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Abstract

Large, relational factor graphs with structure defined by first-order logic or other
languages give rise to notoriously difficult inference problems. Because unrolling
the structure necessary to represent distributions over all hypotheses has exponen-
tial blow-up, solutions are often derived from MCMC. However, because of lim-
itations in the design and parameterization of the jump function, these sampling-
based methods suffer from local minima—the system must transition through
lower-scoring configurations before arriving at a better MAP solution. This pa-
per presents a new method of explicitly selecting fruitful downward jumps by
leveraging reinforcement learning (RL). Rather than setting parameters to maxi-
mize the likelihood of the training data, parameters of the factor graph are treated
as a log-linear function approximator and learned with methods of temporal dif-
ference (TD); MAP inference is performed by executing the resulting policy on
held out test data. Our method allows efficient gradient updates since only factors
in the neighborhood of variables affected by an action need to be computed—we
bypass the need to compute marginals entirely. Our method yields dramatic em-
pirical success, producing new state-of-the-art results on a complex joint model
of ontology alignment, with a 48% reduction in error over state-of-the-art in that
domain.

1 Introduction

Factor graphs are a widely used representation for modeling complex dependencies amongst hidden
variables in structured prediction problems. There are two common inference problems: learning
(setting model parameters) and decoding (maximum a posteriori (MAP) inference). MAP inference
is the problem of finding the most probable setting to the graph’s hidden variables conditioned on
some observed variables.

For certain types of graphs, such as chains and trees, exact inference and learning is polynomial time
[1, 2, 3]. Unfortunately, many interesting problems require more complicated structure rendering
exact inference intractable [4, 5, 6, 7]. In such cases we must rely on approximate techniques; in
particular, stochastic methods such as Markov chain Monte Carlo (e.g., Metropolis-Hastings) have
been applied to problems such as MAP inference in these graphs [8, 9, 10, 11, 6]. However, for
many real-world structured prediction tasks, MCMC (and other local stochastic methods) are likely
to struggle as they transition through lower-scoring regions of the configuration space.

For example, consider the structured prediction task of clustering where the MAP inference problem
is to group data points into equivalence classes according to some model. Assume for a moment that
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2.2 Reinforcement Learning

Most of the discussion here is based on [12]. Reinforcement learning (RL) refers to a class of
problems in which an agent interacts with the environment and the objective is to learn a course of
actions that optimizes a long-term measure of a delayed reward signal. The most popular realization
of RL has been in the context of markov decision processes (MDPs).

An MDP is the tuple M = 〈S,A,R,P〉, where S is the set of states, A is the set of actions,
R : S ×A× S → IR is the reward function, i.e. R(s, a, s′) is the expected reward when action a is
taken in state s and transitions to state s′, and P : S ×A× S → [0, 1] is the transition probability
function, i.e. Pa(s, s′) is the probability of reaching state s′ if action a is taken in state s.

A stochastic policy π is defined as π : S ×A → [0, 1] such that
∑

a π(a|s) = 1, where π(s, a) is
the probability of choosing action a (as the next action) when in state s. Following a policy on an
MDP results in an expected discounted reward Rπ

t accumulated over the course of the run, where

Rπ
t =

∑T
k=0 γkrt+k+1. An optimal policy π⋆ is a policy that maximizes this reward.

Given a Q-function (Q : S × A → IR) that represents the expected discounted reward for taking
action a in state s, the optimal policy π⋆ can be found by locally maximizing Q at each step. Meth-
ods of temporal difference (TD) [13] can be used to learn the optimal policy in MDPs, and even
have convergence guarantees when the Q-function is in tabular form. However, in practice, tabular
representations do not scale to large or continuous domains; a problem that function approximation
techniques address [12]. Although the convergence properties of these approaches have not yet been
established, the methods have been applied successfully to many problems [14, 15, 16, 17].

When linear functional approximation is used, the state-action pair 〈s, a〉 is represented by a feature
vector φ(s, a) and the Q value is represented using a vector of parameters θ, i.e.

Q(s, a) =
∑

φk∈φ(s,a)

θkφk (2)

Instead of updating the Q values directly, the updates are made to the parameters θ:

θ ← θ + α
(

rt+1 −Q(st, at) + γ max
a

Q(st+1, a)
)

φ(st, at) (3)

notice the similarity between the linear function approximator (Equation 2) and the log-linear factors
(right-hand side of Equation 1); namely, the approximator has the same form as the unnormalized
log probabilities of the distribution. This enables us to share the parameters θ from Equation 1.

3 Our Approach

In our RL treatment of learning factor graphs, each state in the system represents a complete as-
signment to the hidden variables Y =y. Given a particular state, an action modifies the setting to a
subset of the hidden variables; therefore, an action can also be defined as a setting to all the hidden
variables Y =y′. However, in order to cope with complexity of the action space, we introduce a pro-
poser (as in Metropolis-Hastings) B : Y → Y that constrains the space by limiting the number of
possible actions from each state. The reward functionR can be defined as the residual performance
improvement when the systems transitions from a current state y to a neighboring state y′ on the
manifold induced by B. In our approach, we use a performance measure based on the ground truth
labels (for example, F1, accuracy, or normalized mutual information) as the reward. These rewards
ensure that the ground truth configuration is the goal.

3.1 Model

Recall that an MDP is defined as M = 〈S,A,R,P〉 with a set of states S, set of actions A,
reward function R and transition probability function P; we can now reformulate MAP inference
and learning in factor graphs as follows:

• States: we require the state space to encompass the entire feasible region of the factor graph.
Therefore, a natural definition for a state is a complete assignment to the hidden variables Y←y and
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the state space itself is defined as the set S = {y | y ∈ DOM(Y )}, where DOM(Y ) is the domain
space of Y , and we omit the fixed observables x for clarity since only y is required to uniquely
identify a state. Note that unless the hidden variables are highly constrained, the feasible regional
will be combinatorial in |Y |; we discuss how to cope with this in the following sections.

• Actions Given a state s (e.g., an assignment of Y variables), an action may be defined as a
constrained set of modifications to a subset of the hidden variable assignments. We constrain the
action space to a manageable size by using a proposer, or a behavior policy from which actions
are sampled. A proposer defines the set of reachable states by describing the distribution over
neighboring states s′ given a state s. In context of the action space of an MDP, the proposer can be
viewed in two ways. First, each possible neighbor state s′ can be considered the result of an action
a, leading to a large number of deterministic actions. Second, it can be regarded as a single highly
stochastic action, whose next state s′ is a sample from the distribution given by the proposer. Both
of these views are equivalent; the former view is used for notation simplicity.

• Reward Function The reward function is designed so that the policy learned through delayed
reward reaches the MAP configuration. Rewards are shaped to facilitate efficient learning in this
combinatorial space. Let F be some performance metric (for example, for information extraction
tasks, it could be F1 score based on the ground truth labels).

The reward function used is the residual improvement based on the performance metric F when the
system transitions between states s and s′:

R(s, s′) = F(s′)−F(s) (4)

this reward can viewed as learning to minimize the geodesic distance between a current state and the
MAP configuration on the proposal manifold. Alternatively, we could define a Euclidean reward as
F(s⋆)−F(s′), where s⋆ is the ground truth. We choose an F such that the ground truth scores the
highest, that is s⋆ = arg maxs F(s).

• Transition Probability Function: Recall that the actions in our system are samples generated
from a proposer B, and that each action uniquely identifies a next state in the system. The function
that returns this next state deterministically is called simulate(s,a). Thus, given the state s and the
action a, the next state s′ has probability Pa(s, s′) = 1 if s′ = simulate(s, a), and 0 otherwise.

3.2 Efficient Q Value Computations

We use linear function approximation to obtain Q values over the state/action space. That is,
Q(s, a) = θ · φ(s, a), where φ(s, a) are features over the state-action pair s, a. We show below
how Q values can be derived from the factor graph (Equation 1) in a manner that enables efficient
computations.

As mentioned previously, a state is an assignment to hidden variables Y =y and an action is another
assignment to the hidden variables Y =y′ (that results from changing the values of a subset of the
variables ∆Y ∈ Y ). Let δy be the setting to those variables in y and δy′ be the new setting to
those variables in y′. For each assignment, the factor graph can compute the conditional probability
p(y |x). Then, the residual log-probability S resulting from taking action a in state y and reaching
y′ is therefore log(p(y′ |x))− log(p(y |x)). Plugging in the model from Equation 1 and performing
some algebraic manipulation so redundant factors cancel yields:

θ ·





∑

y′i∈δy′

φ(x, y′i)−
∑

yi∈δy

φ(x, yi)



 (5)

Where the partition function ZX and factors outside the neighborhood of ∆y cancel. In practice an
action will modify a small subset of the variables so this computation is extremely efficient. We are
now justified in using Equation 5 (derived from the model) to compute the inner product (θ ·φ(s, a))
from Equation 2.
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3.3 Algorithm

Now that we have defined MAP inference in a factor graph as an MDP, we can apply a wide variety
of RL algorithms to learn the model’s parameters. In particular, we build upon Watkin’s Q(λ) [18,
19], a temporal difference learning algorithm [13]; we augment it with function approximation as
described in the previous section. Our RL learning method for factor graphs is shown in Algorithm 1.

Algorithm 1 Modified Watkin’s-Q(λ) for Factor Graphs

1: Input: Performance metric F , proposer B

2: Initialize
−→
θ and −→e =

−→
0

3: repeat {For every episode}
4: s← random initial configuration
5: Sample n actions a← B(s); collect action samples in AB(s)
6: for samples a ∈ AB(s) do
7: s′ ← simulate(s, a)
8: φ(s, s′)← set of features between s, s′

9: Q(s, a)← θ · φ(s, s′) {Equation 5}
10: end for
11: repeat {For every step of the episode}
12: if with probability (1− ǫ) then
13: a← arg maxa′ Q(s, a′)
14: −→e ← γλ−→e
15: else
16: Sample a random action a← B(s)

17: −→e ←
−→
0

18: end if
19: s′ ← simulate(s, a)
20: ∀φi ∈ φ(s, s′) : e(i)← e(i) + φi {Accumulate eligibility traces}
21: Observe reward r = F(s)−F(s′) {Equation 4}
22: δ ← r −Q(s, a)
23: Sample n actions a← B(s′); collect action samples in AB(s′)
24: for samples a ∈ AB(s′) do
25: s′′ ← simulate(s′, a)
26: φ(s′, s′′)← set of features between s′, s′′

27: Q(s′, a)← θ · φ(s′, s′′)
28: end for
29: a← arg maxa′ Q(s′, a′)
30: δ ← δ + γQ(s′, a) {Equation 3 with elig. traces}

31:
−→
θ ←

−→
θ + αδ−→e

32: s← s′

33: until end of episode
34: until end of training

At the beginning of each episode, the factor graph is initialized to a random initial state s (by assign-
ing Y =y0). Then, during each step of the episode, the maximum action is obtained by repeatedly
sampling from the proposal distribution (s′=simulate(s, a)). The system transition to the greedy state
s′ with high probability (1− ǫ), or transitions to a random state instead. We also include eligibility
traces that have been modified to handle function approximation [12].

Once learning has completed on a training set, MAP inference can be evaluated on test data by
executing the resulting policy. Because Q-values encode both the reward and value together, policy
execution can be performed by choosing the action that maximizes the Q-function at each state.

4 Experiments

We evaluate our approach by training a factor graph for solving the ontology alignment problem.
Ontology alignment is the problem of mapping concepts from one ontology to semantically equiv-
alent concepts from another ontology; our treatment of the problem involves learning a first-order
probabilistic model that clusters concepts into semantically equivalent sets. For our experiments,
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we use the the dataset provided by the Illinois Semantic Integration Archive (ISIA)1. There are two
ontology mappings: one between two course catalog hierarchies, and another between two company
profile hierarchies. Each ontology is organized as a taxonomy tree. The course catalog contains 104
concepts and 4360 data records while the company profile domain contains 219 concepts and 23139
records. For our experiments we perform two-fold cross validation with even splits.

The conditional random field we use to model the problem factors into binary decisions over sets
of concepts, where the binary variable is one if all concepts in the set map to each other, and zero
otherwise. Each of these hidden variables neighbors a factor that also examines the observed concept
data. Since there are variables and factors for each hypothetical cluster, the size of the CRF is
combinatorial in the number of concepts in the ontology, and it cannot be full instantiated even for
small amounts of data. Therefore, we believe that this is be a good dataset demonstrate the scalability
of the approach.

4.1 Features

The features used to represent the ontology alignment problem are described here. We choose
to encode our features in first order logic, aggregating and quantifying pairwise comparisons of
concepts over entire sets. These features are described more detail in our technical report [17].

The pairwise feature extractors are the following:
• TFIDF cosine similarity between concept-names of ci and cj

• TFIDF cosine similarity between data-records that instantiate ci and cj

• TFIDF similarity of the children of ci and cj

• Lexical features for each string in the concept name
• True if there is a substring overlap between ci and cj

• True if both concepts are the same level in the tree

The above pairwise features are used as a basis for features over entire sets with the following first
order quantifiers and aggregators:

• ∀: universal first order logic quantifier
• ∃: existential quantifier
• Average: conditional mean over a cluster
•Max: maximum value obtained for a cluster
•Min: minimum value obtained for a cluster
• Bias: conditional bias, counts number of pairs where a pairwise feature could potentially fire.

The real-valued aggregators (min,max,average) are also quantized into bins of various sizes corre-
sponding to the number of bins={2,4,20,100}. Note that our first order features must be computed
on-the-fly since the model is too large to be grounded in advance.

Course Catalog Company Profile

F1 Precision Recall F1 Precision Recall

RL 94.3 96.1 92.6 84.5 84.5 84.5
MH-CD1 76.9 78.0 57.0 64.7 64.7 64.7
MH-SR 92.0 88.9 76.3 81.5 88.0 75.9
GA-PW 89.9 100 81.5 81.5 88.0 75.9

GLUE 80 80 80 80 80 80

Table 1: pairwise-matching precision, recall and F1 on the course catalog dataset

4.2 Systems

In this section we evaluate the performance of our reinforcement learning approach to MAP infer-
ence and compare it current stochastic and greedy alternatives. In particular, we compare piecewise
[20], contrastive divergence [21], and SampleRank [22, 11, 23]; these are described in more detail
below.

1http://pages.cs.wisc.edu/ anhai/wisc-si-archive/
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• Piecewise (GA-PW): the CRF parameters are learned by training independent logistic regression
classifiers in a piecewise fashion. Inference is performed by greedy agglomerative clustering.

• Contrastive Divergence (MH-CD1) with Metropolis-Hastings the system is trained with con-
trastive divergence and allowed to wander one step from the ground-truth configuration. Once the
parameters are learned, MAP inference is performed using Metropolis-Hastings (with a proposal
distribution that modifies a single variable at a time).

• SampleRank with Metropolis-Hastings (MH-SR): this system is the same as above, but trains
the CRF using SampleRank rather than CD1. MAP is performed with Metropolis-Hastings using a
proposal distribution that modifies a single variable at a time (same proposer as in MH-CD1).

• Reinforcement Learning (RL): this is the system introduced in the paper that trains the CRF
with delayed reward using Q(λ) to learn state-action returns. The actions are derived from the same
proposal distribution as used by our Metropolis-Hastings (MH-CD1,MH-SR) systems (modifying a
single variable at a time); however it is exhaustively applied to find the maximum action. We set the
RL parameters as follows: α=0.00001, λ=0.9, γ=0.9.

• GLUE: in order to compare with a well-known system on the this dataset, we choose GLUE [24].

In these experiments contrastive divergence and SampleRank were run for 10,000 samples each ,
while reinforcement learning was run for twenty episodes and 200 steps per episode. CD1 and
SampleRank were run for more steps to compensate for only observing a single action at each step
(recall RL computes the action with the maximum value at each step by observing a large number
of samples).

4.3 Results

In Table 1 we compare F1 (pairwise-matching) scores of the various systems on the course catalog
and company profile datasets. We also compare to the well known system, GLUE [24]. Sam-
pleRank (MH-SR), contrastive divergence (MH-CD1) and reinforcement learning (RL) underwent
ten training episodes initialized from random configurations; during MAP inference we initialized
the systems to the state predicted by greedy agglomerative clustering. Both SampleRank and rein-
forcement learning were able to achieve higher scores than greedy; however, reinforcement learning
outperformed all systems with an error reduction of 75.3% over contrastive divergence, 28% over
SampleRank, 71% over GLUE and 48% over the previous state of the art (greedy agglomerative in-
ference on a conditional random field). Reinforcement learning also reduces error over each system
on the company profile dataset.

After observing the improvements obtained by reinforcement learning, we wished to test how robust
the method was at recovering from the local optima problem described in the introduction. To gain
more insight, we designed a separate experiment to compare Metropolis-Hastings inference (trained
with SampleRank) and reinforcement learning more carefully.

In the second experiment we evaluate our approach under more difficult conditions. In particular,
the MAP inference procedures are initialized to random clusterings (in regions riddled with the
type of local optima discussed in the introduction). We then compare greedy MAP inference on a
model whose parameters were learned with RL, to Metropolis-Hastings on a model with parameters
learned from SampleRank. More specifically, we generate a set of ten random configurations from
the test corpus and run both algorithms, averaging the results over the ten runs. The first two rows
of Table 2 summarizes this experiment. Even though reinforcement learning’s policy requires it
to be greedy with respect to the q-function, we observe that it is able to better escape the random
initial configuration than the Metropolis-Hastings method. This is demonstrated in the first rows
of Table 2. Although both systems perform worse than under these conditions than those of the
previous experiment, reinforcement learning does much better in this situation, indicating that the
q-function learned is fairly robust and capable of generalizing to random regions of the space.

After observing Metropolis-Hasting’s tendency to get stuck in regions of lower score than reinforce-
ment learning, we test RL to see if it would fall victim to these same optima. In the last two rows
of Table 2 we record the results of re-running both reinforcement learning and Metropolis-Hastings
(on the SampleRank model) from the configurations Metropolis-Hastings became stuck. We notice
that RL is able to climb out of these optima and achieve a score comparable to our first experiment.
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MH is also able to progress out of the optima, demonstrating that the stochastic method is capable
of escaping optima, but perhaps not as quickly on this particular problem.

F1 Precision Recall

RL on random 86.4 87.2 85.6
MH-SR on random 81.1 82.9 79.3

RL on MH-SR 93.0 94.6 91.5
MH-SR on MH-SR 84.3 87.3 81.5

Table 2: Average pairwise-matching precision, recall and F1 over ten random initialization points,
and on the output of MH-SR after 10,000 inference steps.

5 Related Work

The expanded version of this work is our technical report [17], which provides additional detail and
motivation. Our approach is similar in spirit to Zhang and Dietterich who propose a reinforcement
learning framework for solving combinatorial optimization problems [25]. Similar to this approach,
we also rely on generalization techniques in RL in order to directly approximate a policy over un-
seen test domains. However, our formulation provides a framework that explicitly targets the MAP
problem in large factor graphs and takes advantage of the log-linear representation of such models
in order to employ a well studied class of generalization techniques in RL known as linear function
approximation. Learning generalizable function approximators has been also studied for efficiently
guiding standard search algorithms through experience [26].

There are a number of approaches for learning parameters that specifically target the problem of
MAP inference. For example, the frameworks of LASO [27] and SEARN [28]) formulate MAP
in the context of search optimization, where a cost function is learned to score partial (incomplete)
configurations that lead to a goal state. In this framework, actions incrementally construct a solution,
rather than explore the solution space itself. As shown in [28] these frameworks have connections to
learning policies in reinforcement learning. However, the policies are learned over incomplete con-
figurations. In contrast, we formulate parameter learning in factor graphs as an MDP over the space
of complete configurations from which a variety of RL methods can be used to set the parameters.

Another approach that targets the problem of MAP inference is SampleRank [11, 23], which com-
putes atomic gradient updates from jumps in the local search space. This method has the advantage
of learning over the space of complete configurations, but ignores the issue of delayed reward.

6 Conclusions and Future Work

We proposed an approach for solving the MAP inference problem in large factor graphs by using
reinforcement learning to train model parameters. RL allows us to evaluate jumps in the configu-
ration space based on a value function that optimizes the long term improvement in model scores.
Hence – unlike most search optimization approaches – the system is able to move out of local optima
while aiming for the MAP configuration. Benefitting from log linear nature of factor graphs such
as CRFs we are also able to employ well studied RL linear function approximation techniques for
learning generalizable value functions that are able to provide value estimates on the test set. Our
experiments over a real world domain shows impressive error reduction when compared to the other
approaches. Future work should investigate additional RL paradigms for training models such as
actor-critic.
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