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ABSTRACT

Long queries form a difficult, but increasingly important seg-
ment for web search engines. Query reduction, a technique
for dropping unnecessary query terms from long queries, im-
proves performance of ad-hoc retrieval on TREC collections.
Also, it has great potential for improving long web queries
(upto 25% improvement in NDCG@5). However, query re-
duction on the web is hampered by the lack of accurate
query performance predictors and the constraints imposed
by search engine architectures and ranking algorithms.

In this paper, we present query reduction techniques for
long web queries that leverage effective and efficient query
performance predictors. We propose three learning formu-
lations that combine these predictors to perform automatic
query reduction. These formulations enable trading off aver-
age improvements for the number of queries impacted, and
enable easy integration into the search engine’s architecture
for rank-time query reduction. Experiments on a large col-
lection of long queries issued to a commercial search engine
show that the proposed techniques significantly outperform
baselines, with more than 12% improvement in NDCG@5
in the impacted set of queries. Extension to the formu-
lations such as result interleaving further improves results.
We find that the proposed techniques deliver consistent re-
trieval gains where it matters most: poorly performing long
web queries.
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1. INTRODUCTION
Long queries form a sizable fraction of the queries that

are submitted to web search engines. Queries of length five
words or more have increased at a year over year rate of 10%,
while single word queries dropped 3% [1]. Unfortunately,
web search engines perform poorly on longer queries when
compared to shorter ones [4].

Several past works have focused on improving long query
performance [3, 15, 14, 16, 13, 7] (see Section 2). They
can be broadly classified into query re-weighting and query
reduction approaches. In query re-weighting, the original
query terms are assigned different weights before the query
is submitted to the search engine. In query reduction, in-
stead of the original query, a reduced version of it (obtained
by removing one or more terms from the original query) is
selected and submitted to the search engine.

Both approaches are motivated by the observation that
long queries usually contain superfluous terms, which if down-
weighted or completely removed, result in improved perfor-
mance. For example, consider the query easter egg hunts

in northeast columbus parks and recreation centers, which
performs moderately well on most popular web search en-
gines. If we remove (or down-weight in some fashion) the
terms and recreation centers, we can observe a perceptible
improvement in the quality of results.

While query term re-weighting and reduction techniques
have shown significant improvements in performance on TREC1

data [15, 13], their utility in the web environment is not
well understood. Further, query reduction/re-weighting on
the web poses unique challenges due to the architecture of
web search engines, and the extremely low latencies toler-
ated. Query re-weighting requires the use of a ranking algo-
rithm that permits the online assignment of weights to query
terms — a difficult thing to implement given that most web
retrieval algorithms use a learning to rank framework that
relies on boolean match as well as several additional query-
dependent and query-independent features. Query reduc-
tion requires analyzing a potentially exponential number of
reduced versions of the original query, and relies heavily on
query quality prediction measures like Clarity that are ex-
pensive to compute on the web.

In this paper, we focus on query reduction, and develop
techniques that are especially suited for the web. We utilize
an efficient, rank-time query quality prediction technique [2],
and consider only reduced versions of the original query that
are obtained by dropping a single term at a time. As we will
show in Section 3.2, dropping just a single (and correct!)

1http://trec.nist.gov



term from the original long query can result in a 26% im-
provement in NDCG@5. After formally defining the query
reduction problem in Section 3.1, we propose three differ-
ent formulations of the problem in Section 3.3. We demon-
strate their utility (Section 5) through experiments on a set
of approximately 6400 long queries sampled from the query
logs of a major web search engine. Additionally, we develop
simple thresholding and interleaving extensions to these for-
mulations that enable balancing the trade-off between the
queries impacted and the improvements attained.

The main contributions of this paper are (1) a rank-time
query reduction technique that is well suited for incorpora-
tion in a web search engine and works reliably in improving
hard long queries (2) formal treatment of the query reduc-
tion technique that allows control over when and how to
do query reduction, and (3) the first large scale evaluation
of query reduction for web queries. Analysis of the exper-
imental results show that query reduction achieves consis-
tent gains whenever there is high potential for improvement
(Section 6). More importantly, we find that query reduction
mostly benefits poorly performing queries. In other words,
it provides benefits where they are most needed.

2. RELATED WORK
Retrieval effectiveness for long queries is often lower than

retrieval effectiveness for shorter keyword queries. Kumaran
et al. [12] showed that shorter queries extracted from longer
user generated queries are more effective for ad-hoc retrieval.
Using click positions as surrogates for effectivenessm Ben-
dersky and Croft [4] show that long query effectiveness is
lower than short keyword queries for web queries. Several
works have focused on improving the retrieval performance
of long queries [3], [15], [14], [16],[13], and [7]. They can be
broadly categorized as automatic term weighting and query
reduction approaches.

Weighting - Bendersky and Croft [3] use a key con-
cepts classifier to identify important query terms in long
queries, and to assign weights to query terms resulting in
improved retrieval effectiveness. Also, Bendersky et al. [5]
successfully extend this term weighting approach to con-
cepts and build a weighted dependence model that performs
well for web queries. Lease et al. [15] use Regression Rank,
a regression framework to directly learn weights on query
terms using query dependent secondary features. An ex-
tension to this approach achieves significant improvements
over Markov Random Field dependency models on TREC
collections [14].

However, as mentioned earlier it is difficult to directly in-
corporate term weights in existing web search engine rank-
ing algorithms. In contrast, our goal is develop an approach
that can be seamlessly incorporated into existing web search
engines architectures without requiring modifications to the
underlying search algorithms.

Reduction - Kumaran and Carvalho [13] develop an au-
tomatic method for reducing long TREC description queries.
Using content-based query quality predictors such as Clarity
and Mutual Information Gain, they convert the query reduc-
tion task into a problem of ranking (reduced) queries based
on their predicted effectiveness. Their results on TREC Ro-
bust 2004 show the viability of automatic query reduction.
In this work, we investigate the extension of this approach
to web search engines.

Lee et al. [16] use statistical and linguistic features of

query terms to greedily select query terms from the origi-
nal long query to achieve the effect of query reduction. Ex-
periments on NTCIR collections demonstrate that this ap-
proach, and its extension which considers pairs of terms [17]
improves long queries’ effectiveness.

Chen et al. [7] use personal query history to select short
queries related to the original long query, cluster the short
queries based on similarity of their contexts, and select rep-
resentatives from each cluster as a substitution for the orig-
inal long query. Unfortunately, this approach requires rank-
time processing of texts of retrieved documents, extracting
noun phrases and other features from sentences that con-
tain the query words. These heavy rank-time computations
make this approach infeasible for use in web search engines.

In summary, the term weighting, query reduction, and
substitution approaches show good potential for improv-
ing long query effectiveness. However, term weighting ap-
proaches cannot be readily incorporated into web search en-
gines, while the features used for the various query reduction
approaches are not suitable for efficiency reasons. Further-
more, there has been no large scale experiments on actual
long web queries that demonstrate the utility of automatic
query reduction. In this paper, we investigate the utility of
query reduction for long web queries, and develop formula-
tions that are well-suited for Web search engines.

3. QUERY REDUCTION
Retrieval effectiveness is typically lower for longer queries

than for shorter keyword queries, partly because users often
utilize extraneous terms in long queries [12]. Query reduc-
tion - the technique of automatically identifying and remov-
ing extraneous terms from long queries - has proved to be
an effective technique for improving performance on long
queries [13]. In this section, we present a formal description
the query reduction problem.

3.1 Formal Description
Let f : P × D → R denote a ranking function that scores

documents (D) with respect to a query P , represented as a
set of query terms. Also, let Tf (P ) denote a target measure
of the effectiveness of the ranking produced by f for the
query P .

Given an arbitrary query Q = {q1, · · · , qn}, we use PQ

to denote the power set of Q, i.e., the set containing all
subsets of terms from query Q (including the original query
Q). Then, the query reduction problem is to find a reduced
version P ∗ that achieves the highest value for the target
measure as shown in Equation 1. Note that this problem
statement allows the original query Q to be selected as well.

P
∗ = arg max

P∈PQ

Tf (P ) (1)

Obviously, the target measures cannot be completely spec-
ified for inferences over all possible queries, and hence we
need to estimate Tf (P ). The query reduction task is then
expressed as:

P
∗ = arg max

P∈PQ

cTf (P ) (2)

Query performance predictors, such as Clarity [8] or Query

Scope [9], can be used to obtain estimates of the target mea-

sure, cTf in order to select a reduced version P ∗ of the original
query Q.
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Figure 1: Distribution of Potential Gains in NDCG@5.
3.2 Approximation

Efficiency is a key challenge for query reduction. Because
the number of possible reduced queries in PQ is exponen-
tially large, enumerating and evaluating all possibilities is
not feasible. This challenge is even more important for web
search engines, where response times are in the order of mil-
liseconds.

To address this issue, we propose a simpler version of the
query reduction problem. In particular, instead of consider-
ing all possible reduced versions, we only consider those that
differ from the original query Q by only one term. That is,
instead of using the entire power-set PQ, we use a restricted
version PQ

1
= {P |P ∈ PQ ∧ |P | ≥ |Q| − 1}. Thus, if the

original query had n query words, we only need to consider
the n reduced versions and original query Q.

Despite the obvious limitation of ignoring a large number
of potentially better reduced versions, this simple approach
can yield dramatic performance improvements. On a large
collection of more than 6400 Web queries (see Section 4 for
details), we find that an oracle that chooses between an orig-
inal long query and its reduced versions achieves more than
10 points gain in NDCG@5.

However, in order to achieve this gain, we need to reli-
ably identify reduced versions whose performances are bet-
ter than that of the corresponding original queries. To illus-
trate the potential impact of this technique, we analyze the
distribution of maximum and average gains for reduced ver-
sions using Figures 1(a), (b), and (c). Figures 1(a) and (b)
show the distribution of gains when compared to the orig-
inal query. Figure 1(c) shows distribution of gains (as box
plots) for original queries with different NDCG@5 values.

On average, the reduced versions’ effectiveness are worse
compared to the original query’s effectiveness, as shown by
the negative gains dominant in Figure 1(a). Also, the maxi-
mum gains, the gains that can be achieved if we always iden-
tify the best reduced version, are mostly positive as shown
in Figure 1(b). However, for some queries the maximum
gains are negative i.e., choosing any reduced version will re-
sult in decreased performance. Finally, Figure 1(c) shows
that if the original query has poor performance, then it is
more likely for some reduced version to be better than the
original query. Conversely we are unlikely to find reduced
versions of well-performing queries that provide substantial
performance gains.

Based on these observations, we develop learning tech-

niques that can reliably improve the performance of hard

long web queries through query reduction.

3.3 Learning Formulations
We use three formulations for choosing between the orig-

inal query and its reduced versions: 1) Independent perfor-
mance prediction, 2) Difference prediction, and 3) Rank-

ing queries. All three formulations use the same perfor-
mance predictors to generate features but differ in their tar-
get learning functions. For the remainder of this paper, we
assume that the same ranking algorithm, f , is used to re-
trieve results for both the original query and its reduced
versions and hence drop it from our notations.

Let Q be the set of training queries and let T (Q) be the
effectiveness of their retrieved results.

3.3.1 Independent Prediction

Given an original long query and its reduced versions, we
predict the performance of each query independently. Then,
we select the query that has the highest predicted perfor-
mance. Thus, the query selection problem is transformed
into a query performance prediction task: Given a query,
and the retrieved results, the task is to predict the effective-
ness of the retrieved results.

Formally, given a set of functions h : PQ → R, we learn
a non-linear regressor h∗ that minimizes the mean squared
error as given by:

h
∗ = arg min

h

v

u

u

t

X

∀Q∈Q,P∈P
Q
1

(h(P ) − T (P ))2

For a given test query Qt, we select the query P ∗ with the
largest predicted performance, i.e.:

P
∗ = arg max

P∈P
Qt
1

h
∗(P ) (3)

3.3.2 Difference Prediction

While the Independent formulation is relatively simple, it
does not encode the relationship between the original query
and its reduced versions. Furthermore, based on the ob-
servations from Figure 1(c), it may be more important to
predict the difference in performance between the original
query and its reduced versions, than to accurately predict
the effectiveness of the individual queries.



In the Difference formulation, we predict the difference in
performance between each reduced version and its original
query, and then select the query that has the highest positive
difference. If there is no reduced version with a predicted
positive difference, then we choose the original query.

Let D(Q, P ) = T (P ) − T (Q), denote the target measure
difference between a reduced version P and its original query
Q. Given a set of functions hd : Q×Q → R, we learn a least-
squared-errors regressor h∗

d given by:

h
∗
d = arg min

hd

v

u

u

t

X

Q∈Q

X

P∈P
Q
1

∧P 6=Q

(hd (Q, P ) − D (Q, P ))2

For a given test query, Qt, we choose a reduced represen-
tation P ∗ as:

P
∗ = arg max

P∈P
Qt
1

h
∗(Q, P ) (4)

3.3.3 Ranking Queries

In this formulation, the goal is to rank the original query
and its reduced versions in order to select the top ranking
query. The ranking model is learned by training on pairwise
preferences between the queries.

For each reduced version P ∈ PQ
1

, P is preferred over Q

if T (P ) ≥ T (Q). The pairwise preferences induce a par-
tial ordering and the query at the top of the ordering is se-
lected. This formulation fully encodes dependencies between
the original query, and all the reduced versions. Kumaran
and Carvalho [13] successfully use this learning to rank ap-
proach to select only amongst reduced versions of the query
on TREC collections. In this work, we also include the orig-
inal query in addition to the reduced versions.

Let Φ denote the error function for incorrect pairwise or-
dering defined as follows:

Φh(Q, P ) =

(

1 if sign (h(P ) − h(Q)) 6= sign (T (P ) − T (Q))

0 otherwise

We want to learn a function h∗
r from the set of ranking

functions hr : Q → R such that it minimizes the overall
ranking errors, i.e.,:

h
∗
r = arg min

hr

X

Q∈Q

X

P∈P
Q
1

Φh(Q, P )

For a given test query, Qt, we choose a reduced represen-
tation P ∗ as:

P
∗ = arg max

P∈P
Qt
1

h
∗
r(P ) (5)

3.4 Thresholding
As an extension to these formulations, we also learn a

threshold on the assigned scores in order to control the
number of queries for which reduced versions are selected.
In Independent , a reduced version is selected if and only
if, there exists a reduced version whose predicted perfor-
mance is greater than that of the original query by a spec-
ified threshold. For Difference, the positive difference has
to exceed a threshold in order to choose a reduced version.
Finally, for Ranking , the predicted performance of the top-
ranking reduced version must exceed the original query’s
predicted performance by the specified threshold.

For all three formulations, we also learn the best threshold
values by selecting the values that achieve the best improve-
ments over the training set of queries.

3.5 Performance Prediction
Accurate prediction of performance of the original query

and reduced versions is critical to the success of the query
reduction formulations we have described in this Section.
We leverage a rank-time technique for query performance
prediction [2]. The key idea behind this technique is to uti-
lize retrieval scores, and the features that a ranker uses for
ranking documents to estimate the quality of the results. Ta-
ble 1 lists the two broad types of features used for ranking
documents as well as predicting query quality – those that
characterize the prior probability of query effectiveness, and
those that characterize the quality of the retrieved results.
In Independent the features are used as is, while in Differ-

ence and Ranking the difference in feature values between
the original and the reduced versions are used.

Query Features : We use several query-specific features
to provide a richer representation of the query. Lexical fea-
tures flagging the presence of URL, stop words, and numbers
as well as location features that denote the presence of town,
city, or state names are part of the feature set. Addition-
ally, we use query length as a feature. Query length has a
strong negative correlation with performance i.e., retrieval
effectiveness degrades as query length increases.

Query-Document Features: The retrieval scores as-
signed by the ranking algorithm are indicative of the rel-
evance of individual documents, and aggregates of these
scores are useful predictors of the relevance of the retrieved
results. Web search engines often combine multiple rank-
time features to score documents. These rank-time features
provide different types of evidence for the relevance of the
documents. Some useful features include query-independent
features similar to page-rank, query-log based features such
as variations of click-through counts, and term match-based
features such as BM25F.

Using these query and document-related features, we train
a regressor to directly predict the performance (NDCG@5)
of queries.

4. EXPERIMENTAL SETUP
We conduct experiments to evaluate query reduction and

the utility of the different learning formulations.
We use LambdaRank [6] as our web ranking algorithm.

LambdaRank has been shown to be an effective learning to
rank technique for the web and can handle a large num-
ber of features. We target NDCG@5 [10] as the metric to
maximize. We use the top 5 results to create the query-
document features, and select the top 100 features that are
most correlated with NDCG@5 in the training data. We
evaluate the query reduction approach and the utility of the
different formulations on a large collection of Web queries.
To create the query reduction collection, we first obtain a
frequency-weighted random sample2 of more than 6400 long
queries issued to a major Web search engine. For each query
in this collection, we also create reduced versions by drop-
ping a single word each time. We use the LambdaRank
retrieval algorithm to rank documents for both the original

2The frequency-weighted sampling ensures the chosen
queries are a representative mix of the types of long queries.



Table 1: Features used for performance prediction. Pos. indicates that the value for the particular row is computed

for each top-k document and used as an independent feature. Agg. indicates that statistical aggregates (mean, max,

standard deviation, variance and coefficient of dispersion) of the values for the top-k documents are also used as

independent features. Additionally, we perform a min-max normalization to rescale all features between [0, 1].

Type Feature Name Description Variants

URL Binary: Does query contain an URL? -
Query Stop-words # of stop-words in query -

Location Does query contain a town, city name or a state name ? -
Query Length # of words in query -

LR LambdaRank score of top-k documents Pos. and Agg.
Query-Document BM25 Okapi-BM25 score of top-k documents Pos. and Agg.

Click-based Click-through counts and other variants Agg.
Static Scores Page-rank like scores of the top-k documents Agg.

long query and all its reduced versions. Then, we obtain rel-
evance judgments for both the results for the original query
and the reduced versions from a large pool of independent
annotators. The reduced versions results are also judged
with respect to the original long query, and not with respect
to the reduced one. We refer to this collection as Long Web

henceforth.
Learning Algorithms. For Independent and Difference

formulation, the goal of learning is to find real-valued func-
tions that predicts the target metric, and the differences in
the target metric, respectively. For both formulations, we
use non-linear regression with the Random Forests [18] al-
gorithm3, to predict performance of queries and performance
differences respectively. For the Ranking formulation, we use
RankSVM [11] 4 to learn pair-wise preferences. For all three
problem formulations we perform five-fold cross validation
for training and evaluating the learning models.

5. RESULTS
For each formulation, we report results for two types of ex-

periments. In Query Replacement experiments, if a reduced
version is selected, it is used to replace the original query.
In Results Interleaving if a reduced version is selected, the
results of the selected reduced version and the original query
are interleaved. The interleave order depended on the sign
of the difference between their predicted NDCG@5.

5.1 Query Replacement
Table 2 shows the performance of the different problem

formulations (top half) along with the thresholding exten-
sion (bottom half) for the Query Replacement task. We
compare the formulations using two measures: 1) Overall
NDCG@5, which is the macro-averaged NDCG@5 over all
queries, and 2) Subset NDCG gain, the average improve-
ments on the subset for which reduced versions were chosen.

With no thresholding, Difference achieves the best overall
gain. Ranking ’s overall gain is lower but the subset gain is
substantially higher. While, Difference and Ranking both
achieve small but significant overall gains, Independent is
actually worse than the original. We believe that this per-
formance difference is due to two reasons. First, Differ-

ence and Ranking encode the relationship between the orig-
inal query and its reduced versions, whereas Independent

3We used the randomForest package available from R with
default parameters
4We used the SVMLight implementation with default pa-
rameters and a linear kernel

does not capture such relationships. Second, the Indepen-

dent formulation appears to solve a harder learning problem.
The regression in Independent attempts to minimize mean-
squared errors of the predicted and actual NDCG@5 values.
The accuracy of the predicted values matter only in terms
of the ordering they induce, the difference between the ab-
solute values are not important. In fact, we find that the
root-mean squared errors for Independent ’s regression was
10% worse compared to that of Difference’s regression, even
though both regressions are learned using the same learning
algorithm, the same set of base features, and same training
data.

With thresholding however, Independent improves dra-
matically and its overall performance is comparable to Dif-

ference. On the other hand, Difference and Ranking do not
achieve any additional improvements to the overall measures
due to thresholding. Independent benefits from threshold-
ing as it selects fewer reduced versions which are more likely
to yield improvements. Despite the similar average perfor-
mance (over the entire set of queries), the three formulations
provide different types of improvements. First, Independent

and Ranking select reduced versions for less than 10% of the
queries, whereas Difference selects reduced versions for more
than 27% of the queries. The number of selected reduced
versions depends upon the accuracy of the predicted scores,
and the thresholds learnt during training.
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Figure 2: Number of queries affected versus im-
provements in subset gains.

To better understand the relationship between the num-
ber of queries affected versus the average improvement in
performance, we explore the behavior of the different for-
mulations at various thresholds. In general, we expect in-
creasing thresholds to cause fewer reduced versions to be
chosen (lower recall), but to also increase the likelihood of



Table 2: Effectiveness of Query Replacement. The baseline i.e., using the original query, has an overall
NDCG@5 of 38.19. Bold face indicates the highest value, and * indicates statistically significant improvement
over the baseline (p < 0.05 on a two-tailed paired t-test).

Overall Affected Improved Hurt Subset
NDCG@5 Queries Queries Queries NDCG Gain

No Thresholding
Independent 35.18 4567 (70%) 1583 2346 - 4.26 (-12%)
Difference 38.63∗ 1761 (27%) 513 427 + 1.61 (+4.2%)
Ranking 38.50∗ 612 (9%) 245 212 + 4.64(+12.1%)
Thresholding
Independent 38.64∗ 457 (7%) 219 149 + 6.33 (+16.5%)
Difference 38.63∗ 1761 (27%) 513 427 + 1.61 (+4.2%)
Ranking 38.50∗ 612 (9%) 245 212 + 4.64(+12.1%)

improving over the original query (higher precision). Fig-
ure 2 shows this precision-recall trade-off in terms of the
gains achieved on the subset of affected queries against the
percentage of queries affected. As expected for all three for-
mulations, the average performance on the subset is drasti-
cally high for a small percentage of queries, and performance
decreases as more queries are affected. Independent and Dif-

ference achieve more than 10 points absolute improvement
over the original queries on a subset of 5% of the queries.
Compared to Independent and Difference, Ranking achieves
smaller gains but retains its performance over a large frac-
tion of queries. This suggests that Ranking is able to choose
reduced versions effectively for more number of queries but
it may not always choose the best reduced version.

Feature Importance. The contribution of the different
feature groups for Difference are shown in Table 3. Most of
the gains come from the query-document features. Adding
the query features provides small improvements. As ex-
pected features that characterize the result set directly are
more useful than the query-features. Also, adding estimates
of original query’s effectiveness further improves performance.
This is because reduced versions are more likely to improve
poorly performing original queries and adding estimates helps
Difference to encode this relationship.

Table 3: Feature importance for Difference: Orig —

using original query, with no query replacement. Query-

Doc — using query-document features alone. +Query —

adding query features. +Estim — adding estimate of the

performance of the original query.

Orig QueryDoc + Query + Estim
Overal Gain 38.19 38.52 38.63 38.73
Subset Gain 0 1.30 1.61 2.05

5.2 Results Interleaving
To reduce the risk involved in choosing between queries,

we conduct interleaving experiments. In all three formula-
tions, if a reduced version is selected, we interleave its re-
sults with the results of the original query. Furthermore, we
decide the order of interleaving based on the predicted per-
formance. If the original query’s predicted performance was
higher than that of the reduced version then interleaving
begins with the original query, and vice-versa otherwise5

Table 4 shows the gains achieved by the interleaving re-
sults. Difference achieves the best overall gains, whereas

5Because interleaving combines results from the original
query and the top-ranked reduced version, it can yield gains
even in cases where the top-ranked reduced version’s pre-
dicted performance is lower than that of the original query.

Table 4: Results Interleaving at the best thresholds
for the three formulations. For the NDCG Gain
row, bold face indicates the highest value, and *
indicates statistically significant improvement over
original NDCG@5 (p < 0.05 on a paired t-test).

Indep. Diff. Rank.
Overall Gain 0.7∗ 1.3∗ 0.97∗

Subset Gain 9.89 1.3 1.19

Best Threshold 0.2 -0.2 -0.8

Affected Queries 457 6435 5258

Improved Queries 228 (4%) 2052 (31%) 1620 (25%)

Hurt Queries 139 (2%) 2063 (31%) 1612 (25%)

Independent achieves the best subset gains. Difference and
Ranking both have a positive impact on a large number
of queries, 31% and 25% respectively, whereas Independent

provides positive gains for only 4%. We hypothesize that one
of the reasons that Difference and Ranking achieve higher
performance compared to Independent is because Differ-

ence and Ranking achieve better ranking of reduced ver-
sions compared to Independent , thus allowing more queries
to benefit from interleaving.

Figures 3(a), (b), and (c), show Results Interleaving and
Query Replacement performance at different thresholds for
all formulations. For all formulations, Results Interleav-
ing performs better compared to Query Replacement at all
thresholds. Since interleaving ensures that at least some of
the original query’s results are mixed in with the chosen
reduced versions results, we reduce the risk of hurting per-
formance in case of erroneous choices. However, interleaving
also benefits from the fusion of results from the original long
query, and the reduced version in the case of good choices.
Although not shown here, an analysis of the gains obtained
by Query Replacement, and Results Interleaving for Inde-

pendent formulation shows that there are fewer queries with
large positive gains for Results Interleaving compared to
Query Replacement, but there are also fewer negative gains.
For example, nearly 10% of positive gains in Query Replace-
ment are above 25 points, whereas only 5% of positive gains
in Results Interleaving are above 25 points. On the other
hand, nearly 20% of the negative gains in Query Replace-
ment are below 20 points, whereas less than 5% of the neg-
ative gains in Results Interleaving are below 20 points.

6. ANALYSIS
We further analyze the results to better understand the

distribution of gains and the nature of the improvements.
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Figure 3: Interleaving Results.

Query reduction results in dramatic gains on some subset
of queries but also incurs losses on some queries. For Query
Replacement using Independent formulation nearly 60% of
this impacted queries were improved. Further, for 20% of
these queries, the gain was more than 50 points in absolute
NDCG. This indicates the dramatic improvements attain-
able through query reduction. For the remaining 40%, a
large proportion of their losses are small, which explains the
overall improvements. We observe similar trends for Differ-

ence and Ranking .
Potential versus Achieved Gains. All three formula-

tions provide improvements when there is a large potential
for improvement. Figure 4 shows the distribution of the
gains achieved by Independent in relation to the best gains
that an oracle can achieve. In most cases when the potential
for improvement is large, Independent formulation achieves
larger improvements. Also, When the potential is greater
than 0.8, Independent always results in some positive im-
provement. We believe that the large gains achieved by the
formulations are primarily due to two factors.
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Figure 4: Oracle versus Achieved Gains: Boxplot show-

ing the distribution of gains achieved by Query Replace-

ment using Independent in relation to the best possible

gains that can be achieved by an oracle.

First, the formulations are able to detect large differences
in NDCG@5 more reliably. The distribution of absolute
prediction errors for the regression used by Independent is
shown in Figure 5(a). The histogram shows the frequencies
of absolute difference between the predicted NDCG@5 and
the acutal NDCG@5 values for all queries (including reduced
versions). Most prediction errors are smaller, and very few
errors are larger than 50 points (less than 3%). This suggests
that smaller differences in NDCG@5 are harder to capture

given the range of prediction errors, while larger differences
can be captured more reliably.

Second, for queries with large gains, the problem of choos-
ing a reduced version becomes easier. Figure 5(b) shows the
distribution of number of reduced versions that are better
than the original query. The number of better reduced ver-
sions correlates with the maximum achievable gain (shown
in the x-axis). For queries with high potential for improve-
ment (i.e., queries with high maximum gain), the number of
better reduced versions is higher, which makes the problem
of finding better reduced versions easier.

NDCG@5 prediction errors
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(a) NDCG@5 Prediction Errors: Frequency histogram of
difference between predicted and actual NDCG@5 values.
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(b) Boxplot showing distribution of reduced versions that
are better than the original query versus potential gains.

Figure 5: Prediction accuracy and difficulty of choosing

reduced versions.
Improving Poorly Performing Queries. As illus-

trated in Figure 1, poorly performing original queries of-
ten have large potential for improvements. Since all for-
mulations deliver improvements when there is large poten-
tial, most gains are achieved for poorly performing original
queries. Figure 6(a) shows the histograms for the number of
queries that achieve positive gains against the effectiveness



of the original query. Clearly, most of the gains are achieved
for queries whose original NDCG@5 low. Nearly 75% of
the queries that benefit from Independent are queries with
NDCG@5 ≤ 40. Further, the magnitude of the gains for the
poorly performing queries are higher than for well perform-
ing queries as shown in Figure 6(b). Thus, unlike traditional
techniques such as pseudo-relevance feedback, query reduc-
tion delivers improvements where it matters most.
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(a) Number of queries at each effectiveness level which
achieved positive gains.
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(b) Boxplot showing magnitude of achieved gains for
original queries of different effectiveness levels.

Figure 6: Performance of Independent for original

queries of different effectiveness levels

7. CONCLUSIONS
As the average length of queries users submit to search en-

gines increases, long query retrieval becomes an increasingly
important problem. In this paper we have addressed some of
the key challenges in adapting query reduction for long web
queries — a particularly difficult task due to the inherent
constraints imposed by modern search engine architectures
and operational requirements.

We presented three learning formulations that naturally
provide different trade-offs in terms of number of queries
affected versus the overall average gains achieved by query
reduction. Such flexibility is valuable when designing large
scale systems, where memory and processing limitations may
significantly impact when and whether a query should be al-
tered.

We also provided the first comprehensive evaluation on
a large collection of real long web queries. Our experi-
ments showed that directly predicting performance differ-
ences generally outperforms independent performance pre-
dictions. Also, performance of the proposed formulations
can be improved even further by interleaving results from
the original and reduced versions. A careful analysis of
the results clearly showed that, unlike traditional techniques
such as pseudo-relevance feedback, our query reduction tech-
niques achieved most NDCG gains on difficult long queries.

The näıve approximation to the full scale (exponential)
query reduction problem substantially improves efficiency
(exponential to linear), while still providing significant ef-
fectiveness gains. However, even evaluating a linear num-
ber of additional queries can be burdensome for search en-
gines. Also, despite improved average performance, we find
that there is high variance in performance. As part of fu-
ture work, we aim to further improve efficiency and reduce
variance using a two-staged approach that first predicts the
effectiveness of the original long query to decide when to
evaluate the reduced versions.
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