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ABSTRACT
Combining multiple documents to represent an information
object is well-known as an effective approach for many Infor-
mation Retrieval tasks. For example, passages can be com-
bined to represent a document for retrieval, document clus-
ters are represented using combinations of the documents
they contain, and feedback documents can be combined to
represent a query model. Various techniques for combina-
tion have been introduced, and among them, representation
techniques based on concatenation and the arithmetic mean
are frequently used. Some recent work has shown the poten-
tial of a new representation technique using the geometric
mean. However, these studies lack a theoretical foundation
explaining why the geometric mean should have advantages
for representing multiple documents. In this paper, we show
that the arithmetic mean and the geometric mean are ap-
proximations to the center of mass in certain geometries,
and show empirically that the geometric mean is closer to
the center. Through experiments with two IR tasks, we
show the potential benefits for geometric representations, in-
cluding a geometry-based pseudo-relevance feedback method
that outperforms state-of-the-art techniques.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models

General Terms
Algorithms, Measurement, Experimentation

Keywords
multiple documents, information geometry, geometric mean

1. INTRODUCTION
A typical goal in Information Retrieval (IR) is to find

relevant documents, where we rank the documents using
a representation for a single document. Often, however, a
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representation for multiple documents is needed. For exam-
ple, tasks such as relevance feedback, passage retrieval and
resource selection in distributed information retrieval or in
aggregated search, use representations for sets of multiple
documents.

One of standard approaches for relevance feedback is to
estimate an underlying relevance model from given feedback
documents and sample likely terms from the model for query
expansion. That is, the estimated underlying model can be
considered as a representation of the feedback documents.
In passage retrieval, representations of text passages can be
used to rank passages or documents. In the latter case, we
represent a document using a combination of some or all of
its passages. In resource selection tasks, the resource or col-
lection is represented using the documents in the collection.

As many tasks require representations for multiple docu-
ments, various approaches have been introduced. Among
them, representation techniques based on the arithmetic
mean and concatenation are frequently used. Representa-
tion techniques based on the arithmetic mean literally com-
pute the arithmetic mean of multiple language models or
vector representations. Representation techniques based on
concatenation make a large document by concatenating mul-
tiple documents and use a language model or vector to rep-
resent the large document.

In addition to traditional group representation techniques,
some recent studies show the potential of a new representa-
tion technique, the geometric mean representation of lan-
guage models [26, 30, 11, 31]. Liu and Croft [26] com-
pared various representation techniques for cluster retrieval
and demonstrated that representations using the geomet-
ric mean outperformed others via empirical evaluation. Seo
and Croft [30] applied a resource selection technique based
on the geometric mean to blog site search. Moreover, Elsas
and Carbonell [11] and Seo et al. [31] showed that a thread
representation using the geometric mean of postings in the
thread can be a good choice for online forum search.

The previous work which uses the geometric mean to rep-
resent a group of documents, however, did not theoretically
analyze the geometric mean in the language modeling frame-
work. In other words, although they have demonstrated the
performance of representation techniques based on the geo-
metric mean empirically, theoretical evidence or the assump-
tions behind the geometric mean have not been sufficiently
addressed to justify its use in IR.

Therefore, in this paper, we give a theoretically grounded
explanation for geometric mean-based techniques for rep-
resenting multiple documents. To do this, we consider In-
formation Geometry as a tool and discuss how the arith-
metic mean as well as the geometric mean can be inter-



preted in certain geometries. More specifically, we show that
the arithmetic mean and the geometric mean relate to the
Fréchet sample mean which minimizes the Fréchet sample
function. Furthermore, we empirically show that the geo-
metric mean is closer to the Fréchet mean.

In addition, we address two applications considering the
geometric interpretation: cluster retrieval and pseudo-relevance
feedback. Particularly, for pseudo-relevance feedback, we in-
troduce a variation of the relevance model [21], the geometric
relevance model, and show that this new approach performs
better than the relevance model.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews previous work. In Section 3, we introduce
the Fréchet mean and geometric representations correspond
to the Fréchet mean in two different metric spaces using
Information Geometry. In Section 4, we provide empirical
evidence for the geometric representations through experi-
ments for two IR tasks. Section 5 discusses other evidence
for the geometric representations. Section 6 concludes this
paper.

2. PREVIOUS WORK
Combining multiple evidence is one of the most frequently

addressed topics in Information Retrieval. Belkin et al.
[2] showed that different representations of the same infor-
mation object leads to different results and combinations
of such representations can improve retrieval performance.
Various combination heuristics suggested by Fox and Shaw
[12] and analyzed by Lee [23] are still used in many IR
tasks such as passage retrieval and resource selection. Using
passage-level evidence [7, 25, 3] for document retrieval nec-
essarily requires combination techniques. Resource selection
where a collection is represented by its own documents [6,
32] actively uses combination techniques as well.

Relevance feedback (and pseudo-relevance feedback) is an-
other task using combination-based representation techniques.
To estimate a query model for query expansion, the top
ranked documents are combined. Rocchio [29] introduced a
feedback technique to combine positive or negative feedback
documents in vector spaces. Lavrenko and Croft [21] in-
troduced a technique that estimates a underlying relevance
model in the language modeling framework. In fact, these
standard relevance feedback approaches implicitly use the
arithmetic mean. Recently, Collins-Thompson and Callan
[9] used a parametric approach using re-sampling to esti-
mate a posterior Dirichlet distribution for the documents.
That is, they use the mean and the variance of the Dirichlet
distribution to get a feedback model.

The geometric mean-based representation technique was
relatively recently introduced. Liu and Croft [26] demon-
strated that representation by the geometric mean works
well for cluster retrieval via comparisons with vairous rep-
resentation techniques. Seo and Croft [30] suggested a re-
source selection technique by the geometric mean for blog
site retrieval. Furthermore, the technique was shown to work
well for thread search in online forums [11, 31]. The geomet-
ric mean is often used in other fields. For example, Kogan
et al. [18] used the geometric mean for k-means cluster-
ing. Veldhuis [34] showed that a centroid of the symmetri-
cal Kullback-Leibler divergence is related to the arithmetic
mean and the normalized geometric mean.

In this paper, to justify the use of the geometric mean
in IR, we find evidence from Information Geometry. Rao

[28] and Jeffreys [14] are the first people who considered the
Fisher information metric as a Riemannian metric. Later,
Efron [10] focused on differential geometry in statistics con-
sidering the curvature of statistical models. Recently, Lebanon
[22] applied the theory to many machine learning tasks. See
Amari and Nagaoka [1] and Kass and Vos [16] for compre-
hensive introduction to Information Geometry.

3. GEOMETRY OF MULTIPLE DOCUMENTS
We introduce the Fréchet mean and derive the mean in two

different metric spaces, i.e., the Euclidean metric space and
the Riemannian manifold defined by the Fisher information
metric.

3.1 Fréchet Mean
Let us consider a Riemannian manifold M with a distance

measure dist(x,y) where x and y are points on the manifold.
Assume that we have a distribution Q on a convex set U ⊂
M. Now we define a function F : M → R as follows:

Φ(c) =

∫
p∈U

dist2(c,p)Q(dp)

This function is known as the Fréchet function. A set
of points which minimize the function is called the Fréchet
mean set of Q. If there is only a point in the set, the point is
called the Fréchet mean. This general notation for a center
or centroid associated with a probability distribution was
introduced by Fréchet [13] and Karcher [15]. This mean is
called by various names, e.g., the center of mass, barycenter,
Karcher mean and Fréchet mean. In this work, we refer to
this mean as the Fréchet mean1. The concept of the Fréchet
mean is general and not limited to any specific metric; ac-
cordingly, this can be applied to any metric space. Indeed,
as we will see soon, it also generalizes the ordinary Euclidean
mean.

Kendall [17] proved that if the support of Q is in a geodesic
ball of sufficiently small radius r, then one Fréchet mean
uniquely exists. As we see later, we consider a statistical
manifold for multinomial distributions, and the distributions
are mapped onto a simplex or a positive sphere. Since the
mapped area is sufficiently small, a unique Fréchet mean
exists. For example, in case of a sphere, the radius of the
geodesic ball is π/4 and the positive sphere is contained in
the ball.

If we have n unique points p1,p2, · · · ,pn in m i.i.d. sam-
ples from distribution Q, then we consider the sample Fréchet
mean which minimizes the Fréchet sample function given by

Φ̄(c) =
n∑

i=1

dist2(c,pi)Q̂(pi) (1)

where Q̂ is an empirical distribution estimated from the sam-
ples.

Bhattacharya and Patrangenaru [5] showed that every

measurable choice from the Fréchet sample mean set of Q̂ is
a strongly consistent estimator of the Fréchet mean of Q. In
this paper, we consider multiple documents to represent as
samples and the Fréchet sample mean as a representation.

1Strictly speaking, this is the intrinsic Fréchet mean in that
we use a geodesic distance. However, since we address only
the intrinsic Fréchet means in this paper, we omit term “in-
trinsic”.
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Figure 1: Assuming the Euclidean metric space, a n + 1 dimensional multinomial distribution is mapped to a
point in the n-simplex in Euclidean space (left). Assuming the Riemannian manifold defined by the Fisher
information metric, the same point is mapped to a point in the positive n-sphere of radius 2 (right).

Therefore, we address how to compute the sample Fréchet
mean from the multiple documents in the following sections.

3.2 Euclidean Metric space
Let’s begin with the Euclidean metric space. We assume

that terms observed in a document are samples from a multi-
nomial distribution and each document has a distinct distri-
bution. Assuming a conjugate Dirichlet prior, we estimate
the multinomial distribution, i.e. a language model, using
Dirichlet smoothing [35] as follows:

Pr(w|D) =
tfw,D + μ · cfw/|C|

|D| + μ
(2)

where tfw,D is the occurrence of term w in document D, cfw

is the occurrence of w in a set of observations C considered
for the prior distribution (typically, a corpus), |D| is the
number of observations, i.e. the length of D, |C| is the length
of C, and μ is the Dirichlet smoothing parameter. Note that
P (w|D) is a parameter which corresponds to outcome w in
the multinomial distribution.

The size of vocabulary of a language model is defined as
the number of terms observed in C, which also determines
the number of dimensions of the Euclidean metric space for a
multinomial distributions. When the number of dimensions
is n + 1, a multinomial distribution corresponds to a point
in n-simplex Pn which is defined as follows:

Pn =

{
x ∈ R

n+1 : ∀i, x(i) > 0,
n+1∑
i=1

x(i) = 1

}

An example of 2-simplex embedded in 3-dimensional Eu-
clidean space is shown in Figure 1.

Since a geodesic linking two points in n-simplex is a straight
line, the distance between two multinomial distributions is
calculated by the Euclidean distance as follows:

dist(x,y) =

√√√√n+1∑
i=1

(x(i) − y(i))2

Consider multinomial distributions of k given documents,
p1,p2, · · · ,pk as samples from distribution Q over the n-
simplex. Then, the Fréchet sample function is given by

Φ̄(c) =
k∑

i=1

Q̂(pi)

n+1∑
j=1

(c(j) − p
(j)
i )2

Therefore, we have the following optimization problem to

obtain the Fréchet sample mean.

minimize

k∑
i=1

Q̂(pi)

n+1∑
j=1

(c(j) − p
(j)
i )2

subject to
n+1∑
j=1

c(j) = 1, ∀j, c(j) > 0 (3)

It is trivial to solve this problem using the method of
Lagrange multipliers. Finally, we have a solution as follows:

c(j) =

k∑
i=1

p
(j)
i Q̂(pi) (4)

This is the Fréchet sample mean in the Euclidean metric
space. Indeed, if Q̂(pi) is uniform, i.e, 1/k, then this is
the same as the ordinary Euclidean mean or the arithmetic
mean. Therefore, the Fréchet sample mean in the Euclidean
metric space generalizes the arithmetic mean.

We use the Fréchet sample mean as a representative multi-
nomial distribution for the given group of multiple docu-
ments.

3.3 Riemannian manifold defined by the Fisher
information metric

Many IR approaches assume that data is embedded in the
Euclidean geometry. However, assumptions of non-Euclidean
geometries may lead to a better understanding of data. We
here consider a Riemannian space where a Riemannian met-
ric is the Fisher information metric. This metric space is
used for investigating the geometric structures of statistical
models in most of the Information Geometry literature [28,
1, 16]. Furthermore, a number of approaches assume this
metric space for statistical inference and machine learning
[20, 22, 1]. Particularly, for text classification, Lafferty and
Lebanon [20] showed that techniques based on this metric
space perform better than techniques based on the Euclidean
metric.

The Fisher information metric is defined as follows:

gi,j(θ) =

∫
∂ log p(x;θ)

∂θ(i)

∂ log p(x;θ)

∂θ(j)
p(x;θ)dx

= Eθ

[
∂ log p(x;θ)

∂θ(i)

∂ log p(x;θ)

∂θ(j)

]

where θ is a point in a differential manifold and corresponds
to a statistical model in a parametric familty p(x;θ), i and
j are indices for a coordinate system. In this work, it is easy



to think that θ is a multinomial model for a document while
i and j are indices for unique terms in vocabulary.

This metric has some nice properties. By Cramér-Rao in-
equality [28], the variance of unbiased estimators is bounded
by the inverse of the metric. Particularly, an unbiased es-
timator achieving the bound is called an efficient estimator
which is the best unbiased estimator because it minimizes
the variance. Furthermore, by Chentsov’s theorem [8], the
Fisher information metric is the only Riemannian metric
which is invariant under basic probabilistic transformations.

We now look into the Riemannian geometry with the
Fisher information metric as a Riemannian metric. First
of all, let us consider the positive n-sphere of radius 2, S̃+

n

instead of n-simplex Pn.

S̃+
n =

{
x ∈ R

n+1 : ∀i, x(i) > 0,

n+1∑
i=1

(x(i))2 = 22

}

Figure 1 shows an example of the positive 2-sphere of radius
2.

We can define transformation φ : Pn → S̃+
n by

z(j) = φ(x)(j) = 2
√

x(j)

The inverse transformation φ−1 is well known to pull back
the Fisher information metric on Pn to the Euclidean metric
on S̃+

n [16, 22]. Therefore, the transformation is an isometry,
and we can compute the distance between two statistical
models by the Fisher information metric using the geodesic
distance between two corresponding points on the sphere. In
other words, the distance is the length of the shortest curve
linking two corresponding points on the sphere and is given
by

dist(x,y) = 2 arccos

(
n+1∑
j=1

√
x(j)y(j)

)

This is called the information distance.
With this distance, we have the following Fréchet sample

function.

Φ̄(c) = 4
k∑

i=1

arccos2
(

n+1∑
j=1

√
x(j)y(j)

)
Q̂(pi)

Unfortunately, there is no closed form solution for the Fréchet
sample mean which minimizes this function. Although we
can use some convex optimization techniques, such approaches
may be impractical in case that n is large. Indeed, in many
IR tasks, n + 1 is the size of vocabulary and can be very
large.

Therefore, to find the Fréchet sample mean, we try an ap-
proximation approach using the Kullback-Leibler (KL) di-
vergence which is defined as follows:

D(x||y) =

n+1∑
j=1

x(j) log
x(j)

y(j)

As y → x, approximately by the Taylor expansion,

log x(j) − log y(j)

= − (y(j) − x(j))

x(j)
+

(y(j) − x(j))2

2(x(j))2
+ O((y(j) − x(j))3)

From this,

D(x||y) + D(y||x)

=

n+1∑
j=1

[
x(j)

(
log x(j) − log y(j)

)
+ y(j)

(
log y(j) − log x(j)

)]

=
1

2

n+1∑
j=1

(y(j) − x(j))2

x(j)
+

1

2

n+1∑
j=1

(x(j) − y(j))2

y(j)
+ O(||y − x||3)

(5)

Since y approaches x along geodesic c linking them, we
can parameterize the path by arclength s so that c(s0) = x,
c(s1) = y and s1 − s0 = dist(x,y). The difference between
two points is expressed by a product of the geodesic length
and the tangent vector to the curve as follows:

y(j) − x(j) = (s1 − s0)
∂c(j)

∂s
= dist(x,y)

∂c(j)

∂s

Then, the first term in Equation (5) can be rewritten as
follows:

1

2

n+1∑
j=1

1

x(j)

(
dist(x,y)

∂c(j)

∂s

)2

=
1

2
dist2(x,y)

n+1∑
j=1

1

c(j)(s)

(
∂c(j)

∂s

)2

=
1

2
dist2(x,y)

n+1∑
j=1

c(j)(s)

(
∂ log c(j)

∂s

)2

=
1

2
dist2(x,y)I(s)

where I(s) is the Fisher information for s. By definition of
the length of the curve,∫ s1

s0

I(s)ds = dist(x,y) = s1 − s0

Hence, I(s) = 1, and we finally have the following:

1

2

n+1∑
j=1

(y(j) − x(j))2

x(j)
=

1

2
dist2(x,y) (6)

Similarly, the second term in Equation (5) can be also
written as Equation (6). Therefore, we have an approxima-
tion of Equation (5) as follows:

D(x||y) + D(y||x) = dist2(x,y) + O(||y − x||3)
≈ dist2(x,y)

Similar relationships between divergences and distances can
be founded in various texts [1, 16].

From this approximation, we can express the Fréchet sam-
ple mean with the KL divergence as follows:

Φ̄(c) ≈
k∑

i=1

(D(pi||c) + D(c||pi)) Q̂(pi) (7)

This means that finding the Fréchet sample mean is reduced
to finding the symmetrized Bregman centroid cF [27] which
is defined as follows:

cF = arg min
c

k∑
i=1

1

2
(DF (pi||c) + DF (c||pi)) Q̂(pi)

where DF (x||y) is the Bregman divergence defined by F (x)−
F (y)−〈x−y,∇F (y)〉 and F is a generator function. For ex-

ample, if F is the negative Shannon entropy, i.e.
∑

j x(j) log x(j),



then the Bregman divergence is the same as the KL diver-
gence. That is, the Bregman divergence is a generalized di-
vergence. In addition, right-sided centroid cF

R and left-sided
centroid cF

L are defined as follows:

cF
R = arg min

c

k∑
i=1

DF (pi||c)Q̂(pi)

cF
L = arg min

c

k∑
i=1

DF (c||pi)Q̂(pi)

Nielsen and Nock [27] show that symmetrized Bregman
centroid cF lies on a geodesic linking cF

R and cF
L via the

Bregman Pythagoras’ theorem. We can apply the result to
the KL divergence.

We can easily compute cF
R using the method of Lagrange

multipliers with the same constraints as Equation (3), and
the solution coincides with the arithmetic mean as follows:

cF
R

(j)
=

k∑
i=1

Q̂(pi)p
(j)
i

Similarly, using the method of Lagrange multipliers, we
compute cF

L as follows:

cF
L

(j)
=

k∏
i=1

(
p
(j)
i

Q̂(pi)
)

/
n+1∑
j=1

k∏
i=1

(
p
(j)
i

Q̂(pi)
)

If Q̂ = 1/k, then this is the ordinary normalized geometric
mean.

Therefore, the symmetrized Bregman centroid when F is
the negative Shannon entropy, or the approximated Fréchet
sample mean lies on the geodesic linking the arithmetic mean
and the normalized geometric mean.

We consider the two means as approximations to the Fréchet
sample mean and take the following approach to decide a
representation among them:

1. Compute the arithmetic mean cA and the normalized
geometric mean cG from multinomial models of mul-
tiple documents.

2. Compute Φ̄(cA) and Φ̄(cG) by Equation (1)

3. As a representation, choose cG if Φ̄(cA) > Φ̄(cG), cA

otherwise.

That is, we choose a point which is closer to the Fréchet
sample mean as a representation. We call this approach
“geometric selection”.

4. EXPERIMENTS
To evaluate representation techniques derived in the previ-

ous section, we conduct experiments for two different tasks:
cluster retrieval and pseudo-relevance feedback.

For the experiments, we use 3 standard collections from
TREC. Table 1 shows the statistics of the collections. To
estimate a language model from each document, we use the
Dirichlet smoothing. For each task, the initial results are ob-
tained by query-likelihood scores which are computed under
an independence assumption as follows:

P (Q|D) =
∏
q∈Q

P (q|D)

where P (q|D) is estimated by Equation (2).

AP WSJ GOV2
TREC topics 51-200 51-200 701-800

#docs 242,918 173,252 25,205,179

Table 1: Test collections.

For index building, we used the Indri system [33]. Each
document was stemmed by the Krovetz stemmer and stopped
by a standard stopword set. To test the significance of re-
sults, we performed a randomization test.

4.1 Cluster Retrieval
Cluster retrieval involves finding the best document clus-

ter [24, 26]. We first retrieve the top 100 documents for
each query according to query-likelihood scores. Next, we
perform kNN clustering [19]. That is, assuming that each
returned document is a cluster centroid, a cluster is formed
by its k − 1 nearest neighbors (k is set to 5). We use co-
sine similarity as a similarity measure. In fact, since cosine
similarity assumes the Euclidean metric space, other simi-
larity measures may perform better for our representation
technique which assumes a different metric. However, since
arbitrary clusters are assumed in cluster retrieval, we use
the same similarity measure as used in previous work [26].

Once we have clusters, we represent each cluster by the
arithmetic mean of language models of documents in a clus-
ter assuming the Euclidean metric. On the other hand,
assuming the Fisher information metric, we can determine
a representation via geometric selection between the arith-
metic mean and the normalized geometric mean of the doc-
uments.

Evaluation of various representation techniques such as
concatenation or CombMax [12] for cluster retrieval has been
already done by Liu and Croft [26]. They concluded that
the geometric mean representation outperforms other tech-
niques. Therefore, we do not intend to repeat the same
work. Instead, we focus on geometric interpretations for
experimental results.

For a fair comparison, the same clusters are given to each
representation technique. The only parameter to be tuned is
the smoothing parameter for the initial results. We set the
parameter so that Mean Average Precision (MAP) for the
initial results by the query-likelihood P (Q|D) is maximized.
Evaluation is performed using all topics. Since our goal is to
find the best cluster, we use Precision at 5 (P@5) in order
to evaluate the cluster first ranked by each representation
technique, i.e. how many relevant documents the cluster
has. Table 2 shows the results. In addition to the arithmetic
mean and geometric selection, we present results using the
geometric mean as well.

For all collections, representations by the geometric mean
and geometric selection show better performance than rep-
resentations by the arithmetic mean. Except for GOV2,
The improvements are statistically significant. These exper-
iments indicate some interesting points. First, in geometric
selection, the normalized geometric means were selected as
representations which minimize the Fréchet sample function
for all queries across all collections. In other words, the nor-
malized geometric means are better approximations to the
Fréchet sample mean. Second, since the normalized geomet-
ric means selected by geometric selection lead to consistently
better retrieval results, we may say that the goodness of a
representation for this task is related to how close the rep-



AP WSJ GOV2
A-MEAN 0.3053 0.4747 0.5374
G-MEAN 0.3347∗ 0.5040∗ 0.5576
SELECT 0.3347∗ 0.5027∗ 0.5556

Table 2: Results for cluster retrieval. A-MEAN, G-
MEAN and SELECT mean representations by the
arithmetic mean, by the geometric mean, and by
geometric selection, respectively. The numbers are
P@5 scores. A * indicates a statistically significant
improvement over A-MEAN (p < 0.05).

resentation is to the center of mass, i.e. the Fréchet sample
mean. Moreover, this justifies the assumption of the geom-
etry defined by the Fisher information metric. Lastly, since
geometric selection does not consider the geometric mean
but the normalized geometric mean, the results in the ‘SE-
LECT’ row are exactly the same as those by the normalized
geometric means. Therefore, the differences between the
‘G-MEAN’ row and the ‘SELECT’ row are caused by the
normalization. As you see, since the differences are small,
we suggest that the geometric mean without normalization
can be a better choice in practice.

4.2 Pseudo-Relevance Feedback
Lavrenko and Croft’s relevance model [21] is one of the

standard language modeling approaches for pseudo-relevance
feedback. The model assumes that the top k retrieved docu-
ments for query q are sampled from an underlying relevance
model for q. That is, a hidden multinomial model relevant
to a user information need exists, and we estimate the model
from the top k documents. Then, we sample terms which
describe the information need better than the original query
and use the terms for query expansion.

Estimation of the relevance model is done by the following
formula:

P (w|q) =

∑k
i=1 p(w|Di)P (q|Di)P (Di)

p(q)
(8)

where q is a user query, w is a candidate for expansion terms,
and Di is a document in the top k initial results, respectively.

Although this is derived from a Bayesian model, we can
see this as a representation for the top k documents by the
arithmetic mean rewriting Equation (8) as follows:

k∑
i=1

p(w|Di)
P (q|Di)P (Di)

p(q)
=

k∑
i=1

p(w|Di)P (Di|q)

This has the same form as the weighted arithmetic mean of
Equation (4). In other words, P (w|Di) is a multinomial pa-
rameter and P (Di|q) represents a distribution over a sample

space limited by q, i.e, Q̂. In the standard implementation
of the relevance model by the Indri system [33], P (D) is
assumed to be uniform. Hence,

P (Di|q) =
P (q|Di)P (D)∑k

i=1 P (q|Di)P (D)
=

P (q|Di)∑k
i=1 P (q|Di)

That is, the weight Q̂ = P (Di|q) is the normalized query-
likelihood scores obtained in the initial retrieval phase. There-
fore, we can say that the relevance model represents a group
of the top k documents combining the language models by
the arithmetic mean weighted by the initial search results.

AP WSJ GOV2
RM 0.2541 0.3531 0.3204

GRM 0.2769∗ 0.3851∗ 0.3300∗

Table 3: Results for pseudo-relevance feedback. RM
and GRM mean the relevance model and the geo-
metric relevance model, respectively. The numbers
are MAP scores. A * indicates a statistically signif-
icant improvement over RM (p < 0.01).

In this sense, we can say that the relevance model implicitly
assumes the Euclidean metric space.

We can replace the arithmetic mean by the normalized
geometric mean to develop a new representation as follows:

P (w|q) =

k∏
i=1

p(w|Di)
P (Di|q)/

∑
w∈V

k∏
i=1

p(w|Di)
P (Di|q) (9)

We can consider the original relevance model and this model
as two approximated representations in the Riemannian man-
ifold defined by the Fisher information metric. To determine
a representation, we use geometric selection and call the se-
lected model the “geometric relevance model”.

We compare the geometric relevance model with the rele-
vance model. For each query, we first retrieve the top k docu-
ments by query-likelihood scores and build a relevance model
or geometric relevance model for the documents. Then, we
choose the top M terms according to probabilities of the
terms in the models. Finally, we expand the original query
combining the expansion terms using an interpolation weight
λ in the Indri query language. The paremeters k, M and λ
are tuned so that MAP scores by the relevance model are
maximized. The same parameters are used for the geometric
relevance model. Topic 51-150 for AP and WSJ and topic
701-750 for GOV2 are used as training topics to learn the
parameters. Topic 151-200 for AP and WSJ and topic 751-
800 for GOV2 are used as test topics. We retrieve up to
1000 results for each expanded query and use MAP as the
evaluation metric.

Table 3 shows the results. The geometric relevance model
significantly outperforms the relevance model for all three
collections. Similar to cluster retrieval, geometric selection
selected models by Equation (9) rather than the original
relevance model as representations for all queries except for
three queries of GOV2. That is, the geometric mean is a
better approximation to the center of mass for this task.
This provides more empirical evidence that the geometric
mean can be an appropriate choice for representation.

5. DISCUSSIONS

5.1 Visualization of geometries
To show how multiple documents, the arithmetic mean

and the normalized geometric mean are distributed in each
geometry, we use the following visualization. First, we con-
struct a weighted complete graph, where each node is a doc-
ument or the mean and a weight is determined by a kernel
reflecting each geometry.

For the Euclidean metric, we use the following heat kernel:

K(x1,x2) = exp

((
−

n+1∑
j=1

(
x

(j)
1 − x

(j)
2

)2
)

/4t

)



Figure 2: Geometric visualization of the top 20 doc-
uments for Topic 770 (GOV2), the arithmetic mean
(AM) and the normalized geometric mean (GM) for
different metrics, i.e. the Euclidean metric (left) and
the Fisher information metric (right).
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Figure 3: Determinination of a middle point m on a
geodesic linking x and y

where t is a time parameter.
For the Fisher information metric, we use the following

information diffusion kernel [20]:

K(x1,x2) = exp

(
− arccos2

(
n+1∑
j=1

√
x

(j)
1 x

(j)
2

)
/4t

)

We visualize each geometry using CCVisu [4] which is a
tool implementing energy models so that the higher weight
between two points results in the smaller Euclidean distance
between them. A visualization example is shown in Figure
2. As you see, the arithmetic mean appears closer to the
center in the Euclidean metric space while the normalized
geometric mean appears closer in the Riemannian manifold
defined by the Fisher information metric. Since the visual-
ization tool uses random seeds to initialize the layout, the
results vary every time. However, the trend for the locations
of the means was consistent.

5.2 More accurate estimation
Geometric selection is a somewhat simple approach to de-

termine the approximated Fréchet sample mean. That is,
we choose one among only two options: the normalized ge-
ometric mean and the arithmetic mean. We now consider a
more accurate estimation technique for the Fréchet sample
mean.

A point which minimizes the approximated Fréchet sam-
ple function of Equation (7) lies on a geodesic linking the
arithmetic mean and the normalized geometric mean. Let
M , x, y and c be the statistical manifold defined by the
Fisher information metric, the arithmetic mean, the normal-
ized geometric mean and a geodesic linking the two points,
respectively. First, we get vector V on tangent space TxM
via log map logx : M → TxM . In case of a sphere, the log

Figure 4: Relative locations of the more accurately
estimated Fréchet sample means. The x-axis corre-
sponds to the relative locations, and the y-axis cor-
responds to queries for each collection. As a relative
location is closer to 1.0, the estimated mean for the
topic is located near the normalized geometric mean.

AP WSJ GOV2

GRM+ 0.2769 0.3852 0.3309

Table 4: Pseudo-relevance feedback results of the
more accurately estimated Fréchet sample mean in
the Riemannian manifold defined by the Fisher in-
formation metric.

map is given by:

V (j) = logx(y)(j) =
arccos(〈x,y〉)√

1 − 〈x,y〉2
(
y(j) − 〈x,y〉x(j)

)

Then, V links x to y′ on TxM corresponding to y on M .
m′ denotes a middle point between x and y′ on TxM ,

reached by αV (0 ≤ α ≤ 1). We now get a middle point m
on c via exponential map expx : TxM → M . The exponen-
tial map of a sphare is:

m(j) = expx(αV )(j) = cos (α||V ||) +
sin (α||V ||)

||V || V (j)

Figure 3 illustrates this procedure. Note that the arithmetic
mean x and the geometric mean y are interchangeable in the
above formulation because a sphere is symmetric.

We apply this result to pseudo-relevance feedback exper-
iments. We perform grid search on the geodesic varying α
in [0,1] by step-size 0.1, and a point which minimizes the
Fréchet sample function of Equation (1) is selected as a
representation. Figure 4 shows α’s selected for test queries
for each collection. For all test topics except for three top-
ics of GOV2, the selected α’s are equal to or greater than
0.5. That is, the more accurately estimated Fréchet sam-
ple means are also closer to the normalized geometric mean
than the arithmetic mean. Table 4 shows the results when
the representations are used for pseudo-relevance feedback.
All results are equal to or a little bit better than the results
of the GRM in the Table 3, but not significantly. There-
fore, we can say that the geometric relevance model is a
reasonable approximation to the Fréchet sample mean for
this task.

5.3 Anoher reason for the geometric mean
We have addressed so far theoretical and empirical reasons

explaining why the geometric mean should have advantages



for many IR tasks. There can be many other explanations.
One of them is the log-linearity of the geometric mean. As
more documents contain a specific term, the geometric mean
for the term increases exponentially while the arithmetic
mean increases linearly. Accordingly, the arithmetic mean
can be sensitive to a few dominant terms in a small number
of documents. On the other hand, the geometric mean favors
the common terms across a whole set of documents and is
relatively insensitive to such a few dominant terms. This
shows the robustness of the geometric mean which can lead
to a good representation for multiple documents.

6. CONCLUSIONS
Previous work which uses the geometric mean as a rep-

resentation technique does not provide enough theoretical
evidence explaining why the geometric mean should have
advantages as a representation for IR. There are various ex-
planations. In this work, we showed that using Information
Geometry, the arithmetic mean and the normalized geomet-
ric mean are approximation points to the center of mass in
the Euclidean space or in a statistical manifold. In par-
ticular, through empirical evidence, we demonstrated that
the normalized geometric mean is closer to the center in the
statistical manifold. In addition to this discovery, we in-
troduced a new approach to pseudo-relevance feedback that
outperformed the relevance model. For future work, we will
investigate how geometric interpretations can be applied to
other IR tasks. We expect that this effort will lead to not
only the discovery of novel IR theories but also development
of effective algorithms.
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