noPrmpts concentratingConf-stddev,
search noPrmpts netBackChange-min,
search noPrmpts concentratingConf-min,
wind30s noPrmpts unsureConf-mean,
search inclPrmpts unsureConf-min

W&D

search QryCharLen, search AvgTokenLen,
task Duration, task ActionCount,
task AvgURLCount

Table 5: The models derived from subsets of the
query log and sensor feature sets. The meaning of
the sensor feature names are self-evident based on
Section 5.2.

the task; task QryPropUnq specifies the number of unique
queries seen so far in a task; task AvgPgMaxScroll is the
mean average max scroll per page per query in the task;
search RsltsVisitedPrev is the number of results visited dur-
ing a search that were visited previously in the task.

We create a seventh model (the fifth to use logistic re-
gression) based on the features that White and Dumais
[15] found were most important for predicting search en-
gine switching, which we refer to as W&D. The features in
this model (Table 5) are: the most recent query’s length in
characters (search QryCharLen), the average token length
of the most recent query (search AvgTokenLen), the dura-
tion of the task in seconds (task Duration), the number of
events in the task (task ActionCount), and the average URL
count per task for the current user (task AvgURLCount).

The eighth model we explore is the Markov Model Likeli-
hood (MML) used by Hassan et al. [9] to predict task suc-
cess. We used the version that incorporates the time be-
tween events by using gamma distributions.

Given a list of event sequences from a training set, the
MML builds two models: one for sequences that end in frus-
tration and one for those that do not. Given a test event
sequence, the log probabilities of the transitions are esti-
mated and summed, once in each of the frustrated and non-
frustrated transition models. The frustrated sum is divided
by the non-frustrated sum, yielding a ratio between 0 and ∞,
with scores closer to 0 meaning the sequence is more consis-
tent with frustration, 1 being indifferent, and scores greater
than 1 meaning the sequence is more consistent with non-
frustration. We then use the following variation of Platt
smoothing to transform the score into one more consistent
with those output by our logistic regression scores:

MML(x) =
1.0

1 + eα(−x)+β
, (5)

where x is the ratio and α and β are the smoothing param-
eters, set to 4 as determined by our personal judgment on
the range of ratios output in the training and development
phases.



Event Description
Q Enter query.
RF Focus on a search results page.
RC Click on a link on a results page.
S Scroll.
OF Focus on a non-results list page.
OC Click on a link on a non-results list page.

Table 6: The event types used in conjunction with
the Markov Likelihood Model.

The events we used for the MML model are listed in Ta-
ble 6. The MML uses task-level event sequences—each in-
stance consists of the sequence of events starting from the
beginning of the task up until the point where frustration
is being predicted. Duplicate events were ignored and the
time between events was recorded in seconds. We refer to
this model as MML+time in the rest of this paper.

On the training/development data (Section 7), the W&D

model performed very well, so we decided to add the MML-

time as an additional feature, creating the ninth model
W&D+MML-time. We felt that the sequence information
captured by the MML model would benefit the static fea-
tures used by the W&D model.

6. RESULTS AND DISCUSSION
We randomly selected twenty of the thirty participants’

data for training and development. In the training / de-
velopment set, we put each user’s data into its own fold,
giving us a total of twenty folds. This avoids using a par-
ticular user’s data for both training and testing for cross
validation experiments.We used twenty-fold cross validation
select features and tune the score threshold at which Fβ=0.5,
precision, and MAP are computed.

For the results presented here, we re-trained our mod-
els (maintaining the features and score thresholds) on all
twenty users in the training/development set and tested on
the remaining ten users. The macro-averages were calcu-
lated across users.

The training set contained 323 queries (51% of which were
frustrated) for which there was feedback across 136 tasks
for twenty users. The test set contained 137 query-feedback
instances (45% of which were frustrated) across seventy-one
tasks for ten users. One query from the training set and two
from the testing set were removed due to logging errors that
prevented the queries from being properly processed. We
should note that during the study, two participants were
accidentally given the same ordering of tasks and both users
were randomly selected for testing. While this does increase
the chances of ordering bias, we believe the effect is small
due to the similar performance of the models on the training
and testing set. Figure 1 shows the number of total and
frustrated instances per user in the test set.

Table 7 shows the results of the experiments. Accuracy
is measured across all users. However, the other three met-
rics are only measured for nine of the users, as user ‘25’
never indicated frustration, causing the metrics to be un-
defined. The baseline model that assumes the user is frus-
trated if they abandon their query is undefined for three
of the metrics. For precision and F, this is because of un-
defined values for certain users. For MAP, both no-clicks

and always-frustrated are undefined since it involves ranking
scores, and both baselines have only binary outputs.
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Figure 1: The total number of feedback instances
and frustrated instances per user, ordered by total
instances.

Accuracy Precision Fβ=0.5 MAP
W&D 0.75 0.81 0.80 0.87
QL+Sens 0.54 0.50 0.49 0.59
SFS-QL+Sens 0.69 0.74 0.72 0.85
SFS-QL 0.69 0.74 0.73 0.80
SFS-Sens 0.45 0.52 0.57 0.66
MML-time 0.66 0.61 0.62 0.68
W&D+MML 0.74 0.78 0.78 0.85
No clicks 0.57 — — —
Always frustrated 0.44 0.49 0.55 —

Table 7: Macro-level results for the models on the
test set. Accuracy is over all ten users. The other
three metrics do not include user ‘25’, as the user
had no frustrated instances. Accuracy, precision,
and F were all computed using the threshold deter-
mined for each model in the development phase.

The metrics show that the relatively simple W&D model
outperforms the rest for every metric. Not all differences
are significant, however. As there is no concise way to il-
lustrate significance for all pairs of systems for each met-
ric, we will describe the most critical differences for Fβ=0.5

and MAP. The three top performing models with respect
to Fβ=0.5—W&D, W&D+MML-time, and SFS-QL—are sta-
tistically different from the Always frustrated baseline and
QL+Sens. W&D is statistically different from every other
system except W&D+MML-time and SFS-QL, though the p-
value for the difference between W&D and SFS-QL is just
above α at 0.056. W&D is statistically different from all
other models except W&D+MML-time for the MAP metric.

Figure 2 shows the 11-point interpolated average precision
across users for each model. Using all features outperforms
the baseline, but is much worse then selecting only a subset
of the features (SFS-QL+Sensors). This graph suggests that
the W&D+MML-time model outperforms using only W&D,
which conflicts with the metrics presented in Table 7, but
is understandable given the differences between the two sys-
tems are not statistically significant.

To understand some of the differences among the models
in terms of MAP, Figure 3 shows average precision broken
down by user. Some models have difficulty with particular



0.0 0.2 0.4 0.6 0.8 1.0

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Recall

P
re

c
is

io
n

f
f

QL+Sensors

SFS−QL

SFS−Sensors

SFS−QL+Sensors

W&D

MML−time

W&D+MML−time

Always frustrated (Prec=0.49)

Figure 2: Macro 11-point interpolated average pre-
cision across the test users for each model.

users, such as user ‘28’—most models perform poorly with
this user, except the W&D model. The SFS-QL+Sensors

model performs best for user ‘12 2’, though the combina-
tion model W&D+MML-time is close behind. The figure also
shows us that adding sequence information to static query
log features helps some users (e.g., user ‘30’), but hurts oth-
ers (e.g, user ‘28’). This suggests that personalization could
be useful in determining how much influence each feature
type should have for a particular user.

As we mentioned in Section 3.2, macro Fβ=0.5 is the met-
ric we are most interested in. While we calculated this value
using the score threshold for each model selected during de-
velopment as shown in Table 7, observing how the score
threshold affects the F-score can help us understand how
stable each model is between the development and test sets.
Figure 4 shows Fβ=0.5 as the score threshold ranges from
0 to 1.0 for select models. We selected two models we be-
lieve are rather robust and two that are not. The W&D

and W&D+MML-time models reach their optimum on the
test set at nearly the same score threshold as in the devel-
opment set. In contrast, the MML-time model peaks at a
lower threshold on the test set. While the maximum for
SFS-Sensors on the test set is close to its score threshold,
there is a substantial decrease in performance just past its
0.5 cutoff. This suggests that the trained model is sensitive
to new data.

6.1 Discussion
Many practical observations can be gleaned from the re-

sults, as well as a number of interesting questions raised. In
this section we will discuss a few of each.

First, the results suggest that a few relatively simple query
log features can reliably predict frustration. This is useful in
developing a search system that predicts frustration. How-
ever, the information necessary to extract the most useful
features is client-side (i.e., actions off of a search results page
need to be recorded), which means the user would likely need
to download a browser plug-in.

The features we found most useful for detecting frustra-
tion are the same as those White and Dumais [15] found
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Figure 3: The average precision per use by model.
Users are ordered by their total number of instances
(i.e., queries for which they gave feedback).

most useful for detecting when a user will switch search en-
gines. This suggests that this feature set may have a broader
scope of predictive power for related tasks, such as task sat-
isfaction and query abandonment.

One of the surprises of this research for us was the perfor-
mance of the sensors. Given the results of Cooper et al. [4],
we expected the sensors would strongly correlate with user-
reported frustration and that we would struggle to find a set
of query log features to even come close to the performance
of the sensors. In fact, the opposite was true. There may be
several reasons for this. First, the study occurred in an open
room and up to five participants were active in the study at
a given time. The presence of other participants may have
affected how an individual maintained their composure. Ar-
guments could be made that this is or is not a realistic situ-
ation; it probably varies by where people search (e.g., in an
open office space vs. a cubicle vs. a living room). Another
possibility is that the way the feedback was gathered upset
the natural reactions of the participants. However, we hope
that including a set of features that ignored sensor readings
during the time intervals when prompts were shown would
have removed such bias.

Another surprise was the performance of the MML-time

model. We thought that the sequence data would have been
more helpful than it was. One reason for its performance
may be the event language. We used a simple, high-level
set of events. This is in contrast to Hassan et al. [9], who
used events such as the type of link clicked on a search re-
sults page. Adding more advance features may be more
useful. However, there is another problem with sequences
on our data set: data sparsity. While our data set is suffi-
cient for static feature classification, there is likely an insuffi-
cient number of unique sequences to build a reliable model.
A Web-scale data set, such as those used in other studies
[6, 9], would be more useful in combination with this model.
The trade off is that user-reported frustration is not included
with Web-scale search logs.

Finally, we expected the sequential forward selection
method to provide a better approximation to the optimal
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Figure 4: Fβ=0.5 using macro precision and recall for
select models over the ten test users. The circles de-
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for each model.

feature sets. The W&D model is a subset of the query log
feature set, and thus could vary well have been chosen. How-
ever, SFS is a simple greedy algorithm and falls victim to
the same problems as all other greedy algorithms. Future
work should explore more advanced selection techniques to
find a better approximation for this task.

7. SUMMARY AND FUTURE WORK
In this paper we used features derived from a client-side

query log and three physical sensors to predict user-reported
frustration during Web search. We compared several mod-
els based on those used in both the information retrieval
[8, 9, 15] and the intelligent tutoring systems [4, 5, 11] liter-
ature. We found that using a few simple query log features
performed best.

In addition, the toolbar along with all of the data collected
during the study are being made publicly available.5 Much
more data was collected than was used in this paper, such
as user-reported page relevance, query satisfaction, and task
satisfaction. All pages viewed were downloaded, including
search results pages. Mouse movements were also collected,
from which a useful feature could be derived for tasks such
as frustration prediction, among others. The data set serves
as a means for others to compare against the results of this
paper, as well as provide insight into ways to build on the
study design used.

One direction of future work is building a system that de-
tects searcher frustration in real time. However, while the
models we explored predict frustration well, they depend on
client-side information. Another direction of future work is
finding a set of useful features from the less-rich server-side
information. This would allow a system to be built that
does not depend on plugins or other client-side instrumen-
tation. Finally, we intend to conduct a study that explores
what types of interventions are appropriate for addressing
searcher frustration and when to use them.

5
http://ciir.cs.umass.edu/∼hfeild/downloads/frustrationUserStudy/
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