
Spelling Correction Based on User Search Contextual
Analysis and Domain Knowledge

Xing Yi, Henry Feild, and James Allan
Center for Intelligent Information Retrieval

University of Massachusetts Amherst
Amherst, MA 01003

{yixing, hfeild, allan}@cs.umass.edu

ABSTRACT

We propose a spelling correction algorithm that combines
trusted domain knowledge and query log information for
query spelling correction. This algorithm uses query refor-
mulations in the query log and bigram language models built
from queries for efficiently and effectively generating correc-
tion suggestions and ranking them to find valid corrections.
Experimental results show that for both simple unknown
word errors and complex word substitution errors, valid cor-
rections mostly appear within the top two ranks.

1. INTRODUCTION

Although developing general purpose spelling correction
technology has been well studied for decades, researchers
have recently started to investigate using collective knowl-
edge stored in web query logs for the challenging web-query
spelling correction task where a high-coverage lexicon is ex-
tremely difficult to maintain and many word substitution

errors like gulf war → golf war exist [3, 4]. For this chal-
lenge, Cucerzan and Brill [3] proposed an effective approach
that first iteratively transforms an input query string with
spelling errors into plausible corrections, then uses language
models built from web query logs to select the most likely
correct one. This approach inefficiently generates plausible
corrections by directly using string-edit distance. Jones et

al.[4] proposed an approach of using query reformulations in
the same user search session for generating highly relevant
query substitutions, which include spelling variants. This
approach can efficiently obtain user suggested spelling cor-
rections, but has limited spelling error coverage and does not
take advantage of either reliable linguistic source like trusted
English lexicons or language models built from query logs.

Here we design a system to combine the advantages of
both approaches for web query spelling correction. Our ap-
proach is especially useful for specialized web search engines,
whose query logs are much smaller than general purpose
search engines and are not reliable for building language
models for spelling correction. Experimental results show
the effectiveness of our approach.

2. OVERVIEW OF THE ALGORITHM

Let Σ be the alphabet of a language and L1 ⊂ Σ⋆ be a
broad-coverage lexicon of the language. Let q0 = w1

0w2
0...wl0

0

∈ Σ⋆ be the initial query where l0 denotes q0’s length and
wi

0 denotes the ith word in q0. Here we ignore the spaces and

Copyright is held by the author/owner(s).
SIGIR’09 July 19–23, Boston, MA, USA
ACM X-XXXXX-XX-X/XX/XX.

other word delimiters in the formulations for simplicity. We
consider both unknown word error, where q0 contains some
unknown word wi

0 ∈ {Σ⋆\L1}, and word substitution error,
where q0 ∈ L⋆

1 can be reformulated to another much more
plausible query, q1, that has a close string-edit distance to
q0 by substituting one or more words.

We use query reformulations in web query logs for spelling
correction. A query reformulation [q1, q2], also referred to
as a query pair, is a pair of successive queries in a search
session such that q2 is entered immediately after q1. We
collapse repeated searches for the same terms and only keep
query pairs that have no more than one string-edit distance
per five letters [3], under the assumption that these pairs
are more likely to contain spelling corrections.

Directly matching a new input query to qi in [qi, qj] to find
possible spelling errors will have low coverage of errors (pairs
extracted from low traffic specialized search engines’ query
logs are even more sparse). Therefore, we follow Cucerzan
and Brill’s approach [3] which considers words and word bi-
grams corrections for each query pair, i.e. we extract appro-
priate uni/bi-gram correction pairs [gi, gj] from each query
pair. We aggregate the same [gi, gj] in the training data to
get the frequency f[gi,gj] and further select them for our task
according to the following three rules: 1) if gi is unigram and
gi ∈ L1, discard [gi, gj]; 2) if gj contains some unknown word
w ∈ {Σ⋆\L1}, discard [gi, gj]; 3) if both [gi, gj] and [gj , gi]
exist, discard [gi, gj] when

(f[gi,gj] < f[gj ,gi]
) ∧ (f[gi,gj] ≤ t1 ∨ (f[gi,gj]/f[gj ,gi]

< t2)), (1)

where t1 is a threshold for filtering noisy reformulations
(t1 = 1 in experiments) and t2 is a tuned threshold for filter-
ing relatively infrequent reformulations that may be wrong
corrections. We keep the remaining n-gram pairs [gi, gj] and
f[gi,gj] in a reformulation dictionary R1 for later use.

For efficiently correcting common spelling errors, we can
generate a reliable low-coverage static reformulation dictio-
nary R2. Common errors like sun burn → sunburn can be
put into R2. We also extract all the bigrams wtwt+1 from
the training queries to get a bigram dictionary L2. If a can-
didate bigram spelling correction is not in this dictionary
(i.e., it does not occur in the training corpus), the bigram is
removed from the candidate list. Then we combine L1, L2,
R1 and R2 for detecting spelling errors and generating cor-
rection suggestions. The algorithm is described in Figure 1.
Note that in steps (2.a) and (4.a), we consider one and two-
step reformulations as follows: if [wi

1, g
i
1] and [gi

1, g
i
2] are in

R1, both gi
1 and gi

2 are valid reformulations of wi
1.

For each input query q0, we generate correction sugges-
tions by using steps 1–4, then use three different ranking

Given an input query q0:
1. Use R2 to correct obvious spelling errors and output q1.
2. For each word wi

1 in q1:
a) Use R1 to find one and two-step reformulations of wi

1
b) If wi

1 is an unknown word, find other words with close

string-edit distances to wi
1 in L1 and use wi−1

1 ,wi+1
1

and L2 for selecting good reformulations
3. Generate all reformulations {q2,k} of q1 by considering

all combinations of each word’s reformulation.
4. For each query q2,k:

a) For each bigram wi
2wi+1

2 in q2,k:

– Use R1 to find one and two-step reformulations of wi
2wi+1

2
b) Generate all reformulations {q3,k} of q2,k by

considering all combinations of bigrams’ reformulations.
5. Collect and rank all the correction suggestions {q3,m}.

Figure 1: Algorithm for Generating Spelling Cor-

rection Suggestions

methods to rank the correction suggestions in step 5. The
first method, called ReformF, uses n-gram reformulation
frequency f[gi,gj] in R1 to calculate a ranking score. The
basic procedure is to weight reformulations by f[gi,gj] in
step(2.a) and (4.a) in Figure 1; then weights are multi-
plied when creating each correction suggestion combination
in step(3) and (4.b); a reformulation vi for an unknown word

wi in step(2.b) is given a weight e−dist(vi,wi). This method
assumes more frequent reformulations with smaller edit dis-
tances are more likely to be valid respellings.

The second method, called PriorP, uses the prior proba-
bility P (q3,m) of each suggestion q3,m as the ranking score [3].
P (q3,m) can be calculated by the bigram language model [2]
built from the training queries. Intuitively, this method as-
sumes that suggestions that are more probable queries are
also more likely valid respellings.

The third method, called PostP, uses the posterior cor-
rection probability P (q3,m|q0) ∼ Pc(q0|q3,m) × P (q3,m) as
the ranking score [3]. We use string-to-string edit probabil-

ity [1] Pc(q1|q2) = e−dist(q1,q2) to calculate Pc(q0|q3,m). This
method assumes that more probable queries with a smaller
edit distance are more likely to be valid respellings.

3. EXPERIMENTS AND ANALYSIS

We utilize a web query log sample from an industrial med-
ical search engine for this study. This query log sample
contains more than 50 million queries over a period of ten
months starting 11/2007. We use the first half (up through
03/2008) for training and the remaining half for testing. Our
primary lexicon, L1, contains a standard English dictionary
from Aspell1 and a specialized medical dictionary. The sec-
ond lexicon, L2, contains about 3M bigrams. A small list
of stopwords were removed from the training queries prior
to extracting these bigrams in an effort to make better use
of context [3]. The first reformulation lookup, R1, contains
916,530 n-gram reformulation pairs and is extracted from
training query reformulations as described in §2. The sec-
ond reformulation lookup, R2, contains 4,840 pre-defined
common error corrections. We then use the algorithm in
Figure 1 for spelling correction.

Our algorithm outputs a ranked list of correction sugges-
tions for each input qi. We then compute the mean recipro-
cal rank (MRR):

P

qi
1/rqi

(qj), where rqi
(qj) denotes the

rank position of the highest ranked ground truth correction
(qj) for the input query qi.

1http://aspell.net/

ReformF PriorP PostP

Aggregate 0.673 0.667 0.724⋆†

S-Subset 0.709 0.689 0.750⋆†

U-Subset 0.637 0.645 0.699⋆†

Table 1: MRRs of three ranking methods by using

annotations over misspelled queries. † and ⋆ denote

a statistically significant improvement over PriorP
and ReformF , respectively, with a p-value < .05 using

Fisher’s Randomization Test.

To train, we select 500 pairs from the training set with a
low edit distance. We use ReformF as the ranking method
and tune t2 = 1/8 in equation 1 to have the highest MRR.

For the experiments, we extracted 1000 testing query pairs
satisfying the string-edit constraint from the test data and
kept distinct pairs. 500 of these are pairs such that q2 was a
respelling of q1 suggested by the medical search system, and
was then selected by the user. We refer to this subset of the
query pairs as the S-Subset and the remaining 500, which
are not system-suggested reformulations, as the U-Subset .

We designed the evaluation experiments to investigate our
algorithm’s performance by asking editors to examine the
correction suggestions produced in top 20 ranks by our rank-
ing methods for each query in the two samples. Annotators
were asked to indicate if each input query qi was misspelled,
and if so, to indicate which of the suggestions were valid re-
spellings. They were also allowed to manually enter a valid
respelling. Eight annotators—seven graduate students and
one medical search specialist—judged suggestions from at
least 150 input queries each. Annotators were allowed to
any Web search engines of their choice to assist their tasks.

Of the 1000 queries, 639 were judged by two annotators.
The inter-annotator agreement for whether a query was mis-
spelled is κ = 0.635. The agreement for the suggested re-
spellings is κ = 0.703. For 412 (82%) of the query pairs in
the S-Subset, the query suggested by the search system was
marked by an annotator as a valid respelling.

Using the output of our algorithm for the queries in each
sample, we calculate the new MRRs of three ranking meth-
ods by using the judgments and show the results in Table 1.
Recall that if an annotator marked multiple valid respellings
for a particular query, the highest ranking respelling is used
to compute the reciprocal rank. To combine the annota-
tions for queries judged by two annotators, we randomly
chose one set of judgments. The results show that the PostP

outperforms the two other ranking methods in all cases. Re-

formF performs poorly because the test data contains many
spelling mistakes not present in the training data, and thus,
there are no direct reformulations of those mistakes in the
training set. The performance of PriorP is hindered by the
exclusion of edit-distance information.

4. ACKNOWLEDGEMENTS

This work was supported in part by the Center for In-
telligent Information Retrieval and in part by UpToDate.
Any opinions, findings and conclusions or recommendations
expressed in this material are the authors’ and do not nec-
essarily reflect those of the sponsor. We wish to thank our
annotators, in particular Jerry Greene of UpToDate.

5. REFERENCES

[1] F. Ahmad and G. Kondrak. Learning a spelling error model
from search query logs. In Proceedings of EMNLP, pages
955–962, 2005.

[2] S. F. Chen and J. Goodman. An empirical study of
smoothing techniques for language modeling. In Proceedings
of ACL, pages 310–318, 1996.

[3] S. Cucerzan and E. Brill. Spelling correction as an iterative
process that exploits the collective knowledge of web users.
In EMNLP, pages 293–300, 2004.

[4] R. Jones, B. Rey, O. Madani, and W. Greiner. Generating
query substitutions. In WWW, pages 387–396, 2006.

