
Ranking using Multiple Document Types
in Desktop Search

Jinyoung Kim and W. Bruce Croft
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts Amherst

{jykim,croft}@cs.umass.edu

ABSTRACT

A typical desktop environment contains many document
types (email, presentations, web pages, pdfs, etc.) each with
different metadata. Predicting which types of documents a
user is looking for in the context of a given query is a crucial
part of providing effective desktop search. The problem is
similar to selecting resources in distributed IR, but there are
some important differences.

In this paper, we quantify the impact of type prediction
in producing a merged ranking for desktop search and in-
troduce a new prediction method that exploits type-specific
metadata. In addition, we show that type prediction per-
formance and search effectiveness can be further enhanced
by combining existing methods of type prediction using dis-
criminative learning models. Our experiments employ pseudo-
desktop collections and a human computation game for ac-
quiring realistic and reusable queries.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: [Informa-
tion Search and Retrieval]

General Terms

Algorithms

Keywords

Information Retrieval, Desktop Search, Semi-structured Doc-
ument Retrieval, Type Prediction

1. INTRODUCTION
People have many types of documents on their desktop

with different sets of metadata for each type. For instance,
emails have sender and receiver fields, whereas office doc-
uments have filename and author fields. Considering that
personal information is now increasingly spread across var-
ious places on the web, this diversity of document types is
continuing to increase.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’10 July 19–23, 2010, Geneva, Switzerland.
Copyright 2010 ACM 978-1-60558-512-3/09/11 ...$10.00.

Desktop search systems, which is now a standard feature
of most platforms, have tried to exploit this type informa-
tion by presenting search results for each document type
separately (e.g. Apple Spotlight) or showing type informa-
tion distinctively in a single rank list (e.g. Google Desktop).

In both scenarios, a critical aspect of the system is being
able to predict which type(s) of document(s) a user is looking
for given a query. Given these properties, if the system
displays separate type-specific results, it can rank them by
their type scores. Alternatively, the system can incorporate
type scores into document ranking as a feature.

The type prediction problem bears some similarity to the
vertical or resource selection problem in the areas of ver-
tical or federated search in that the system tries to score
the results from each vertical, resource, or collection based
on predicted relevance for a given query. In this sense, all
these problems can be put in a broad category of collection
scoring. There are, however, several notable differences.

First, type-specific sub-collections in the desktop are co-

operative in that all the documents are available to s single
system. This means that sampling techniques used for fed-
erated search may not be necessary for desktop search; sec-
ond, unlike typical collections used for vertical or federated
search research, the sub-collections in desktop environment
are small and have considerable topical overlap. This makes
it challenging to apply content-based collection scoring tech-
niques (e.g. CORI [3]) directly; third, each sub-collections
in the desktop has unique metadata that has not been ex-
ploited in existing collection scoring methods.

The main goal of this paper is to show how the retrieval
effectiveness of a desktop search system can be enhanced by
improving type prediction performance. We focus on known-
item queries, which are the most frequent type of request in
the desktop environment [7], and assume that the system
displays a final rank list by merging type-specific results.

Our work makes several contributions: first, we demon-
strate the impact of sub-collection retrieval and type pre-
diction performance on the quality of the final rank list;
second, we suggest a type prediction method that exploits
type-specific metadata and show that the new method has
better performance than a state-of-the-art collection scor-
ing method; third, we find that the combination of existing
collection scoring methods can improve the performance fur-
ther; fourth, we employ a game interface to collect a large
quantity of known-item queries in a reasonably realistic set-
ting.

The rest of this paper is organized as follows. We pro-
vide an overview of related work in the next section. Then

type prediction method will produce scores for each sub-
collection and these scores can be used for merging results
into the final rank list or ranking sub-collection results. Sec-
tion 4 deals with type prediction methods in detail.

3.3 Result Merging
With type-specific rank lists from sub-collection retrieval

and collection scores from the type prediction component,
we can produce the final rank list by rank-list merging algo-
rithms. In this work, we use the well-known CORI algorithm
for merging [3].

C′

i = (Ci − Cmin)/(Cmax − Cmin) (3)

D′ = (D − Dmin)/(Dmax − Dmin) (4)

D′′ =
D′ + 0.4 · D′ · C′

i

1.4
(5)

Here, C′

i and D′ are normalized collection and document
score, computed using the maximum and minimum of col-
lection scores (Cmax / Cmin) and document scores (Dmax /
Dmin), respectively. Given C′

i and D′, the final document
score D′′ can be computed by combining these two scores.

4. TYPE PREDICTION METHODS
In this section, we introduce our type prediction methods

in detail. We first describe existing methods for type pre-
diction which are adopted from recent works on vertical and
federated search [1] [2]. Then we introduce a new type pre-
diction method that exploits document metadata. Lastly,
we explain how type prediction methods can be combined
using several learning methods.

4.1 Existing Methods for Type Prediction

4.1.1 Query-likelihood of Collection

Many traditional resource selection methods (e.g. CORI)
are computed from collection term statistics. Among these,
we use collection query-likelihood (CQL)[17], which is a re-
source selection method based on the language modeling ap-
proach. The approach here is to collapse all documents in
each collection into one giant ‘document’ and use the query-
likelihood score for the document as the collection score:

CQL(Q, C) =
Y

q∈Q

(λP (q|C) + (1 − λ)P (q|G)) (6)

Here, C is the language model of each sub-collection and G
is the language model of the whole collection. The smooth-
ing parameter λ adjusts the interpolation ratio of P (q|C)
and P (q|G). CQL was shown to be the most effective among
resource selection methods in a recent evaluation [18].

4.1.2 Query-likelihood of Query Log

Another source of evidence for the type prediction is the
aggregated query terms used for finding documents that
belong to each sub-collection. As done in previous work
[1] [2], we use the query-likelihood score of the language
model (QQL) built by queries targeted for sub-collection C
as shown below:

QQL(Q, C) =
Y

q∈Q

(λP (q|LC) + (1 − λ)P (q|LG)) (7)

Here, LC is the language model of the query log corre-
sponding to collection C. LG is similarly defined using the
query log across all collections.

4.1.3 Geometric Average

Another class of resource selection methods combine the
score of top documents to evaluate each collection given the
user query. Seo et al. [15] proposed using the geometric
mean of the top m documents as the combination method,

GAV G(Q, C) = (
Y

d∈Dtop

P (Q|d))
1

m (8)

where Dtop is the set of top m documents from the collec-
tion and the score P (Q|d) is padded with Pmin(Q|d) if fewer
than m documents are retrieved.

4.1.4 ReDDE

ReDDE [16] [2] scores a target collection based on the
expected number of documents relevant to the query. Al-
though previous work used a centralized sample index to
derive this expectation, we can estimate this directly from
the target collection,

ReDDE(Q, C) =
X

d∈Dtop

P (Q|d) (9)

which is equivalent to using the sum of the top document
scores belonging to each collection. Intuitively, this results
in a higher score for the collection with more documents in
higher positions.

4.1.5 Query Clarity

So far, most of our methods have been derived from re-
source selection techniques developed in the context of dis-
tributed IR. Query performance prediction methods can also
be used for type prediction by assigning a higher score for
the collection with higher predicted performance. Among
such methods, we employ Query Clarity [5], which predicts
performance using the KL divergence between a query lan-
guage model and a collection language model.

Clarity(Q, C) =
X

w∈V

P (w|LQ)log2

P (w|LQ)

P (w|C)
(10)

Here, query language model LQ is estimated from the top
m documents from the collection.

4.1.6 Dictionary-based Matching

In some cases, users provide direct clues about which file
type they intended to search, by including terms such as
‘sender’(for email), ‘pdf’(for office document) or ‘www’(for
webpage). Although these terms may not occur in a ma-
jority of queries, they can be a strong indication of type
membership for a given query. We built the dictionary for
each sub-collection by using the names of the collection and
metadata fields.

4.2 Using Document Metadata Fields
for Type Prediction

Although some of methods introduced above use the col-
lection term statistics, none use the field structure of doc-
uments available for desktop collection. Considering that

the retrieval effectiveness of semi-structured document col-
lections have been improved by exploiting this structure [10],
we can expect similar benefits for the type prediction prob-
lem.

Field-based collection query likelihood (FQL) – our new
method for type prediction – extends the collection query
likelihood model for collection scoring by combining the query-
likelihood score for each field of the collection instead of us-
ing the score for the whole collection. In other words, if we
borrow the view of query-term and field mapping described
in Section 3.1.1, we try to infer the mapping between a user
query and each collection by combining mapping probabili-
ties for the fields of each collection.

More formally, for a collection C that contains documents
of n field types (F1, ..., Fn), we can combine the language
model score of each field as follows:

FQL(Q, C) = combFi∈C(P (q|Fi)) (11)

Here, Fi is a smoothed language model of the ith field
of the collection and comb can be any function that can
combine n numbers into one. We experimented with many
variations of comb function and found that arithmetic mean
gives the best performance.

4.3 Combining Type Prediction Methods
Considering that the type prediction methods introduced

so far are derived from different sources, it is plausible that
we can get further performance benefits by combining indi-
vidual methods in a linear model where weights are found
using learning methods. In this section, we describe three
learning methods with different objective functions: grid
search of parameter values, a multi-class classifier and a
rank-learning method.

4.3.1 Grid-search of Parameter Values

Since we have only seven features to be combined, It is fea-
sible to perform a grid search of parameter values that max-
imize the performance of a training set of queries. Specif-
ically, we can find the optimal value for each parameter in
turns while fixing the values of the parameters previously
found, and repeating the whole procedure until we reach
convergence. In searching for the optimum value of each
parameter, we employed Golden Section Search[13].

4.3.2 Multi-class Classification

Given that we want to predict one of document k types
for a given query, this is typical multi-class classification
scenario where each type corresponds to a class. Among
many choices of such methods, we used a one-vs-rest (OVR)
support vector machine classifier (MultiSVM) available in
Liblinear Toolkit1. Since the output of this classifier is not
suitable to be used directly as type scores, we used a simple
linear transform to convert the scores into probabilities.

4.3.3 Rank-learning Method

Alternatively, one can cast the type prediction task as a
ranking problem where we try to rank the relevant collec-
tions higher than non-relevant collections. This approach
can be especially beneficial for the case where the user is
finding multiple documents with different types, since such

1http://www.csie.ntu.edu.tw/ cjlin/liblinear/

situation is hard to model with typical multi-class classifica-
tion methods. RankSVM [8] was used as the rank-learning
method.

5. TEST COLLECTION

GENERATION METHODS
Evaluation of desktop search has been considered a chal-

lenging issue due to the private nature of collections. As a
solution, methods for building reusable test collections have
emerged recently [4] [9]. Here we review the test collection
generation methods and introduce our game interface for
gathering known-item queries.

5.1 Pseudo-desktop
Kim et al. [9] introduced the pseudo-desktop method of

automatically building a reusable test collection for desktop
search. They collected documents with similar characteris-
tics to a typical desktop environment and generated queries
by statistically taking terms from each of the target docu-
ments. Then generated queries are validated against a set
of manually written queries, which were gathered by show-
ing people documents and asking them to write queries for
finding those documents.

Although this pseudo-desktop method provides a cost-
effective way to generate a large quantity of test data under
perfect experimental control, there are several limitations:
first, the query generation procedure is too simple in that
it independently chooses words from the target document,
while real queries contain phrases; second, only terms in tar-
get documents are used as queries; third, the procedure of
getting manual queries is not realistic in that people were
asked to formulate queries for documents they were not fa-
miliar with.

It should be possible to mitigate the problems above by
refining the query generation method, but we decided in-
stead to improve the procedure of gathering manual queries
by developing a human computation game, as explained in
the next section.

5.2 DocTrack Game
Human computation games [19] have recently been sug-

gested as method for getting a large amount of human anno-
tations in a way that motivates participants using a game-
like setting. In the context of IR research, Ma et al. [11]
introduced Page Hunt, which is a game designed to collect
web search log data by showing each participant webpages
and asking her to find them with the search interface pro-
vided.

By adapting Page Hunt to our problem domain, we devel-
oped the DocTrack game for gathering known-item queries
in desktop environment, as shown in Figure 2. In addition
to using documents of many types that might be found in a
desktop instead of random webpages, we made several mod-
ifications to the original Page Hunt game: first, since people
generally have good knowledge of their own desktops, we
collected documents that participants are familiar with and
let each of them browse the collection for some time before
starting the game; second, to simulate a typical known-item
search scenario, we showed participants multiple documents
and asked them to find one of them without specifying them
which one is the target document; third, we used a document
viewer that can show documents of any types (e.g. pdf, doc
and ppt) in the same way they are seen on the desktop.

Figure 2: The screenshot of the DocTrack game.
The user is being shown a document.

Compared to the method of collecting manual queries in
Kim et al.[9], using the DocTrack game, we could gather
many more realistic queries together with the whole session
log data. This in turn allowed us to perform the training of
discriminative learning models which typically requires large
amounts of training data.

6. EXPERIMENTS
In this section we describe the experiments for verifying

the type prediction and retrieval performance. We used
three pseudo-desktop collections with generated queries for
the first experiment, where we compared several type pre-
diction methods and showed the impact of type prediction
on the final ranking. We then report on experiments us-
ing a computer science (CS) collection where queries were
collected by the DocTrack game.

In the indexing of both collections, each word was stemmed
using the Krovetz stemmer and standard stopwords were
eliminated. Indri2 was used as a retrieval engine for all the
retrieval experiments. We used prediction accuracy to eval-
uate type prediction performance, since we have only one
correct collection for each query. Mean Reciprocal Rank
was used as the measure of retrieval performance for all ex-
periments, since this is a known-item task where each query
has only one relevant document.

Four retrieval methods were used for each sub-collection
(DLM / PRM-S / PRM-D / Best) and four methods (Uni-
form / CQL / FQL / Oracle) were used for type prediction.
We compared only CQL and FQL for the pseudo-desktop
experiment since CQL was shown to be the most effective
among collection scoring method [18] and FQL is the exten-
sion of CQL for semi-structured document collection. Sec-
tion 6.2 provides the comparison with other type prediction
methods using the CS collection and queries from the Doc-
Track game.

For the Best retrieval method, we used the retrieval method
with the best aggregate performance for each sub-collection,
making the assumption that the best-performing retrieval

2http://www.lemurproject.org

Table 1: Number and average length of documents
for pseudo-desktop collections.
Type Jack Tom Kate

#Docs Len. #Docs Len. #Docs Len.
email 6067 555 6930 558 1669 935
html 953 3554 950 3098 957 3995
pdf 1025 8024 1008 8699 1004 10278
doc 938 6394 984 7374 940 7828
ppt 905 1808 911 1801 729 1859

Table 2: Query examples with corresponding target
collections for pseudo-desktop collections.

Query Target Collection
jose 03 kahan email
presentation 19 ppt
org address html

method is known in advance. For Uniform and Oracle col-
lection scoring, we considered that each collection has the
same chance of containing the relevant document (Uniform)
or that we have the perfect knowledge of the collection that
contains the relevant document (Oracle).

6.1 Pseudo-desktop Collections
Three pseudo-desktop collections described in Kim et al.

[9] was used for this experiments. Each collection contained
typical file types in desktop like email, webpage and office
document related to three individuals, as shown in Table 1.
For email, the indexed fields were title, content, date, sender

and receiver. For other document types, title, URL, abstract,
date and text were indexed.

For generating queries, we first chose the target document
and took each query word based on the term frequency in
a randomly chosen field of the document. For instance, the
query ‘org address’ shown in Table 2 was generated by taking
the term ‘org’ from the URL field and ‘address’ from the
title field, respectively. Kim et al. reported that queries
generated using this method have the highest similarity to
a set of manual queries.

For each experiment, we generated 50 queries of average
length 2 where target documents were taken from each sub-
collection in proportion to the number of documents it con-
tains. Table 2 shows several queries we used. Lastly, all
the experiments were repeated three times since the query
generation procedure involves some randomness.

6.1.1 Prediction Accuracy

In Table 3, we compare the accuracy of type prediction in
pseudo-desktop collections for the CQL and FQL methods,
where FQL shows a clear improvement over CQL method.
Although this result should be interpreted with some reser-
vations because we are using simulated queries, the same
trend was found in the experiment using manual queries.
We also observe that both methods show reasonable perfor-
mance in the Jack and Tom collections, which contain far
more email documents than other types. From this, we can
conclude that both methods are relatively robust against an
imbalance of sub-collection sizes.

6.1.2 Retrieval Performance

We now report the retrieval performance for the same

Table 3: Accuracy of type prediction in pseudo-
desktop collections.

Jack Tom Kate
CQL 0.606 0.637 0.38
FQL 0.773 0.807 0.64

Table 5: Number and average length of documents
in a computer science (CS) collection.

Type #Docs Length
email 851 731
news article 170 352
calendar item 354 306
webpage 4727 539
office document 1887 357

queries in Table 4. The first noticeable trend is that both the
choice of type-specific retrieval model and type prediction
method has a big impact on the final result. Especially, Or-
acle type prediction was much better than the FQL method,
which in turns outperformed CQL across all collections. On
the other hand, the Best retrieval method was not much
better than the PRM-D and PRM-S methods.

6.2 CS Collection
Next we report on experiments using a computer science

(CS) collection, where the documents of various types are
collected from many public sources in the Computer Science
department the authors belong to. As shown in Table 5, the
CS collection contained emails from the department mailing
list, news articles and blog postings on technology, calendar
items of department announcements, webpages and office
documents crawled from the department and lab websites.
The documents in the CS collection are much shorter than
in the other pseudo-desktop collections.

For all document types, title and content fields were in-
dexed. Also, there were type-specific fields such as date,
sender and receiver for email, tag and author for news ar-
ticles, starttime and location for calendar items, URL for
webpages, filename for office documents.

We used the DocTrack game for collecting queries. We
had 20 participants who were students, faculty members and
staff in the department, all familiar with the documents in
the collection. In total, 66 DocTrack games were played and
984 queries were collected using 882 target documents, some
of which are shown in Table 6.

The average length of queries was 3.97, which is longer
than the reported length (2) in the other desktop search
studies [6]. This may be due to people paying more attention
to the task in the competitive game setting compared to
typical desktop search. The standard deviation (1.85) of
the query length was also quite high, implying that there
is a considerable variation among the querying behavior of
individuals.

The participants were generally in favor of the game, say-
ing that playing the game was fun and felt reasonably similar
to their search experience in the desktop.

Since some of features required data for estimation, we
used 528 queries to obtain query-log feature (QQL) values
and training parameters for other features. The rest (456)
of the queries were used to evaluate the type prediction per-
formance of features and combination methods by 10-fold

Table 6: Query examples with corresponding target
collections for a CS collection.

Query Target Collection
reminder jeffrey johns email
2010 candidate weekend calendar item
yanlei xml dissemination office document
cs646 homework html html

Table 8: Significance test result for type prediction
accuracy in a CS collection. Each cell shows the p-
value of paired t-test between the accuracy of two
methods.
Method CQL FQL Grid RankSVM MultiSVM
CQL 0.03 0.00 0.00 0.00
FQL 0.69 0.27 0.02
Grid 0.41 0.02
RankSVM 0.07

cross-validation. For the retrieval experiments, since many
queries did not return any documents, we used only queries
where the relevant document was ranked in the Top 50 result
set.

6.2.1 Prediction Accuracy

Table 7 summarizes the prediction accuracy result, com-
paring two of the best-performing single feature runs (CQL
/ FQL) and combination methods (Grid / RankSVM / Mul-
tiSVM). The result shows that all the combination runs im-
proved performance over best single feature runs given by
FQL, which outperformed CQL in this collection as well.
MultiSVM was shown to be the most effective among combi-
nation methods. This is understandable considering that we
had one target collection for each query, which is a natural
setting for multi-class classification. RankSVM was slightly
better than Grid yet the difference was not significant.

The result of a significance test is reported in Table 8,
which shows that the performance differences between CQL
and all the other methods are significant with a p-value of
0.05 and that MultiSVM outperforms all the other meth-
ods significantly with a p-value of 0.1 (using paired t-test).
Overall, this means that suggested type prediction method
(FQL) improves the performance of the CQL method and
that the combination of features improves the performance
further.

6.2.2 Retrieval Performance

Table 9 shows the retrieval performance, comparing four
retrieval methods (DLM / PRM-S / PRM-D / Best) and the
same set of type prediction methods as above in addition to
Oracle and Uniform methods.

The result mostly shows the same trends as the pseudo-
desktop collections despite the big difference in experimental
conditions (note that queries were algorithmically generated
for the pseudo-desktop collections). FQL was better than
CQL and all the combination methods outperformed CQL
and FQL significantly (with a p-value of 0.05 using paired
t-test).

The only exception is that the performance of MultiSVM
was slightly worse than RankSVM. Given the superior pre-
diction accuracy of MultiSVM, it seems that the procedure
of converting the SVM output into the type prediction score
caused some problems. We can also see that Oracle type pre-

Table 4: Retrieval performance in three pseudo-desktop collections using different type-specific retrieval
methods and type prediction methods.

Jack Tom Kate
Average

Uniform CQL FQL Best Uniform CQL FQL Best Uniform CQL FQL Best

DLM 0.129 0.159 0.27 0.331 0.104 0.123 0.192 0.224 0.126 0.12 0.237 0.294 0.194
PRM-S 0.152 0.212 0.326 0.403 0.15 0.209 0.289 0.348 0.232 0.239 0.383 0.532 0.346
PRM-D 0.148 0.219 0.335 0.403 0.155 0.204 0.289 0.346 0.25 0.245 0.387 0.538 0.355
Best 0.154 0.225 0.336 0.414 0.157 0.217 0.302 0.361 0.241 0.245 0.388 0.542 0.354

Average 0.146 0.204 0.317 0.388 0.141 0.188 0.268 0.32 0.212 0.212 0.349 0.477

Table 7: Accuracy of type prediction for best-performing single feature runs and combination methods in a
CS collection.

Method CQL FQL Grid RankSVM MultiSVM
Accuracy 0.708 0.743 0.747 0.758 0.808

Table 11: Correlation among the prediction per-
formance of features. Each cell shows the pearson
correlation coefficient between the accuracy of two
methods.
Feature FQL Dict QQL Clarity GAVG ReDDE
CQL 0.68 0.10 0.29 -0.03 -0.01 0.04
FQL 0.05 0.32 0.01 -0.01 0.01
Dict 0.28 0.02 -0.00 0.04
QQL -0.02 0.04 0.05
Clarity 0.17 0.05
GAVG 0.62

diction method and the Best retrieval method outperform
other methods, which leaves room for further improvement
in both aspects.

6.2.3 Leave-one-out Prediction Accuracy

For further analysis on the effectiveness of individual fea-
tures, we next report the result of single-feature and leave-
one-out experiments in Table 10, where we used only one
feature (single-feature) or all but one feature (leave-one-out)
to measure the performance.

All in all, features with high single-feature performance
had bigger impacts when they were omitted, as shown in
the case of content-based features (CQL / FQL) and query
log feature (QQL). On the other hand, features based on
the initial retrieval result (GAVG / ReDDE) was shown to
be ineffective. Presumably, this is because the documents of
different types had different characteristics in this collection,
which make the scores incomparable.

On the other hand, in some cases, low single-feature pre-
diction accuracy did not necessarily translate into small dif-
ference in the leave-one-out experiment. The dictionary-
based feature (Dict) and the performance prediction feature
(Clarity) were shown to have a high impact on combination
performance despite having the lowest single-feature results.

The result above makes more sense when considered to-
gether with the correlation among features in Table 11. Meth-
ods based on collection term statistics (CQL / FQL) and top
result set (GAVG / ReDDE) have high correlations within
the group, which explains why performance does not suffer
much when one of high-performing features (e.g. CQL and
FQL) are omitted. On the other hand, that QQL does not
correlate highly with any other features explains its high
impact on the leave-one-out experiment.

6.2.4 Personalization of Feature Combination

Table 12: Feature weights trained using queries
written by each user. The last row shows the
weights trained using all queries. All the names are
anonymized.
User ID WCQL WFQL WDict WQQL WClarity

Jane 1 1 0.15 1 0.09
Yao 0.38 0.56 0.15 1 0
Rajiv 0.58 1 0 0 0
Tim 0.62 1 0 1 0.18
David 1 1 0 0 0
All Users 1 1 0 1 0.09

In the experiments so far we have used the queries from all
participants together. Another benefit of the feature com-
bination approach is it can adjust the result based on the
querying behavior of each individual. For instance, if a user
frequently includes terms that indicate a particular collec-
tion, the learning method can improve type prediction per-
formance by assigning higher weight to the Dict or QQL
features.

To explore this potential value of this personalized type
prediction, we tried training feature combination methods
only with queries written by each user and looked at how
much variation it causes for resulting feature weights.

The result in Table 12 compares the weights trained for
each user. It shows that content-based features (CQL /
FQL) are not very helpful for some user (Yao), whereas
query log does not make a difference for other users (Rajiv
/ David). Although this is a preliminary result, the result
weights show considerable variation, implying that person-
alized training data produced different results for each user.
We leave the more analysis of this benefit of personalization
for future work.

7. CONCLUSION & FUTURE WORK
In this paper, we suggest a retrieval model for desktop

search where type-specific retrieval results are merged into
the final rank list based on type prediction scores. Using
pseudo-desktop and CS collections, we demonstrated that
improving the type prediction method can produce signifi-
cantly better final retrieval performance.

We also introduced field-based collection query likelihood
(FQL) – a new type prediction method that exploits type-
specific metadata – which shows superior performance to
competitive baseline methods in both collections we tested.
Although FQL is used in the context of desktop search, it

Table 9: Retrieval performance in a CS collection using different type-specific retrieval methods and type
prediction methods.

Uniform CQL FQL Grid RankSVM MultiSVM Oracle Average
DLM 0.343 0.507 0.53 0.552 0.563 0.556 0.674 0.526
PRM-S 0.349 0.501 0.518 0.518 0.551 0.547 0.674 0.52
PRM-D 0.36 0.518 0.536 0.536 0.567 0.564 0.694 0.537
Best 0.372 0.548 0.564 0.590 0.596 0.594 0.72 0.563
Average 0.356 0.518 0.537 0.549 0.569 0.565 0.691

Table 10: Accuracy of type prediction for single-feature and leave-one-out experiment. Leave-one-out accu-
racy shows the percentage of decrease for leave-one-out experiment from the experiment using all features.

Method CQL FQL Dict QQL Clarity GAVG ReDDE
Single-feature Accuracy 0.708 0.743 0.201 0.579 0.240 0.255 0.207
Leave-one-out Accuracy -0.6% -1.7% -0.6% -3.1% -0.6% -0.0% -0.0%

can be used as a resource selection method for vertical or
federated search, as long as each document has field struc-
ture.

Moreover, we developed a human computation game for
collecting queries in a more realistic setting and used this
data to train discriminative learning models that combines
type prediction methods as features. Our results show that
the combination method can improve type prediction per-
formance compared to any of existing methods. We also
explored the benefit of personalizing type prediction results,
which may potentially improve the performance further.

Our work leaves many interesting challenges. Although
this work showed the value of improving type prediction
performance, better type-specific retrieval and result merg-
ing algorithms should bring further performance gains. For
example, we used only textual features for sub-collection re-
trieval, and it should be possible to incorporate type-specific
features (e.g. PageRank score for webpage).

Also, although we focused on the known-item search task
in this paper, the retrieval model suggested here will be
equally applicable for the ad-hoc search scenario. To gather
training data for this scenario, the DocTrack game can be
modified to gather ad-hoc queries using topic descriptions
and corresponding sets of relevant documents.

8. ACKNOWLEDGEMENTS
This work was supported in part by the Center for In-

telligent Information Retrieval and in part by NSF grant
#IIS-0707801. Any opinions, findings and conclusions or
recommendations expressed in this material are the authors’
and do not necessarily reflect those of the sponsor.

9. REFERENCES
[1] J. Arguello, J. Callan, and F. Diaz.

Classification-based resource selection. In CIKM ’09,
pages 1277–1286, New York, NY, USA, 2009. ACM.

[2] J. Arguello, F. Diaz, J. Callan, and J.-F. Crespo.
Sources of evidence for vertical selection. In SIGIR

’09, pages 315–322, New York, NY, USA, 2009. ACM.

[3] J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In
SIGIR ’95, pages 21–28, New York, NY, USA, 1995.
ACM.

[4] S. Chernov, P. Serdyukov, P.-A. Chirita,
G. Demartini, and W. Nejdl. Building a desktop

search test-bed. In ECIR’ 07, pages 686–690, 2007.

[5] S. Cronen-Townsend, Y. Zhou, and W. B. Croft.
Predicting query performance. In SIGIR ’02, pages
299–306, New York, NY, USA, 2002. ACM.

[6] S. Dumais, E. Cutrell, J. Cadiz, G. Jancke, R. Sarin,
and D. C. Robbins. Stuff i’ve seen: a system for
personal information retrieval and re-use. In SIGIR

’03, pages 72–79, New York, NY, USA, 2003. ACM.

[7] D. Elsweiler and I. Ruthven. Towards task-based
personal information management evaluations. In
SIGIR ’07, pages 23–30, New York, NY, USA, 2007.
ACM.

[8] T. Joachims. Optimizing search engines using
clickthrough data. In KDD ’02, pages 133–142, New
York, NY, USA, 2002. ACM.

[9] J. Kim and W. B. Croft. Retrieval experiments using
pseudo-desktop collections. In CIKM ’09, pages
1297–1306. ACM, 2009.

[10] J. Kim, X. Xue, and W. B. Croft. A Probabilistic

Retrieval Model for Semi-structured Data. In
Proceedings of ECIR ’09. Springer, 2009.

[11] H. Ma, R. Chandrasekar, C. Quirk, and A. Gupta.
Improving search engines using human computation
games. In CIKM’ 09, pages 275–284, 2009.

[12] P. Ogilvie and J. Callan. Combining document
representations for known-item search. In SIGIR ’03,
pages 143–150, New York, NY, USA, 2003. ACM.

[13] W. Press, S. Teukolsky, W. Vetterling, and
B. Flannery. Numerical Recipes in C. Cambridge
University Press, Cambridge, UK, 2nd edition, 1992.

[14] S. Robertson, H. Zaragoza, and M. Taylor. Simple
bm25 extension to multiple weighted fields. In CIKM

’04, pages 42–49, New York, NY, USA, 2004. ACM.

[15] J. Seo and W. B. Croft. Blog site search using
resource selection. In CIKM ’08, pages 1053–1062,
New York, NY, USA, 2008. ACM.

[16] L. Si and J. Callan. Relevant document distribution
estimation method for resource selection. In SIGIR

’03, pages 298–305, New York, NY, USA, 2003. ACM.

[17] L. Si, R. Jin, J. Callan, and P. Ogilvie. A language
modeling framework for resource selection and results
merging. In CIKM ’02, pages 391–397, New York, NY,
USA, 2002. ACM.

[18] P. Thomas and D. Hawking. Server selection methods

in personal metasearch: a comparative empirical
study. Inf. Retr., 12(5):581–604, 2009.

[19] L. von Ahn and L. Dabbish. Designing games with a
purpose. Commun. ACM, 51(8):58–67, 2008.

