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ABSTRACT

Verbose or long queries are a small but significant part of the
query stream in web search, and are common in other ap-
plications such as collaborative question answering (CQA).
Current search engines perform well with keyword queries
but are not, in general, effective for verbose queries. In
this paper, we examine query processing techniques which
can be applied to verbose queries prior to submission to a
search engine in order to improve the search engine’s results.
We focus on verbose queries that have sentence-like struc-
ture, but are not simple “wh-” questions, and assume the
search engine is a “black box.” We evaluated the output of
two search engines using queries from a CQA service and
our results show that, among a broad range of techniques,
the most effective approach is to simply reduce the length
of the query. This can be achieved effectively by removing
“stop structure” instead of only stop words. We show that
the process of learning and removing stop structure from a
query can be effectively automated.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Query for-
mulation

General Terms

Algorithms, Experimentation, Perfomance

Keywords

Verbose Queries, Query Reformulation, Black Box

1. INTRODUCTION
It has been observed that most queries submitted to search

engines are short. For example, the average length of the
queries in the MSN search log, a sample of about 15 million
queries collected over one month, is 2.4 words [3]. A surpris-
ing number of queries, however, are longer. For example, in
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the MSN log, about 10% of the queries are five words or
longer (not including extremely long run-on queries, such as
automatically generated queries). The reason this is surpris-
ing is that current search engines do not perform particularly
well with long queries. Long queries are important in other
search applications, such as Collaborative Question Answer-
ing (CQA) services and certain vertical search domains, such
as patent searches.

Long queries can potentially express more complex infor-
mation needs and they can provide much more context for
ranking algorithms than the one-word queries used as exam-
ples in many papers (e.g., “java” and “jaguar”). Given their
potential, there has been some recent research on techniques
for improving search effectiveness with long queries. Bender-
sky and Croft [2], for example, show that key concepts can
be extracted from long queries and used to improve rank-
ing. Lease et al [14] described a technique for improving
ranking by weighting terms in long queries. Kumaran and
Carvalho [12] use learning techniques to rank subsets of the
original long query based on quality prediction measures.
These and some other similar studies have used TREC col-
lections and open-source search engines to study the effec-
tiveness of query processing techniques for long queries.

In this paper, we focus on identifying query processing
techniques that can be used to improve the effectiveness of
long queries where the search engine is a “black box”. As
such, we have limited ourselves to techniques that generate
queries that a standard search engine application program-
ming interface (API; in our case, the Yahoo! API and the
Bing API) is capable of processing. This means that some
techniques, such as term weighting, cannot be used because
they are not supported by the API. There is some risk in this
decision as it is possible that the search engine will attempt
to learn from the submitted queries or that our results will
reflect the query processing done by the search engine. To
reduce these risks, we used two different search engines for
our experiments. We also attempted to limit the learning
capability of each search engine by ensuring that the links
returned were never ‘clicked.’ In order to reduce the chance
that the search engine is modified during our search experi-
ments, we ensure that all queries produced by applying these
pre-processing techniques are submitted to the search APIs
within a very short time span. We note that “black box”
experiments are quite common in the literature and are be-
coming more important in the search industry. One of our
goals is to make the assumptions and limitations underlying
these experiments more explicit.

In addition to limiting our query processing techniques



to account for the black box search environment, we also
restrict our study to long queries that form a clause or sen-
tence containing a verb. Bendersky and Croft [3] described a
classification of long queries and found that queries contain-
ing verbs made up about 15% of the long queries in the MSN
query log. Our interest in these type of queries stems from
the fact that their structure allows for more linguistic pro-
cessing and that they are representative of the queries that
people use in less constrained search environments, such as
a CQA service. Verbose queries are long queries in which
people use many words to say what could have been ex-
pressed in a few keywords. An example of a verbose query
is “Would the meteor shower that hits this weekend be bet-
ter to watch tonight or tomorrow night?”, taken from Yahoo!
Answers1. A number of the words in this query do not help
to retrieve relevant documents, but the query as a whole con-
veys considerably more about the information needed or the
user’s intent than a query such as “meteor shower”. Verbose
queries may also include simple “wh-” (who, what, when,
where) or “factoid” queries. However, because this subset of
verbose queries has been studied extensively in the TREC
QA (Question Answering) track and have had specific tech-
niques developed for them, we have omitted them from this
work.

The query transformation techniques we consider include
stopword removal, phrase detection, key concept identifica-
tion, and stop structure removal. Each of these techniques
is applied individually and in combination to the verbose
queries in our test sets. We measure the performance of the
original queries and of the queries produced by these tech-
niques and compare the results to evaluate the techniques’
effectiveness. The most effective single technique found in
this first round of experiments was stop structure removal.

A stop phrase has been defined as a phrase that does not
provide any information on the user’s information need [6].
We define a stop structure as a stop phrase that begins at
the first word in a query. Though it may be possible to
effectively remove many stop structures from search engine
queries using static lists, similar to those used for stopwords,
doing so may inadvertently remove relevant words from the
query. To address this problem we describe a sequential clas-
sifier that enables us to automatically identify the stop struc-
ture in each query. We show that the queries produced by
this classifier perform similarly to those produced by manu-
ally identified stop structure removal.

In the next section we discuss related work. We describe
how the test sets of queries were created in section 3. In
section 4, we describe the query processing techniques used.
We describe the experimental setup and the results from
the retrieval experiments in section 5. The automatic stop
structure classifier is described and analyzed in section 6. In
section 7 we conclude and discuss possible future work.

2. RELATED WORK
There has been a large amount of recent work on query

transformation techniques. Much of this work focuses on
the accurate, efficient extraction of linguistic features from
queries. Bergsma and Wang [4] present a method of learn-
ing noun phrase segmentations. Tan and Peng [16] present
a generative model based method of query segmentation.
Guo et al [8] present a Weakly Supervised Latent Dirichlet

1http://answers.yahoo.com/

Allocation (WS-LDA) based method of identifying named
entities in queries. Each of these studies evaluate their per-
formance over samples of commercial query logs. It should
be noted that these studies do not show how the extracted
noun phrases or query segments might be used in a retrieval
system, either internally or externally as a pre-processing
stage.

There is some recent work on query processing that eval-
uates results using a ”black box” approach. For example,
Gu et al [9] describe a CRF-based framework for applying
several types of transformations to a query. These trans-
formations are tested on queries sampled from a commercial
search engine log. Both the original and transformed queries
are submitted to a commercial search engine, and the top
retrieved documents are assessed for relevance. Although
there are some similarities to our study, we focus on verbose
queries and processing techniques that are appropriate for
longer queries, including automatic stop structure removal.

3. TEST QUERIES
In order to carry out experiments with query processing

techniques, we needed a test collection of verbose queries.
Rather than use the TREC description queries that have
been studied in other recent papers (e.g., [2],[14]), we de-
cided to use queries from the Yahoo! Answers CQA service.
We believed these queries would be less artificial than TREC
queries and less constrained than queries from a web search
query log, where users tend to think in terms of keywords
because that is what works well with current search engines.
We would expect, therefore, that many of the CQA queries
will not work well without query processing.

In order to construct a sample of verbose queries, we ex-
tracted questions from a crawl of Yahoo! Answers and fil-
tered the results to identify queries which match the desired
type. As mentioned above, the desired queries consist of
clauses or sentences containing verbs, but are not standard
“factoid” or QA questions. In Bendersky and Croft’s study
[3], these were called non-composite-verb queries, where the
“non-composite” indicates that the query is not just a simple
combination of shorter web-style queries.

Our purpose in extracting queries is to construct two non-
overlapping sample sets of 50 queries, such that one set is
composed of more “difficult” queries, and the other set is
composed of a representative sample of this type of query. In
order to construct the“difficult”query set, candidate queries
were submitted to a web search engine (Yahoo! Search). If
the search yielded a relevant document in the top position,
then the query was rejected, otherwise we added the query
to our test set.

In this paper we refer to the set of “difficult” queries as
Set 1. The representative set of verbose queries is referred
to as Set 2.

Set 1 is used to study the query processing techniques
that could have the most impact when current search en-
gines fail to perform well. Set 2 is used to test that the
same query processing techniques are beneficial over a more
representative sample query set.

By inspecting the query log we found that capitalization
and punctuation appeared to be optional for this type of
query. Accordingly, we removed all punctuation from the
queries in order to ensure that the performance of our tech-
niques would not be dependent on correct grammar or cap-
tialization. We view spelling correction as a necessary step



for any verbose query processing system. Therefore we mod-
ified the queries so that all words were correctly spelled.

4. TECHNIQUES

4.1 Stopword Removal
Removing stopwords has long been a standard query pro-

cessing step [7]. We used three different stopwords lists in
this study: the standard INQUERY stopword list [1], as well
as two query-stopword lists derived from the Yahoo! An-
swers query log. We chose to construct new stopword lists
because the language that is used in some of the test queries
is more informal than the sample of English text from which
the INQUERY stopword list is derived.

Lo, He and Ounis [17] present several methods of auto-
matically constructing a collection dependent stopword list.
Their methods generally involve ranking collection terms
by some weight, then choosing some rank threshold above
which terms are considered stopwords. Their weighting meth-
ods all produce similar retrieval performances, but an inverse
document frequency (IDF) based weighting scheme is the
most effective.

In accordance with their findings, we applied an IDF based
weighting scheme to the set of verbose queries in the Yahoo!
Answers query log. As a result we were able to construct two
stopword lists which might be more appropriate for these
queries. The two stopword lists were extracted by taking the
top 100 and 200 ranked words from this ordering. It should
be noted that words are rarely repeated in a single query.
Thus, in this particular case, sorting by term frequency is
almost rank equivalent to sorting by inverse document fre-
quency.

This process identified words such as “help”, “find”, and
“know” which do not occur in the INQUERY stopword list,
but are not necessarily useful search words.

The key problem in trying to construct a query-stopword
list is that common query phrases such as “high blood pres-
sure” occur as frequently as some stop phrases. These fre-
quent phrases mean that words such as “blood” and “pres-
sure” occur in the query log as frequently as the words “did”
or “am”.

We chose to apply these stopword lists by removing all
words in the query which occur on the stopword list. For
example, if using the INQUERY stopword list, and given
the query:

“Can i work while study in Europe”

this technique produces the query:

“work study Europe”

It is worth noting that this technique can significantly
change the meaning of the query. For example when apply-
ing the INQUERY stopword list to the query:

“i would like to know the origin

of the phrase to be or not to be”

the resulting query is:

“know origin phrase”

4.2 Noun Phrase Detection
By definition, a verbose query is composed by the user

as a sentence or phrase. This allows us to apply a variety

of linguistic tagging and chunking techniques to the query.
Additionally we know from previous work that extracting
noun phrases from the query can help identify the key con-
cepts within the query [2, 18, 10]. We used the MontyLingua
toolkit [15] to automatically identify noun phrases.

Given that we are using a search engine as a black box,
we are limited in how we can use the identified noun phrases
contained within the query. We are unable to assign weights
to terms or phrases according to confidence or importance.
Using the black box interface, we are only able to identify
important phrases using quotation marks.

There are several methods by which the identified noun
phrases can be communicated to the search engine within
this limited interface. We show results for two such methods.
The first method wraps each of the detected noun phrases
in the query in quotation marks; no words are removed from
the query. The second method removes all words which are
not part of some detected noun phrase and quotation marks
are not used.

For example, 3 noun phrases: ‘me’, ‘a name’ and ‘my next
horror script’, are detected in the query:

give me a name for my next horror script

Using the first method we would produce the query:

give “me”“a name” for “my next horror script”

Using the second method we would produce the query:

me a name my next horror script

4.3 Key Concept Detection
The term key concept in this context is a short set of

sequential words that express an important idea contained
within the query. As presented by Bendersky and Croft [2],
the identification of key concepts in long queries can pro-
duce performance improvements in retrieval engines. Their
research demonstrated that key concepts in TREC queries
can be automatically identified with around 80% accuracy.

For this study, we use the same type of classifier as Bender-
sky and Croft. The classifier is based upon the AdaBoost.M1
meta-classifier using C4.5 Decision Trees. The features used
in this classifier included: GOV2 collection term frequency,
inverse document frequency, residual inverse document fre-
quency, weighted information gain, google n-grams term fre-
quency, and query frequency. These features are detailed in
their paper, [2]. The GOV2 query set was used to train this
classifier.

Key concepts are structurally similar to noun phrases and
thus present similar problems for utilizing them. In order to
effectively communicate key concepts to the search engine,
therefore, we again employ the same two methods. The first
method wraps the detected key concepts in quotation marks.
The second method removes all words that are not part of
a given key concept.

Given the query:

i read that ions cant have net dipole moments why not

The key concepts “i”, “ions” and “net dipole moments” were
identified by the classifier. The first method outlined above
would produce the query:

“i” read that “ions” cant have “net dipole moments” why not



and the second method would produce:

i ions net dipole moments

4.4 Stop Structure
Removal of stop phrases was originally presented by Callan

and Croft as a query processing technique [6]. They define
a stop phrase as a phrase which provides no information
about the information need. One example they give is “find
a document”. Within their study they created a static list of
stop phrases by inspecting 50 TIPSTER queries. This list
was reused in later studies using TIPSTER [5].

The majority of our test queries contained one relatively
large stop phrase at the start of the query. We call these
stop phrases stop structure. That is, a stop structure is a
stop phrase which begins at the first word in the query. For
this study other stop phrases in the query are considered
semantically meaningful; we did not remove them.

Importantly, stop structure often contains words which
are not stopwords, but which nonetheless do not add any
meaning to the query. For example “My husband would like
to know more about cancer”This information need could be
equivalently served by the query “cancer”. As in the case
of stopwords, stop structure removal carries some inherent
risk. In the above query, one could say that there is implied
information contained within the term “husband”. That is,
the underlying information need may correspond to specific
types of cancers that are common among males.

However, within the framework of this study we have ac-
cess to additional information about the user’s information
need. We used the user-selected answer corresponding to
their query to guide the manual identification of stop struc-
ture. In this way, we eliminated the risk of losing meaningful
terms through the removal of stop structure. Later, we will
show that automatic, non-answer guided stop structure re-
moval can closely approximate the retrieval performance of
answer-guided manual stop structure removal.

Similar to stopwords, stop structure is removed from queries
prior to submission to a search engine. For example given
the query:

if i am having a lipid test can i drink black coffee

The stop structure “if i am having a” is removed, leaving:

lipid test can i drink black coffee

Note that this query has another stop phrase, “can i”, which
is not removed.

5. RETRIEVAL EXPERIMENTS

5.1 Setup
The aim of these experiments is to see which of the above

techniques, if any, has the greatest effect on retrieval per-
formance. As mentioned above we choose to use two com-
mercial search engines as black box search engines, as this
matches the limitations of a meta-search engine designer.
For this study we chose to use Yahoo! Search, and Bing as
‘black boxes’. Yahoo! BOSS API and Bing API 2.0 were
used to submit queries and retrieve documents. 10 results
were collected for each query from each search engine.

There are two problems which may arise through the use
of commercial search engines for a scientific study. First the
search engine may learn how to respond to our particular set

of test queries. Second the search engine may be modified
at any time. In order to limit the amount of learning that
each search engine would be able to do over our set of test
queries, we ensures that no returned links were clicked for
any of the queries.

Since the search engines we are using are commercial, we
won’t necessarily know if the underlying system changes at
any time. In order to minimize this risk we chose to submit
all queries generated by all of the above techniques to both
APIs within a single short search session. This search session
occurred on September 29th, 2009.

After all queries were submitted, all returned pages were
manually judged for relevance. These judgements were guided
by the answers provided for the queries in the CQA system.
A three-valued judgement system was used. The three val-
ues were ‘not relevant’, ‘partially relevant’, and ‘relevant’,
denoted by the numerical values {0,1,2} respectively.

It should be noted that both search engines occasionally
returned the page in Yahoo! Answers from which the orig-
inal query was gathered. These pages were removed from
the search results, and the remaining pages re-ranked. This
adjustment was made in order to avoid skewed results in
favor of the original queries.

We show the evaluation metrics normalized discounted cu-
mulative gain (nDCG) at ranks 5 and 10 for each processing
technique. The normalization constant was computed from
the sum of all annotations for each query. Thus the values
are comparable across query processing techniques, the two
search engines, and the subsequent retrieval experiments de-
scribed below.

5.2 Retrieval Experiments Results
Table 1 shows the retrieval results for all of the query

processing techniques when applied to query set 1 using the
Yahoo! and Bing search engines. The results from the two
search engines are very similar in terms of relative effective-
ness, confirming that inconsistencies are unlikely to have
been caused by internal search engine processing. The use
of quotations in formulating queries is clearly not effective.
Both noun phrase and key concept identification produce
significant improvements, when combined with stopword re-
moval. The most effective technique, however, is the re-
moval of stop structure. Manual removal of these words
resulted in consistent and very significant improvements for
both NDCG measures and in both search engines.

Manual removal of stop structure was guided by the user’s
selected answer, so we view this as an oracle result under the
best possible circumstances.

Interestingly, the removal of any remaining stopwords from
the queries after removing stop structure, degrades the re-
trieval performance of the queries Within almost all of the
queries produced through the removal of manual stop struc-
ture semantically meaningless terms are present. The per-
formance degradation stems from the removal of semanti-
cally meaningful terms. For example given the query:

for a year ive been getting some

tightening from within my chest

Removal of manual stop structure produces the query:

tightening from within my chest

Clearly “from”and“my”could be removed without changing
the meaning of the query. However, removing the INQUERY



Query Test Set 1 Query Test Set 1
Yahoo! API Bing API

nDCG@5 nDCG@10 nDCG@5 nDCG@10

Original 0.1760 0.1573 0.1939 0.1875

INQUERY Stopword List 0.2263+ 0.2060+ 0.2530+ 0.2152

Query Stopword List 1 0.2116 0.1900 0.2551+ 0.2266
Query Stopword List 2 0.1844 0.1846 0.2142 0.1952

Quoted Noun Phrases 0.0854− 0.0735− 0.0947− 0.0763−

Quoted Noun Phrases + Stopwords 0.1172− 0.1071− 0.1384 0.1262−

Quoted Key Concepts 0.1217− 0.1110− 0.1261− 0.1201−

Quoted Key Concepts + Stopwords 0.1401 0.1340 0.1749 0.1536
Only Noun Phrases 0.2164 0.1975 0.2305 0.2107

Only Noun Phrases + Stopwords 0.2808+ 0.2530+ 0.2854+ 0.2507

Only Key Concepts 0.2344 0.2165+ 0.2612 0.2447

Only Key Concepts + Stopwords 0.2851+ 0.2531+ 0.2894+ 0.2684+

Manual Stop Structure 0.3604+ 0.3298+ 0.3588+ 0.3274+

Manual Stop Structure + Stopwords 0.3280+ 0.3042+ 0.3798+ 0.3371+

Table 1: Performance of preprocessing techniques from the first search session for query test set 1. nDCG@5
and nDCG@10 are shown for both search APIs. Paired t-tests were performed between each result shown
and the baseline (Original), results which show significant improvements, (p-value < 0.05) are marked +.
Similarly results which significantly degraded performance, with a p-value less than 0.05, are marked −.

Query Test Set 2 Query Test Set 2
Yahoo! API Bing API

nDCG@5 nDCG@10 nDCG@5 nDCG@10

Original 0.3355 0.2926 0.2757 0.2400

INQUERY Stopword List 0.3610 0.3311 0.3356+ 0.3157+

Query Stopword List 1 0.3289 0.3009 0.3359 0.3172+

Query Stopword List 2 0.3118 0.3020 0.3546+ 0.3329+

Manual Stop Structure 0.4288+ 0.3805+ 0.4201+ 0.3815+

Manual Stop Structure + Stopwords 0.4071+ 0.3789+ 0.4054+ 0.3882+

Table 2: Performance of preprocessing techniques from the first search session for query test set 2. nDCG@5
and nDCG@10 are shown. Paired t-tests were performed between each result shown and the baseline (Orig-
inal), results which show significant improvements, (p-value < 0.05) are marked +.

stopwords produces the query:

tightening chest

Both search engines returned websites which advertised ex-
ercise regimes for this query. Similarly the performance of
the stopword based techniques was hindered by this type of
inadvertent removal of semantically meaningful terms.

Recall that query test set 1 was sampled such that the
queries are more difficult for commercial search engines. We
repeated the experiments with stopword and stop structure
removal using the second set of queries. These results are
shown in Table 2. This second set of experiments are de-
signed to test the performance of the removal of stop struc-
ture over a more representative sample of verbose queries.

These results show that stop structure removal is indeed
very effective. Given these, very significant effectiveness im-
provements from manual stop structure removal, in the re-
mainder of this paper, we focus on describing and evaluat-
ing an automatic method for classifying and removing query
stop structure.

6. AUTOMATIC STOP STRUCTURE CLAS-

SIFICATION
We have defined stop structure to be a stop phrase be-

ginning at the first word in the query. It it important to
note that a stop structure can have many variations with-
out significantly changing its meaning. Indeed, any phrase
that does not provide some insight into the underlying in-
formation need may be considered stop structure for some
particular query. Additionally, it is possible that the stop
structure from one query may not necessarily be stop struc-
ture in another query. For example“please tell me why”may
be identified as stop structure in the query:

please tell me why the sky is blue

But it would not be considered stop structure in the query:

please tell me why song lyrics

So we can see that using a single static stop structure list is
not an appropriate approach to stop structure removal.

Therefore, we have developed a method of automatically
classifying stop structure within some input query. The pur-
pose of our classifier is to identify each of the words in each
of the queries as a “stop structure term” or a “query term”.



It is natural to formulate this type of problem as a sequential
binary class tagging problem.

6.1 Features
In order to obtain the best possible classifier a range of fea-

tures were extracted for term in each query. Broadly these
features fall into two categories; multinomial and numerical.
The features extracted for each term in a query were then
used as input to the classifiers which are discussed in the
next section.

First I will outline the multinomial features generated for
each term in the input query. Using the MontyLingua toolkit
[15], we extract the part of speech tag for each term (NN,
VB, etc) The next feature generated was the position of
the term (1,2,3,4,5,...) in the query. Two binary features
were also extracted: whether or not the term is present in
the INQUERY stopword list, and whether or not there is
any non-stopwords in the current query which precede the
current word.

The numerical features were extracted from three TREC
collections, and from three query logs. We used the WT10G,
GOV, and GOV2 TREC collections. The query logs we used
are: the Yahoo! Answers CQA log, Wondir CQA log, and
the MSN query log. We found that each of these collec-
tions and query logs conveyed some unique information to
the classifier. We believe that this is due to the vocabu-
lary mismatch between the test queries and any one of the
collections or query logs.

All three TREC collections are composed of web docu-
ments, the GOV and GOV2 collections were limited to the
‘.gov’ domain, while the WT10G was not limited to any par-
ticular domain. Further details can be found on the TREC
Web Test collections website. 2

The Yahoo! Answers CQA log consists of 216,563 user
submitted question and answer sets. The log was constructed
by a web crawl of the Yahoo! Answers website 3. The
Wondir CQA log consists of 401,560 user submitted ques-
tion and answer sets from the Wondir community question
answer service. The MSN query log consists of 15 million
queries submitted to the MSN search engine during a period
of one month.

We define subsets of each of the query logs were created
based on the length of the queries; the first subset con-
tains very short queries (≤ 2 words), the second contains
short queries (≤ 4 words) and the final subset contains long
queries (> 4 words). Our hope is that features extracted
from these subsets will enable a classifier to distinguish be-
tween commonly searched phrases and common stop struc-
tures. A common search phrase should have a higher fre-
quency amongst the short or very short queries, while a com-
mon stop structure should have a lower frequency in these
subsets. Within the long subsets, common query phrases
and stop structures may have similar, relatively high fre-
quencies.

Three types of numeric features were extracted for each
term in a query; term frequency, bi-term frequency, and in-
verse document frequency (IDF). Term frequency refers to
the number of times the term occurs in the collection; f(ti).
Bi-term frequency referse to the number of times the term
and it’s predecessor occurs in the corpus; f(ti|ti−1). IDF

2http://ir.dcs.gla.ac.uk/test collections/
3http://answers.yahoo.com/

refers to the inverse document frequency; idf(ti) = log |D|
df

.

Where the document frequency, df , is the number of doc-
uments which contains the term, and |D| is the number of
documents in the collection.

We extracted all three numeric features from each of the
TREC collections. Term frequencies and bi-term frequencies
were extracted from each of the three query logs and each
of the nine query log subsets.

We also experimented with features based on phrase chunk
tags and n-word frequencies. However these features were
found to be detrimental to the classifier’s performance. This
may have stemmed from the inaccuracy of the phrase chunks,
and corpus sparsity problems for the frequency of longer
phrases.

6.2 Classification Evaluation
As has been mentioned above, the purpose of this classifier

is to mark each of the words in the queries as a “stop struc-
ture term”or a“query term”. We experimented with two im-
plementations of sequential taggers; CRF++ and YamCha.
CRF++ is an open source implementation of Conditional
Random Fields for sequential tagging, based on work done
be Lafferty, McCallum and Pereira [13]. YamCha (Yet An-
other Multipurpose CHunk Annotator) is a sequential tagger
based on support vector machines [11].

The training set used for each of these classifiers was com-
posed of 100 new verbose queries identified from the Yahoo!
Answers query log. These newly identified queries have sim-
ilar properties to the two sets of queries already identified.
The stop structure in these queries was manually identified
in a similar manner to the test sets of queries. The test sets
for this classifier are the two sets of queries which we have
already identified for this study.

The CRF++ classifier is constructed such that all fea-
tures must be multinomial. This means that numerical fea-
tures are unsuitable for this classifier. In order to convert
the frequency-based features detailed above into multino-
mial features, we applied binning after taking the log of
each numerical value. After taking the log of the frequency
values the numerical features ranged from 0 and 20. The
most effective binning method we were able to find seg-
mented the number plane at multiples of 5, with an extra
bin for values 0 < x < 1. This method produced 6 bins;
(0,≤ 1,≤ 5,≤ 10,≤ 15,≥ 15).

The best performance from the YamCha classifier that we
were able to obtain used a context window of 3 terms; the
previous term, the current term and the next term. The pre-
viously assigned tag was also used as a feature. Using larger
window sizes degraded performance. Similarly the best per-
formance for the CRF++ that we were able to obtain used
a context window of 3 terms.

We used two types of evaluation metrics to measure the
performance of each classifier. First we used precision, re-
call, and accuracy of the tags applied to each term in the
queries. A true positive, with respect to precision and re-
call, refers to a semantically meaningful term being correctly
classified as a ‘query term’.

Recall that stop structure begins with the first word in the
query, and extends to the first semantically meaningful term,
or ‘query term’. The second measure is the mean squared
error distance (MSE) of the position of the first ‘query term’.
This metric is intended to measure the error distance of the
boundary between stop structure terms and query terms.



Test Set 1 Test Set 2
Precision Recall Accuracy MSE Precision Recall Accuracy MSE

CRF++ 0.891 0.825 0.816 5.1 0.930 0.867 0.866 2.68
Yamcha 0.915 0.921 0.894 2.64 0.938 0.926 0.905 1.86

Table 3: Classification results for two automatic stop structure classifiers. Precision, recall, and accuracy
refer to per word classification accuracy. Precision and recall metrics refer to a correctly classified semanti-
cally meaningful query words. Mean squared error distance (MSE) refers to the distance between the first
semantically meaningful query word, and the first classified semantically meaningful word.

Query Test Set 1 Query Test Set 1
Yahoo API Bing API

nDCG@5 nDCG@10 nDCG@5 nDCG@10

Original 0.1963 0.1718 0.2043 0.1803
Stopword List 0.2264 0.2011 0.2354 0.2162

Manual Stop Structure 0.3705+ 0.3338+ 0.3330+ 0.3059+

Manual Stop Structure + Stopwords 0.3631+ 0.3177+ 0.3551+ 0.3267+

Classified Stop Structure 0.3810+ 0.3412+ 0.3176+ 0.2893+

Classified Stop Structure + Stopwords 0.3530+ 0.3177+ 0.3299+ 0.3038+

Table 4: Performance of preprocessing techniques from the automatically classified stop structure focused
retrieval experiments over query test set 1. Performance metric nDCG at 5 and at 10 are shown. Paired
t-tests were performed between each result shown and the baseline (Original), results which show significant
improvements, (p-value < 0.05) are marked +.

Query Test Set 2 Query Test Set 2
Yahoo API Bing API

nDCG@5 nDCG@10 nDCG@5 nDCG@10

Original 0.3689 0.3394 0.3249 0.2710

Stopword List 0.3914 0.3770 0.4444+ 0.3821+

Manual Stop Structure 0.4661+ 0.4312+ 0.4916+ 0.4507+

Manual Stop Structure + Stopwords 0.4873+ 0.4525+ 0.5291+ 0.4782+

Classified Stop Structure 0.4083 0.3923 0.4628+ 0.4253+

Classified Stop Structure + Stopwords 0.4442+ 0.4148+ 0.5047+ 0.4692+

Table 5: Performance of preprocessing techniques from the automatically classified stop structure focused
retrieval experiments over query test set 2. Performance metric nDCG at 5 and at 10 are shown. Paired
t-tests were performed between each result shown and the baseline (Original), results which show significant
improvements, (p-value < 0.05) are marked +.

Results for classification evaluation are shown in Table
3. We are most interested in maximizing recall within this
classifier. A high recall value means that all semantically
meaningful terms are retained within the processed query.
That is not to say that precision is not valuable; higher
precision should dramatically improve the performance of
the query, as semantically meaningless words are removed
from the processed query.

Due to the effectiveness of the YamCha classifier, the out-
put of this classifier was used as the automatically classified
stop structure in the following retrieval experiments.

6.3 Retrieval Experiments
We performed these retrieval experiments in a similar way

to the previous retrieval experiments in section 5. The aim
of these experiments is to evaluate the performance of the
queries produced by removing automatically identified stop
structure.

Because the commercial search engines we are using may
have changed in the months between this search session and
the previous search session, we chose to re-submit queries

produced by previously analyzed pre-processing techniques.
In particular, the original query, and techniques involving
the removal of INQUERY stopwords, and the removal of
manually identified stop structure were re-submitted as part
of these experiments. Queries produced by these techniques
and queries produced through the automatic removal of stop
structure were submitted to Yahoo! API and Bing API dur-
ing a search session on January 9th, 2010.

The retrieval performance for each of the processed queries
as submitted in the second search session is shown in Tables
4 and 5. We show nDCG@5 and nDCG@10 for each pro-
cessing technique. We use the same normalizing factor used
in the above retrieval experiments, thus these results are
directly comparable to the results in the previous retrieval
experiments.

Comparing these results to the results of the previous ses-
sion, we can see that the performance of these queries and
pre-processing techniques have improved somewhat. in the
months since the last search session. However, we can see
that the relative performances of the processing techniques
has not significantly changed. Queries produced by remov-



ing stop structure still significantly outperform the original
queries and the queries with stopwords removed.

We can infer from these results that stop structure can be
effectively automatically classified. When compared with
the manually identified stop structure, similar performance
increases over the baseline are achieved. The differences
between the manually identified stop structure and the clas-
sified stop structure generally stemmed from misclassified
semantically meaningful query words. That, is some mean-
ingful terms are incorrectly classified as part of the stop
structure. For example, in the query “define turf toe as in
football”, the automatic stop structure classifier identified
“define turf” as stop structure, thereby missing documents
on the medical condition “turf toe”.

7. CONCLUSION
We have shown that pre-processing techniques are a viable

option to improve the performance of verbose queries for
commercial web search engines. In particular, we found that
the removal of stop structure, a stop phrase beginning at
the first word in the query, can dramatically improve the
performance of the query.

We also investigated methods of automatically identifying
stop structure within a given query. Using a YamCha based
classifier, we were able to classify stop structure with high
degree of accuracy. It was also shown that the retrieval per-
formance of automatically identified stop structure closely
matches the performance of manually identified stop struc-
ture.

Future work may include investigating the automatic re-
moval of stop phrases that may occur at any position within
a verbose query. This is based on the observation that it
is possible to formulate queries which contain stop phrases
which do not occur at the beginning of the query.

It would also be interesting to investigate methods of com-
bining the results of several partial query searches. It is pos-
sible that some rank fusion methods might produce better
results by applying several pre-processing techniques to the
query then combining the results from several searches.
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