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Abstract

Methods that learn from prior informa-

tion about input features such as general-

ized expectation (GE) have been used to

train accurate models with very little ef-

fort. In this paper, we propose an ac-

tive learning approach in which the ma-

chine solicits “labels” on features rather

than instances. In both simulated and real

user experiments on two sequence label-

ing tasks we show that our active learning

method outperforms passive learning with

features as well as traditional active learn-

ing with instances. Preliminary experi-

ments suggest that novel interfaces which

intelligently solicit labels on multiple fea-

tures facilitate more efficient annotation.

1 Introduction

The application of machine learning to new prob-

lems is slowed by the need for labeled training

data. When output variables are structured, an-

notation can be particularly difficult and time-

consuming. For example, when training a condi-

tional random field (Lafferty et al., 2001) to ex-

tract fields such as rent, contact, features, and utilities

from apartment classifieds, labeling 22 instances

(2,540 tokens) provides only 66.1% accuracy.1

Recent work has used unlabeled data and lim-

ited prior information about input features to boot-

strap accurate structured output models. For ex-

ample, both Haghighi and Klein (2006) and Mann

and McCallum (2008) have demonstrated results

better than 66.1% on the apartments task de-

scribed above using only a list of 33 highly dis-

criminative features and the labels they indicate.

However, these methods have only been applied

in scenarios in which the user supplies such prior

knowledge before learning begins.

1Averaged over 10 randomly selected sets of 22 instances.

In traditional active learning (Settles, 2009), the

machine queries the user for only the labels of in-

stances that would be most helpful to the machine.

This paper proposes an active learning approach in

which the user provides “labels” for input features,

rather than instances. A labeled input feature de-

notes that a particular input feature, for example

the word call, is highly indicative of a particular

label, such as contact. Table 1 provides an excerpt

of a feature active learning session.

In this paper, we advocate using generalized

expectation (GE) criteria (Mann and McCallum,

2008) for learning with labeled features. We pro-

vide an alternate treatment of the GE objective

function used by Mann and McCallum (2008) and

a novel speedup to the gradient computation. We

then provide a pool-based feature active learning

algorithm that includes an option to skip queries,

for cases in which a feature has no clear label.

We propose and evaluate feature query selection

algorithms that aim to reduce model uncertainty,

and compare to several baselines. We evaluate

our method using both real and simulated user ex-

periments on two sequence labeling tasks. Com-

pared to previous approaches (Raghavan and Al-

lan, 2007), our method can be used for both classi-

fication and structured tasks, and the feature query

selection methods we propose perform better.

We use experiments with simulated labelers on

real data to extensively compare feature query se-

lection algorithms and evaluate on multiple ran-

dom splits. To make these simulations more re-

alistic, the effort required to perform different la-

beling actions is estimated from additional exper-

iments with real users. The results show that ac-

tive learning with features outperforms both pas-

sive learning with features and traditional active

learning with instances.

In the user experiments, each annotator actively

labels instances, actively labels features one at a

time, and actively labels batches of features orga-



accuracy 46.5 → 60.5

feature label

PHONE* contact
call contact

deposit rent
month rent
pets restrict.
lease rent

appointment contact
parking features
EMAIL* contact

information contact

accuracy 60.5 → 67.1

feature label

water utilities
close neighbor.

garbage utilities
included utilities

features
shopping neighbor.

bart neighbor.
downtown neighbor.

TIME* contact
bath size

Table 1: Two iterations of feature active learning.

Each table shows the features labeled, and the re-

sulting change in accuracy. Note that the word in-

cluded was labeled as both utilities and features, and

that ∗ denotes a regular expression feature.

nized using a “grid” interface. The results support

the findings of the simulated experiments and pro-

vide evidence that the “grid” interface can facili-

tate more efficient annotation.

2 Conditional Random Fields

In this section we describe the underlying proba-

bilistic model for all methods in this paper. We

focus on sequence labeling, though the described

methods could be applied to other structured out-

put or classification tasks. We model the proba-

bility of the label sequence y ∈ Yn conditioned

on the input sequence x ∈ X n, p(y|x; θ) using

first-order linear-chain conditional random fields

(CRFs) (Lafferty et al., 2001). This probability is

p(y|x; θ) =
1

Zx

exp
(

∑

i

∑

j

θjfj(yi, yi+1,x, i)
)

,

where Zx is the partition function and feature

functions fj consider the entire input sequence

and at most two consecutive output variables.

The most probable output sequence and transition

marginal distributions can be computed using vari-

ants of Viterbi and forward-backward.

Provided a training data distribution p̃, we es-

timate CRF parameters by maximizing the condi-

tional log likelihood of the training data.

L(θ) = Ep̃(x,y)[log p(y|x; θ)]

We use numerical optimization to maximize L(θ),
which requires the gradient of L(θ) with respect

to the parameters. It can be shown that the par-

tial derivative with respect to parameter j is equal

to the difference between the empirical expecta-

tion of Fj and the model expectation of Fj , where

Fj(y,x) =
∑

i fj(yi, yi+1,x, i).

∂

∂θj
L(θ) = Ep̃(x,y)[Fj(y,x)]

− Ep̃(x)[Ep(y|x;θ)[Fj(y,x)]].

We also include a zero-mean variance σ2 = 10
Gaussian prior on parameters in all experiments.2

2.1 Learning with missing labels

The training set may contain partially labeled se-

quences. Let z denote missing labels. We esti-

mate parameters with this data by maximizing the

marginal log-likelihood of the observed labels.

LMML(θ) = Ep̃(x,y)[log
∑

z

p(y, z|x; θ)]

We refer to this training method as maximum

marginal likelihood (MML); it has also been ex-

plored by Quattoni et al. (2007).

The gradient of LMML(θ) can also be written

as the difference of two expectations. The first is

an expectation over the empirical distribution of x

and y, and the model distribution of z. The second

is a double expectation over the empirical distribu-

tion of x and the model distribution of y and z.

∂

∂θj
LMML(θ) = Ep̃(x,y)[Ep(z|y,x;θ)[Fj(y, z,x)]]

− Ep̃(x)[Ep(y,z|x;θ)[Fj(y, z,x)]].

We train models using LMML(θ) with expected

gradient (Salakhutdinov et al., 2003).

To additionally leverage unlabeled data, we

compare with entropy regularization (ER). ER

adds a term to the objective function that en-

courages confident predictions on unlabeled data.

Training of linear-chain CRFs with ER is de-

scribed by Jiao et al. (2006).

3 Generalized Expectation Criteria

In this section, we give a brief overview of gen-

eralized expectation criteria (GE) (Mann and Mc-

Callum, 2008; Druck et al., 2008) and explain how

we can use GE to learn CRF parameters with esti-

mates of feature expectations and unlabeled data.

GE criteria are terms in a parameter estimation

objective function that express preferences on the

210 is a default value that works well in many settings.



value of a model expectation of some function.

Given a score function S, an empirical distribution

p̃(x), a model distribution p(y|x; θ), and a con-

straint function Gk(x,y), the value of a GE crite-

rion is G(θ) = S(Ep̃(x)[Ep(y|x;θ)[Gk(x,y)]]).
GE provides a flexible framework for parameter

estimation because each of these elements can take

an arbitrary form. The most important difference

between GE and other parameter estimation meth-

ods is that it does not require a one-to-one cor-

respondence between constraint functions Gk and

model feature functions. We leverage this flexi-

bility to estimate parameters of feature-rich CRFs

with a very small set of expectation constraints.

Constraint functions Gk can be normalized so

that the sum of the expectations of a set of func-

tions is 1. In this case, S may measure the di-

vergence between the expectation of the constraint

function and a target expectation Ĝk.

G(θ) = Ĝk log(E[Gk(x,y)]), (1)

where E[Gk(x,y)] = Ep̃(x)[Ep(y|x;θ)[Gk(x,y)]].
It can be shown that the partial derivative of

G(θ) with respect to parameter j is proportional to

the predicted covariance between the model fea-

ture function Fj and the constraint function Gk.3

∂

∂θj
G(θ) =

Ĝk

E[Gk(x,y)]
× (2)

(

Ep̃(x)

[

Ep(y|x;θ)[Fj(x,y)Gk(x,y)]

− Ep(y|x;θ)[Fj(x,y)]Ep(y|x;θ)[Gk(x,y)]
]

)

The partial derivative shows that GE learns pa-

rameter values for model feature functions based

on their predicted covariance with the constraint

functions. GE can thus be interpreted as a boot-

strapping method that uses the limited training sig-

nal to learn about parameters for related model

feature functions.

3.1 Learning with feature-label distributions

Mann and McCallum (2008) apply GE to a linear-

chain, first-order CRF. In this section we provide

an alternate treatment that arrives at the same ob-

jective function from the general form described

in the previous section.

Often, feature functions in a first-order linear-

chain CRF f are binary, and are the conjunction

3If we use squared error for S, the partial derivative is the

covariance multiplied by 2(Ĝk − E[Gk(x,y)]).

of an observational test q(x, i) and a label pair test

1{yi=y′,yi+1=y′′}.4

f(yi, yi+1,x, i) = 1{yi=y′,yi+1=y′′}q(x, i)

The constraint functions Gk we use here decom-

pose and operate similarly, except that they only

include a test for a single label. Single label con-

straints are easier for users to estimate and make

GE training more efficient. Label transition struc-

ture can be learned automatically from single la-

bel constraints through the covariance-based pa-

rameter update of Equation 2. For convenience,

we can write Gyk to denote the constraint func-

tion that combines observation test k with a test

for label y. We also add a normalization constant

Ck = Ep̃(x)[
∑

i qk(x, i)],

Gyk(x,y) =
∑

i

1

Ck

1{yi=y}qk(x, i)

Under this construction the expectation of Gyk is

the predicted conditional probability that the label

at some arbitrary position i is y when the observa-

tional test at i succeeds, p̃(yi =y|qk(x, i)=1; θ).

If we have a set of constraint functions {Gyk :
y ∈ Y}, and we use the score function in Equa-

tion 1, then the GE objective function specifies the

minimization of the KL divergence between the

model and target distributions over labels condi-

tioned on the success of the observational test. In

general the objective function will consist of many

such KL divergence penalties.

Computing the first term of the covariance in

Equation 2 requires a marginal distribution over

three labels, two of which will be consecutive, but

the other of which could appear anywhere in the

sequence. We can compute this marginal using

the algorithm of Mann and McCallum (2008). As

previously described, this algorithm is O(n|Y|3)
for a sequence of length n. However, we make

the following novel observation: we do not need

to compute the extra lattices for feature label pairs

with Ĝyk = 0, since this makes Equation 2 equal

to zero. In Mann and McCallum (2008), probabil-

ities were smoothed so that ∀y Ĝyk > 0. If we

assume that only a small number of labels m have

non-zero probability, then the time complexity of

the gradient computation is O(nm|Y|2). In this

paper typically 1 ≤m≤ 4, while |Y| is 11 or 13.

4We this notation for an indicator function that returns 1
if the condition in braces is satisfied, and 0 otherwise.



In experiments in this paper, using this optimiza-

tion does not significantly affect final accuracy.

We use numerical optimization to estimate

model parameters. In general GE objective func-

tions are not convex. Consequently, we initial-

ize 0th-order CRF parameters using a sliding win-

dow logistic regression model trained with GE.

We also include a Gaussian prior on parameters

with σ2 = 10 in the objective function.

3.2 Learning with labeled features

The training procedure described above requires

a set of observational tests or input features with

target distributions over labels. Estimating a dis-

tribution could be a difficult task for an annotator.

Consequently, we abstract away from specifying

a distribution by allowing the user to assign labels

to features (c.f. Haghighi and Klein (2006) , Druck

et al. (2008)). For example, we say that the word

feature call has label contact. A label for a feature

simply indicates that the feature is a good indicator

of the label. Note that features can have multiple

labels, as does included in the active learning ses-

sion shown in Table 1. We convert an input feature

with a set of labels L into a distribution by assign-

ing probability 1/|L| for each l ∈ L and probabil-

ity 0 for each l /∈ L. By assigning 0 probability to

labels l /∈ L, we can use the speed-up described in

the previous section.

3.3 Related Work

Other proposed learning methods use labeled fea-

tures to label unlabeled data. The resulting

partially-labeled corpus can be used to train a CRF

by maximizing MML. Similarly, prototype-driven

learning (PDL) (Haghighi and Klein, 2006) opti-

mizes the joint marginal likelihood of data labeled

with prototype input features for each label. Ad-

ditional features that indicate similarity to the pro-

totypes help the model to generalize. In a previ-

ous comparison between GE and PDL (Mann and

McCallum, 2008), GE outperformed PDL without

the extra similarity features, whose construction

may be problem-specific. GE also performed bet-

ter when supplied accurate label distributions.

Additionally, both MML and PDL do not natu-

rally generalize to learning with features that have

multiple labels or distributions over labels, as in

these scenarios labeling the unlabeled data is not

straightforward. In this paper, we attempt to ad-

dress this problem using a simple heuristic: when

there are multiple choices for a token’s label, sam-

ple a label. In Section 5 we use this heuristic with

MML, but in general obtain poor results.

Raghavan and Allan (2007) also propose sev-

eral methods for learning with labeled features,

but in a previous comparison GE gave better re-

sults (Druck et al., 2008). Additionally, the gen-

eralization of these methods to structured output

spaces is not straightforward. Chang et al. (2007)

present an algorithm for learning with constraints,

but this method requires users to set weights by

hand. We plan to explore the use of the recently

developed related methods of Bellare et al. (2009),

Graça et al. (2008), and Liang et al. (2009) in fu-

ture work. Druck et al. (2008) provide a survey

of other related methods for learning with labeled

input features.

4 Active Learning by Labeling Features

Feature active learning, presented in Algorithm 1,

is a pool-based active learning algorithm (Lewis

and Gale, 1994) (with a pool of features rather

than instances). The novel components of the

algorithm are an option to skip a query and the

notion that skipping and labeling have different

costs. The option to skip is important when us-

ing feature queries because a user may not know

how to label some features. In each iteration the

model is retrained using the train procedure, which

takes as input a set of labeled features C and un-

labeled data distribution p̃. For the reasons de-

scribed in Section 3.3, we advocate using GE for

the train procedure. Then, while the iteration cost

c is less than the maximum cost cmax, the feature

query q that maximizes the query selection met-

ric φ is selected. The accept function determines

whether the labeler will label q. If q is labeled, it

is added to the set of labeled features C, and the

label cost clabel is added to c. Otherwise, the skip

cost cskip is added to c. This process continues for

N iterations.

4.1 Feature query selection methods

In this section we propose feature query selection

methods φ. Queries with a higher scores are con-

sidered better candidates. Note again that by fea-

tures we mean observational tests qk(x, i). It is

also important to note these are not feature selec-

tion methods since we are determining the features

for which supervisory feedback will be most help-

ful to the model, rather than determining which

features will be part of the model.



Algorithm 1 Feature Active Learning

Input: empirical distribution p̃, initial feature constraints
C, label cost clabel, skip cost cskip, max cost per iteration
cmax, max iterations N
Output: model parameters θ
for i = 1 to N do

θ = train(p̃, C)
c = 0
while c < cmax do

q = argmaxqk
φ(qk)

if accept(q) then
C = C ∪ label(q)
c = c + clabel

else
c = c + cskip

end if
end while

end for
θ = train(p̃, C)

We propose to select queries that provide the

largest reduction in model uncertainty. We notate

possible responses to a query qk as ĝ. The Ex-

pected Information Gain (EIG) of a query is the

expectation of the reduction in model uncertainty

over all possible responses. Mathematically, IG is

φEIG(qk) = Ep(ĝ|qk;θ)[Ep̃(x)[H(p(y|x; θ)−

H(p(y|x; θĝ)]],

where θĝ are the new model parameters if the re-

sponse to qk is ĝ. Unfortunately, this method is

computationally intractable. Re-estimating θĝ will

typically involve retraining the model, and do-

ing this for each possible query-response pair is

prohibitively expensive for structured output mod-

els. Computing the expectation over possible re-

sponses is also difficult, as in this paper users may

provide a set of labels for a query, and more gen-

erally ĝ could be a distribution over labels.

Instead, we propose a tractable strategy for re-

ducing model uncertainty, motivated by traditional

uncertainty sampling (Lewis and Gale, 1994). We

assume that when a user responds to a query, the

reduction in uncertainty will be equal to the To-

tal Uncertainty (TU), the sum of the marginal en-

tropies at the positions where the feature occurs.

φTU (qk) =
∑

i

∑

j

qk(xi, j)H(p(yj |xi; θ))

Total uncertainty, however, is highly biased to-

wards selecting frequent features. A mean un-

certainty variant, normalized by the feature’s

count, would tend to choose very infrequent fea-

tures. Consequently we propose a tradeoff be-

tween the two extremes, called weighted uncer-

tainty (WU), that scales the mean uncertainty by

the log count of the feature in the corpus.

φWU (qk) = log(Ck)
φTU (qk)

Ck

.

Finally, we also suggest an uncertainty-based met-

ric called diverse uncertainty (DU) that encour-

ages diversity among queries by multiplying TU

by the mean dissimilarity between the feature and

previously labeled features. For sequence labeling

tasks, we can measure the relatedness of features

using distributional similarity.5

φDU (qk) = φTU (qk)
1

|C|

∑

j∈C

1−sim(qk, qj)

We contrast the notion of uncertainty described

above with another type of uncertainty: the en-

tropy of the predicted label distribution for the fea-

ture, or expectation uncertainty (EU). As above

we also multiply by the log feature count.

φEU (qk) = log(Ck)H(p̃(yi = y|qk(x, i)=1; θ))

EU is flawed because it will have a large value for

non-discriminative features.

The methods described above require the model

to be retrained between iterations. To verify that

this is necessary, we compare against query selec-

tion methods that only consider the previously la-

beled features. First, we consider a feature query

selection method called coverage (cov) that aims

to select features that are dissimilar from existing

labeled features, increasing the labeled features’

“coverage” of the feature space. In order to com-

pensate for choosing very infrequent features, we

multiply by the log count of the feature.

φcov(qk) = log(Ck)
1

|C|

∑

j∈C

1 − sim(qk, qj)

Motivated by the feature query selection method

of Tandem Learning (Raghavan and Allan, 2007)

(see Section 4.2 for further discussion), we con-

sider a feature selection metric similarity (sim)

that is the maximum similarity to a labeled fea-

ture, weighted by the log count of the feature.

φsim(qk) = log(Ck) max
j∈C

sim(qk, qj)

5sim(qk, qj) returns the cosine similarity between context
vectors of words occurring in a window of ±3.



Features similar to those already labeled are likely

to be discriminative, and therefore likely to be la-

beled (rather than skipped). However, insufficient

diversity may also result in an inaccurate model,

suggesting that coverage should select more use-

ful queries than similarity.

Finally, we compare with several passive base-

lines. Random (rand) assigns scores to features

randomly. Frequency (freq) scores input features

using their frequency in the training data.

φfreq(qk) =
∑

i

∑

j

qk(xi, j)

Top LDA (LDA) selects the top words from 50

topics learned from the unlabeled data using la-

tent Dirichlet allocation (LDA) (Blei et al., 2003).

More specifically, the words w generated by each

topic t are ranked using the conditional probability

p(w|t). The word feature is assigned its maximum

rank across all topics.

φLDA(qk) = max
t

rankLDA(qk, t)

This method will select useful features if the top-

ics discovered are relevant to the task. A similar

heuristic was used by Druck et al. (2008).

4.2 Related Work

Tandem Learning (Raghavan and Allan, 2007) is

an algorithm that combines feature and instance

active learning for classification. The algorithm it-

eratively queries the user first for instance labels,

then for feature labels. Feature queries are selected

according to their co-occurrence with important

model features and previously labeled features. As

noted in Section 3.3, GE is preferable to the meth-

ods Tandem Learning uses to learn with labeled

features. We address the mixing of feature and in-

stance queries in Section 4.3.

In order to better understand differences in fea-

ture query selection methodology, we proposed a

feature query selection method motivated6 by the

method used in Tandem Learning in Section 4.1.

However, this method performs poorly in the ex-

periments in Section 5.

Liang et al. (2009) simultaneously developed

a method for learning with and actively selecting

6The query selection method of Raghavan and Allan
(2007) requires a stack that is modified between queries
within each iteration. Here query scores are only updated
after each iteration of labeling.

measurements, or target expectations with associ-

ated noise. The measurement selection method

proposed by Liang et al. (2009) is based on

Bayesian experimental design and is similar to

the expected information gain method described

above. Consequently this method is likely to be

intractable for real applications. Note that Liang

et al. (2009) only use this method in synthetic ex-

periments, and instead use a method similar to to-

tal uncertainty for experiments in part-of-speech

tagging. Unlike the experiments presented in this

paper, Liang et al. (2009) conduct only simulated

active learning experiments and do not consider

skipping queries.

Sindhwani et al. (2009) simultaneously devel-

oped an active learning method that queries for

both instance and feature labels that are then used

in a graph-based learning algorithm. They find

that querying certain features outperforms query-

ing uncertain features, but this is likely because

their query selection method is similar to the

expectation uncertainty method described above,

and consequently non-discriminative features may

be queried often (see also the discussion in Sec-

tion 4.1). It is also not clear how this graph-

based training method would generalize to struc-

tured output spaces.

4.3 Expectation Constraint Active Learning

Throughout this paper, we have focussed on label-

ing input features. However, the proposed meth-

ods generalize to queries for expectation estimates

of arbitrary functions, for example queries for the

label distributions for input features, labels for in-

stances (using a function that is non-zero only for

a particular instance), partial labels for instances,

and class priors. The uncertainty-based query se-

lection methods described in Section 4.1 apply

naturally to these new query types. Importantly

this framework would allow principled mixing of

different query types, instead of alternating be-

tween them as in Tandem Learning (Raghavan and

Allan, 2007). When mixing queries, it will be

important to use different costs for different an-

notation types (Vijayanarasimhan and Grauman,

2008), and estimate the probability of obtaining a

useful response to a query. We plan to pursue these

directions in future work. This idea was also pro-

posed by Liang et al. (2009), but no experiments

with mixed active learning were presented.



5 Simulated User Experiments

In this section we experiment with an automated

oracle labeler. When presented an instance query,

the oracle simply provides the true labels. When

presented a feature query, the oracle first decides

whether to skip the query. We have found that

users are more likely to label features that are rel-

evant for only a few labels. Therefore, the oracle

labels a feature if the entropy of its per occurrence

label expectation, H(p̃(yi = y|qk(x, i) = 1; θ)) ≤
0.7. The oracle then labels the feature using a

heuristic: label the feature with the label whose

expectation is highest, as well as any label whose

expectation is at least half as large.

We estimate the effort of different labeling ac-

tions with preliminary experiments in which we

observe users labeling data for ten minutes. Users

took an average of 4 seconds to label a feature, 2

seconds to skip a feature, and 0.7 seconds to la-

bel a token. We setup experiments such that each

iteration simulates one minute of labeling by set-

ting cmax = 60, cskip = 2 and clabel = 4. For

instance active learning, we use Algorithm 1 but

without the skip option, and set clabel = 0.7. We

use N = 10 iterations, so the entire experiment

simulates 10 minutes of annotation time. For ef-

ficiency, we consider the 500 most frequent unla-

beled features in each iteration. To start, ten ran-

domly selected seed labeled features are provided.

We use random (rand) selection, uncertainty

sampling (US) (using sequence entropy, normal-

ized by sequence length) and information den-

sity (ID) (Settles and Craven, 2008) to select in-

stance queries. We use Entropy Regularization

(ER) (Jiao et al., 2006) to leverage unlabeled in-

stances.7 We weight the ER term by choosing the

best8 weight in {10−3, 10−2, 10−1, 1, 10} multi-

plied by #labeled
#unlabeled

for each data set and query se-

lection method. Seed instances are provided such

that the simulated labeling time is equivalent to la-

beling 10 features.

We evaluate on two sequence labeling tasks.

The apartments task involves segmenting 300

apartment classified ads into 11 fields including

features, rent, neighborhood, and contact. We use

the same feature processing as Haghighi and Klein

(2006), with the addition of context features in a

window of ±3. The cora references task is to ex-

tract 13 BibTeX fields such as author and booktitle

7Results using self-training instead of ER are similar.
8As measured by test accuracy, giving ER an advantage.

method apartments cora

mean final mean final

ER rand 48.1 53.6 75.9 81.1

ER US 51.7 57.9 76.0 83.2

ER ID 51.4 56.9 75.9 83.1

MML rand 47.7 51.2 58.6 64.6

MML WU 57.6 60.8 61.0 66.2

GE rand 59.0 64.8∗ 77.6 83.7

GE freq 66.5∗ 71.6∗ 68.6 79.8

GE LDA 65.7∗ 71.4∗ 74.9 85.0

GE cov 68.2∗† 72.6∗ 73.5 83.3

GE sim 57.8 65.9∗ 67.1 79.2

GE EU 66.5∗ 71.6∗ 68.6 79.8

GE TU 70.1∗† 73.6∗† 76.9 88.2∗†

GE WU 71.6∗† 74.6∗† 80.3∗† 88.1∗†

GE DU 70.5∗† 74.4∗† 78.4∗ 87.5∗†

Table 2: Mean and final token accuracy results.

A ∗ or † denotes that a GE method significantly

outperforms all non-GE or passive GE methods,

respectively. Bold entries significantly outperform

all others. Methods in italics are passive.

from 500 research paper references. We use a stan-

dard set of word, regular expressions, and lexicon

features, as well as context features in a window

of ±3. All results are averaged over ten random

80:20 splits of the data.

5.1 Results

Table 2 presents mean (across all iterations) and

final token accuracy results. On the apartments

task, GE methods greatly outperform MML9 and

ER methods. Each uncertainty-based GE method

also outperforms all passive GE methods. On the

cora task, only GE with weighted uncertainty sig-

nificantly outperforms ER and passive GE meth-

ods in terms of mean accuracy, but all uncertainty-

based GE methods provide higher final accuracy.

This suggests that on the cora task, active GE

methods are performing better in later iterations.

Figure 1, which compares the learning curves of

the best performing methods of each type, shows

this phenomenon. Further analysis reveals that the

uncertainty-based methods are choosing frequent

features that are more likely to be skipped than

those selected randomly in early iterations.

We next compare with the results of related

methods published elsewhere. We cannot make

claims about statistical significance, but the results

9Only the best MML results are shown.



illustrate the competitiveness of our method. The

74.6% final accuracy on apartments is higher than

any result obtained by Haghighi and Klein (2006)

(the highest is 74.1%), higher than the supervised

HMM results reported by Grenager et al. (2005)

(74.4%), and matches the results of Mann and Mc-

Callum (2008) with GE with more accurate sam-

pled label distributions and 10 labeled examples.

Chang et al. (2007) only obtain better results than

88.2% on cora when using 300 labeled examples

(two hours of estimated annotation time), 5000 ad-

ditional unlabeled examples, and extra test time in-

ference constraints. Note that obtaining these re-

sults required only 10 simulated minutes of anno-

tation time, and that GE methods are provided no

information about the label transition matrix.

6 User Experiments

Another advantage of feature queries is that fea-

ture names are concise enough to be browsed,

rather than considered individually. This allows

the design of improved interfaces that can further

increase the speed of feature active learning. We

built a prototype interface that allows the user to

quickly browse many candidate features. The fea-

tures are split into groups of five features each.

Each group contains features that are related, as

measured by distributional similarity. The features

within each group are sorted according to the ac-

tive learning metric. This interface, displayed in

Figure 3, may be useful because features in the

same group are likely to have the same label.

We conduct three types of experiments. First, a

user labels instances selected by information den-

sity, and models are trained using ER. The in-

stance labeling interface allows the user to label

tokens quickly by extending the current selection

one token at a time and only requiring a single

keystroke to label an entire segment. Second,

the user labels features presented one-at-a-time by

weighted uncertainty, and models are trained us-

ing GE. To aid the user in understanding the func-

tion of the feature quickly, we provide several ex-

amples of the feature occurring in context and the

model’s current predicted label distribution for the

feature. Finally, the user labels features organized

using the grid interface described in the previous

paragraph. Weighted uncertainty is used to sort

feature queries within each group, and GE is used

to train models. Each iteration of labeling lasts

two minutes, and there are five iterations. Retrain-

ing with ER between iterations takes an average

of 5 minutes on cora and 3 minutes on apart-

ments. With GE, the retraining times are on av-

erage 6 minutes on cora and 4 minutes on apart-

ments. Consequently, even when viewed with to-

tal time, rather than annotation time, feature active

learning is beneficial. While waiting for models to

retrain, users can perform other tasks.

Figure 2 displays the results. User 1 labeled

apartments data, while Users 2 and 3 labeled cora

data. User 1 was able to obtain much better results

with feature labeling than with instance labeling,

but performed slightly worse with the grid inter-

face than with the serial interface. User 1 com-

mented that they found the label definitions for

apartments to be imprecise, so the other experi-

ments were conducted on the cora data. User 2

obtained better results with feature labeling than

instance labeling, and obtained higher mean ac-

curacy with the grid interface. User 3 was much

better at labeling features than instances, and per-

formed especially well using the grid interface.

7 Conclusion

We proposed an active learning approach in which

features, rather than instances, are labeled. We

presented an algorithm for active learning with

features and several feature query selection meth-

ods that approximate the expected reduction in

model uncertainty of a feature query. In simu-

lated experiments, active learning with features

outperformed passive learning with features, and

uncertainty-based feature query selection outper-

formed other baseline methods. In both simulated

and real user experiments, active learning with

features outperformed passive and active learning

with instances. Finally, we proposed a new label-

ing interface that leverages the conciseness of fea-

ture queries. User experiments suggested that this

grid interface can improve labeling efficiency.
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Figure 1: Token accuracy vs. time for best performing ER, MML, passive GE, and active GE methods.
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Figure 2: User experiments with instance labeling and feature labeling with the serial and grid interfaces.

Figure 3: Grid feature labeling interface. Boxes on the left contain groups of features that appear in

similar contexts. Features in the same group often receive the same label. On the right, the model’s

current expectation and occurrences of the selected feature in context are displayed.
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