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Three different types of classifiers were vmplemented for assigning ICD9 codes automat-
tcally to dictated inpatient discharge summaries: A k-nearest-neighbor, relevance feedback,
and Bayesian independence classifers. In the k-nearest-neighbor paradigm, a test document
1s treated as a query against a collection of already-coded training documents. Experiments
were carried out to optimize the means of selecting and ranking candidate codes for the test
document, based on the scores associated with the retrieved documents. Another line of inves-
tigation within the k-nearest-neighbor paradigm determined how best to turn a test discharge
summary wnto a structured query to maximize the chance of retrieving documents with the
correct codes for the test document. A combination of different classifiers produced better
results than any single type of classifier.

1 Introduction

A great deal of human time and effort is expended in assigning codes of various types to
patient medical records. Because this coding determines reimbursement, it is important to
accomplish this task as easily and as accurately as possible. At the Center for Intelligent
Information Retrieval(CIIR) at UMass Ambherst, we are working with several medical orga-
nizations on information retrieval problems. We present work in progress on automatically
assigning ICDY9 codes to dictated inpatient discharge summaries.

We are following several different approaches to automatic coding, all of them incor-
porating INQUERY, a probabilistic information retrieval system based on an inference net
model [1]. These approaches all attempt to use a prelabeled (coded) corpus of discharge
summaries to infer codes for new discharge summaries. Determining what codes should be
assigned to a document can be seen as a classification problem. Each possible code is a class
or category, and we want to determine whether documents belong in each class, or more
generally, the probability that a document belongs in each class. We use three different
classification techniques, a k-nearest-neighbor [2] approach using the belief scores from IN-
QUERY as the distance metric, Bayesian independence classifiers [3], and relevance feedback.



At some time in the future, we may also experiment with direct lookup in the ICD-9-CM
manuals (Alphabetic Index and TabularList).

Past research in information retrieval has shown that one can improve retrieval effective-
ness by using multiple representations in indexing and query formulation [4, 5, 1] and by
using multiple search strategies [6]. In this work, we investigate whether we can attain simi-
lar improvements in the domain of text categorization by combining different representations
and classification methods.

The classification methods each lend themselves to different kinds of variations on repre-
sentations. In k-nearest-neighbor, test documents are queries, so we experiment with various
forms of structuring the query using INQUERY’s query operators. Because the discharge
summaries contain a large number of terms that are not relevant to the coding task, we
are incorporating several different methods for selecting and giving extra weight to words,
phrases, and document sections that provide the most diagnostic evidence. These methods
include natural language processing to identify diagnosis and symptom-related phrases in
the documents [7], and heuristics to divide the summaries into fields that represent different
sections of the documents. For the Bayesian and relevance feedback classifiers, the docu-
ments are represented by a small set of features (terms, phrases), and they are selected by
slightly different criteria. We do not try to make representations consistent across classifiers
in order to get the benefit of the multiple representations when the classifiers are combined.

These classification techniques yield a ranked list of codes (categories) for each document.
A purely automatic coder would need cutoff criteria for which codes should actually get
assigned. We do not take this last step of going from a score to a yes/no decision, partly
because the correct number of codes for a document can range from 0 to 15. Instead, we
envision these classifiers being used in an interactive program which would display the 20 or
so top ranking codes and their scores to an expert user. The user could choose among these

candidates, possibly with the aid of other software which could display information from the
ICD-9-CM manuals.

2 The Corpus

The corpus consists of 11,599 dictated inpatient discharge summaries, divided into a training
set of 10,902 documents, a test set of 187 documents, and a tuning set of 510 documents.
We are using the discharge summaries rather than the entire patient medical record, because
this is the part of the medical record that has been computerized.

A sample document can be seen in Figure 1. Note that the codes and text following the
codes is not included in the documents in the database, or in the test documents.

The discharge summaries range from around 100 to nearly 3000 words in length with a
mean length of 633 words. Each document has between one and 15 ICD-9 codes assigned to
it, with a mean of 4.43 codes per document. 90% of the documents have fewer than 9 codes.
The first ICD9 code is the principal diagnosis (DX) code. The ordering of the other codes
is not necessary indicative of importance.

In style, the discharge summaries are fairly typical of hospital discharge summaries. Most
of the documents in the corpus follow a standard medical document chronology, usually con-
sisting of an assessment, history of present illness, past medical history, physical examination,



PRINCIPAL DIAGNOSIS: 1. OSTEOARTHRITIS OF THE LEFT HIP
SECONDARY DIAGNOSIS: 2. WOLFF-PARKINSON-WHITE SYNDROME

PROCEDURES: Left total hip replacement (uncemented), 2-2-93.

HISTORY OF PRESENT ILLNESS: The patient is a 54 year old white male with a 9 month
history of left hip pain. He has noted a severe limitation of ambulation over this period of
time and presently is limited to non reciprocal stairs and short distances. He has trouble
getting out of a chair as well as a car. The examination and radiographs ... confirmed bilateral
hip osteoarthritis with left greater than right. He is admitted for an elective left total hip
replacement. He has donated three units of autologous blood.

PAST MEDICAL HISTORY: Notable for osteoarthritis as noted above and WPW syndrome.
PAST SURGICAL HISTORY: Notable for tonsillectomy at age 3 and bilateral hammer toe
corrections. MEDICATIONS ON ADMISSION: At the time of admission, the patient was on
Ferrous Sulfate 325 mg po t.i.d. ALLERGIES: NKDA.

PHYSICAL EXAMINATION: HEENT examination was within normal limits. The lungs were
clear. The cardiac examination revealed no murmurs. The abdomen was benign. The ex-
tremity examination revealed a left antalgic gait with no lurch. There was negative bilateral
Trendelenburg sign. His range of motion of both hips are as follows: flexion is 90 bilaterally
and extension was -10 degrees bilaterally. He had abduction to only 5 degrees bilaterally and
adduction of 30 degrees bilaterally. His external rotation was 5 degrees and internal rotation
was 0 degrees bilaterally. His knees and ankles had full range of motion. Distal sensory motor
examination was intact. Distal pulses were intact.

LABORATORY DATA: The patient’s admission hematocrit was 38.1. Electrolytes were within
normal limits. Coagulation factors were normal. Sed rate was 11.

HOSPITAL COURSE: The patient underwent a left total hip replacement on 2-2-93. Post-
operatively, he was transferred to the floor in stable condition. His hematocrit immediately
postoperative was 38 and trended down to a hematocrit of 34. His postoperative course was
notable for quick progression in physical therapy and he was discharged on 2-9-93. He was
anticoagulated in routine fashion postoperatively and at discharge his PT was 13.8 with iron
of 1.6. Vascular ultrasound and x-rays were taken prior to discharge and the results were not
available at the time of this dictation. He was to continue on 6 weeks of coumadinization and
follow up with Dr. ... at that time.

MEDICATIONS ON DISCHARGE: At the time of discharge, the patient was on Percocet 1-2
q 3 prn, Coumadin 5 mg po q d until directed otherwise. DISPOSITION: To home.
ICD9 Codes for this discharge summary:

D715.95 Osteoarthrosis, unspecified whether generalized or localized, involving pelvic region

and thigh

D426.7 Anomalous atrioventricular excitation

Figure 1: Example discharge summary and its codes



laboratory examination, hospital course, and disposition. Some have operations and proce-
dures. A small proportion of the documents are aberrant in format, or were very short
addenda to other documents. No effort was made to screen these out of the corpus, or to
attach addenda to other documents that they may belong with. The documents were pro-
duced by a large number of practitioners and were consequently heterogeneous in linguistic
style and in the way the sections were labeled.

Automatic coding of such documents is particularly difficult because there is so much
free form text in each document, much of it is not relevant or only indirectly relevant to the
coding task, and the portion of text relevant to each code is not explicitly associated with
its code in any way.

3 K-nearest-neighbor classifier

The k-nearest-neighbor classification scheme attempts to retrieve those already-coded doc-
uments which are most similar to the to-be-coded document, and assign codes based on the
codes of the retrieved documents. The already-coded documents make up an INQUERY
database, and the to-be-coded coded documents (also referred to as test documents) are
queries attempting to retrieve similar documents from the database. A similar approach
has been used for other classification tasks and is sometimes referred to as memory-based
reasoning [8, 9]. Our approach is similar to that of Yang and Chute [10] except that we use
INQUERY rather than cosine similarity for the similarity metric. We go beyond their work
in representing the document as a structured query, and in combining k-nearest-neighbor
with other classifiers.
The major questions our k-nearest-neighbor research has addressed so far are:

e How to assign a score to a candidate code for a test document, based on the codes and
scores assigned to retrieved documents.

e How best to turn a test document into a structured query, to maximize the chance of
retrieving documents with the correct codes.

In addition, we have experimented with field-based indexing and retrieval, and with using
natural language processing (NLP) to aid the automatic coding process by tagging items as
negated, as diagnoses, or as symptoms.

3.1 Method

The training collection of 10,902 discharge summaries was indexed and built into an IN-
QUERY database, using the normal stop list and Porter stemmer. The test documents were
stripped of their codes and presented one at a time to INQUERY as queries. It should be em-
phasized that the queries in this paradigm are the full free-text of the discharge summaries,
which are then stopped and stemmed as part of the query process. This information retrieval
step retrieves a list of those discharge summaries from the database which are most similar
to the test discharge summary to be coded. Each retrieved document has an associated



Ranked list of retrieved documents

Principal
Doc | rank; | belief; | DX code | Other codes for retrieved doc;
3580 | 1 4320 | 715.35 996.4
5997 | 2 4301 | 715.95
7059 | 3 4300 | 715.35 428.0 041.10 458.9 490 V70.7
1040 | 4 4298 | 720.0 424.0 592.0 533.90
4556 | 5 4295 | 715.35 276.1 458.9 V43.6 278.0
6476 | 6 4294 | 715.35 276.5 796.3

Ranked list of retrieved codes

Code | # | Score. | Description of code
715.35 | 10 | 7.7077 | osteoarthrosis, localized, not specified ...
x715.95 | 5 | 3.8535 | osteoarthrosis, unspecified whether generalized or localized ...

428.0 4 | 1.7080 | congestive heart failure
401.9 4 | 1.7057 | unspecified essential hypertension

Table 1: Ranked list of retrieved docs, and derived ranked list of retrieved codes for test doc

belief score, and the list is ranked by this score. Each code found in a retrieved document is
a candidate for assignment to the test document.

The second step in assigning codes to the test document is to assign a score to each code
in each retrieved document, based on the belief score for the retrieved document. These
scores allow us to rank-order the codes proposed for the test document.

These two steps are exemplified in Table 1.

Our preliminary studies showed that the optimal number of documents to retrieve for
each test document was 20. In all subsequent work this number remained fixed at 20.

We have experimented with several different ways of assigning scores to candidate codes
for each test document. The simplest and most obvious method is to use as a code’s score
the number out of the twenty retrieved documents that have that code assigned to it, but
this produces too many ties. Instead, we start by summing the belief scores of the retrieved
documents assigned that code, weighting the scores in various ways before summing, 1.e.

Score, = Z (belief; - wic)

1

where 7 ranges over the retrieved documents,
Score, is the test document’s score for code c,
belief; is the belief score for retrieved doc 1,
w;. 1s the weight for code ¢ in document .



3.1.1 Weighting Methods

We have tested several different weighting methods for determining w;,:

Baseline. Weight is 1 if the code is assigned to the retrieved document, 0 otherwise. In
other words, Score, is the sum of the scores of the retrieved documents assigned the code.

Rank weights. The weight is a function of the rank of the document in the list of retrieved
documents. We tried various linear functions of the rank.

Up-weight principal diagnosis (principal DX) code. We experimented with up-
weighting the principal diagnosis code of each retrieved document by giving it a weight
wp ranging from 1 to 3, that is,

wp if ¢ is the principal DX code for doc
w;e =< 1  if ¢is a nonprincipal DX code for doc
0  if cis not assigned to doc ¢

wp was tuned on the tuning set.

Icf weights. The weight is determined by the frequency of the code in the collection.
We experimented with an inverse code frequency (icf) analogous to the standard inverse
document frequency (idf) [1], computed by: log (numdocs/cf) + 1, where numdocs is the
total number of documents in the collection and cf is the number of docs assigned code c.

Normalized icf weights The icf weights are normalized by the log of the total number
of docs, producing weights that range from 0 to 1: log (numdocs/cf) | log (numdocs) .

3.1.2 Structured queries

For the baseline condition and for testing the weighting schemes above, each test document
was stripped of its ICD9 codes and input in full text form. In addition, we tested various
ways of representing the document to make use of known structure in the document. We
reasoned that certain sections found in some of the documents (for example PRINCIPAL
DIAGNOSIS:) would be more relevant to diagnosis and hence to code assignment than
other sections. INQUERY's flexible query language allowed us to formulate each query as
a weighted sum of the sections of the documents. Two subtasks made up this part of the
research: identifying document sections, and tuning the weights on the sections.

Sections were identified heuristically. This is the only part of the processing that was
not completely automatic. Although not all documents had the same sections, and the
sections were labeled in various ways, they were usually identified by a title in upper case
and terminated by a colon. We used the Unix tools flex and awk to list the titles in reverse
frequency order. All the titles above a threshold were categorized under one of ten section

types: ADD (addendum), ADMIN (administrative), DISCH (disposition), DX (diagnosis),



<DX> PRINCIPAL DIAGNOSIS: 1. OSTEOARTHRITIS OF THE LEFT HIP
SECONDARY DIAGNOSIS: 2. WOLFF-PARKINSON-WHITE SYNDROME < /DX>

<OR> PROCEDURES: Left total hip replacement (uncemented), 2-2-93. < /OR>

<HPI> HISTORY OF PRESENT ILLNESS: The patient is a 54 year old white male with
a 9 month history of left hip pain. He has noted a severe limitation of ambulation over this
period of time and presently is limited to non reciprocal stairs and short distances. He has
trouble getting out of a chair as well as a car. The examination and radiographs ... confirmed
bilateral hip osteoarthritis with left greater than right. He is admitted for an elective left total
hip replacement. He has donated three units of autologous blood. < /HPI>

<PMH> PAST MEDICAL HISTORY: Notable for osteoarthritis as noted above and WPW
syndrome. PAST SURGICAL HISTORY: Notable for tonsillectomy at age 3 and bilateral
hammer toe corrections. MEDICATIONS ON ADMISSION: At the time of admission, the
patient was on Ferrous Sulfate 325 mg po t.i.d. ALLERGIES: NKDA. < /PMH> ...

Figure 2: Example test document with section tags

HOSP (hospital course), HPI (history of present illness), LAB (laboratory examination), OR
(operations and procedures), PE (physical examination), PMH (past medical history).

A flex script was written to recognize the high-frequency titles using regular expressions,
and to add tags marking the beginnings and endings of each section. Then we iteratively ex-
amined the untagged sections, and made the regular expressions more general to encompass
more variations on the titles. We stopped when most of the remaining untagged sections be-
longed to the same category as the preceding tagged section and then modified the algorithm
to include any untagged material in the section preceding it.

Figure 2 shows a portion of the example document with section tags.

To weight sections differentially, we used INQUERY’s #wsum(weighted sum) and #sum
operators, as in Figure 3.

The weights in the baseline weighted sum condition were all equal to 1.

Weights were tuned using the tuning set divided into two sets with 255 documents each.
We used a hill-climbing algorithm [2], and accepted each successive change in weights that
improved the first tuning set without hurting performance on the second tuning set.

3.1.3 Field Specific Retrieval

To investigate whether field-specific retrieval would improve classification, a fielded version
of the database of discharge summaries was created. Each section type was indexed as
a different field. To query the fielded database, queries were formulated by replacing the
#sum (...) operator in the weighted sum query above with a #field (fieldname ...)
operator, indicating that the retrieval system should look for that material only inside the
corresponding field in the training documents.

3.1.4 Natural Language Processing

In addition to the section tagging, text was also tagged with “without” (WO) tags, in cases
like:



#wsum(1.0

1.5 #sum (PRINCIPAL DIAGNOSIS: 1. OSTEOARTHRITIS OF THE LEFT HIP
SECONDARY DIAGNOSIS: 2. WOLFF-PARKINSON-WHITE SYNDROME )

1.0 #sum (PROCEDURES: Left total hip replacement (uncemented), 2-2-93. )

1.5 #sum (HISTORY OF PRESENT ILLNESS: The patient is a 54 year old white
male with a 9 month history of left hip pain . He has noted a severe limitation of ambulation
over this period of time and presently is limited to non reciprocal stairs and short distances.
He has trouble getting out of a chair as well as a car. The examination and radiographs by

. confirmed bilateral hip osteoarthritis with left greater than right. He is admitted for an
elective left total hip replacement. He has donated three units of autologous blood. )

1.0 #sum (PAST MEDICAL HISTORY: Notable for osteoarthritis as noted above and
WPW syndrome . PAST SURGICAL HISTORY: Notable for tonsillectomy at age 3 and
bilateral hammer toe corrections. MEDICATIONS ON ADMISSION: At the time of admission,
the patient was on Ferrous Sulfate 325 mg po t.i.d. ALLERGIES: NKDA. ) ...)

Figure 3: Example test document as a weighted sum query

...patient denied <WO>fevers< /WO>, <WO>chills< /WO> | ...

This tagging was carried out using a simple finite automaton incorporating rules for the
scoping of negation and a lexicon of medical words. The aim was to avoid spurious retrievals
of cases with positive mentions of items occurring in WO fields of the test documents. We
tried many different ways of using the WO tags, including leaving the WO sections out of
the queries, downweighting them, and indexing them in their own fields in the database and
using field operators in the queries.

3.2 Measuring effectiveness
3.2.1 Five measures

We report five measures of coding accuracy. These measures reflect the success at getting
all the codes as high as possible in the list of candidates without considering a cutoff for
acceptance.

Average 11 point precision. Precision and recall have been standard measures of re-
trieval effectiveness in information retrieval [11]. When the task is retrieval, these measures
are computed from the ranked list of documents retrieved for each query. For each such list,
and each possible stopping point on the list, one can measure preciszon - the proportion of
retrieved documents that are relevant to the query - and recall - the proportion of all the
relevant documents that are retrieved. Average precision is computed across precision values
obtained at n evenly spaced recall points (0, 10%, etc.).

In a categorization task, one can use the same measures, recall and precision, in the same
way, on the list of documents ranked by their score on the classifier. Being in the category



is analogous to being relevant.

In this study, we compute recall and precision on the list of codes ranked for each test
document, rather than the list of documents ranked for each classifier (code). A “relevant”
code is one which should be assigned to the test document. This is a natural way to analyze
the output of the k-nearest-neighbor classifier. It is a less natural way to analyze the output of
the Bayesian and relevance feedback classifiers, but it allows us to compare the performance
of the three classifiers and combine them in simple ways.

Top candidate. Proportion of cases where the test document’s principal diagnosis (first)
code is top candidate in the list of codes ordered by Score..

Top 10. Proportion of cases where the test document’s principal diagnosis code is in the
top 10 candidates.

Recall 15. Recall level in the top 15 candidates, that is what proportion of all the correct
codes for the document appear in the top 15 candidates. Fifteen was chosen because it is the
largest number of codes that can be assigned to a document. Therefore, it is the smallest
candidate list where recall could potentially be 100%.

Recall 20. Recall level in the top 20 candidates, that is what proportion of all the correct
codes for the document appear in the top 20 candidates. Twenty was chosen because it is a
reasonable number of codes for an interactive coder to display.

3.2.2 Full codes vs categories.

The five measures above can be based on full codes or categories. ICD9 codes have two
parts, a major category (before the decimal point) and a subcategory (additional digits after
the decimal point). Although a completely automatic coder would have to assign full codes
including subcategories, we have included some measures that reflect partial success. There-
fore, we report the three measures above for two different scoring schemes. Full Codes means
that the whole code with subcategory had to match to be counted as correct. Categories
means that only the category — the part of the code before the decimal point — had to match
to be counted as correct.

3.3 Results

Table 2 shows k-nearest-neighbor performance on the five measures described above for the
baseline and best document-score weighting conditions, and for the baseline and best section
weighting conditions. The table also shows percentage increase over the baseline for the
nonbaseline conditions.

3.3.1 K-nearest-neighbor baseline accuracy

The rows labeled Base in Table 2 show performance for the baseline condition.



Full Codes

Principal Principal

Average code is top code in

Precision candidate top 10 Recall at 15 | Recall at 20
Base 375 24.1 59.4 52.8 55.4
Princ 385 42.7|305 +26.7|652 +99|535 415|566 +2.2
Wsum 41.3 +10.2 | 364 +51.1|69.0 +16.2 | 55.8 +5.7 | 58.7 +46.0
Sec 426 +13.6 | 385 +60.0 | 722 +21.6|576 +9.1|61.6 +11.3
Categories
Base  48.7 42.2 74.9 65.4 69.0
Princ 506 +3.8|49.7 +17.7|781 +43|664 +1.5|69.0 +40.0
Wsum 535 +49.7|540 4278|818 +93|682 443|728 456
Sec 54.0 +10.7 |55.1 +30.4 |84.0 +12.1|69.7 46.6 | 729 45.7

Table 2: K-nearest-neighbor coding performance

Average 11-point precision for full codes in the baseline condition is 37.5%. The principal
code was the top candidate in 24.1% of the cases, and was in the top ten in 59.4% of the
cases. When we score categories rather than full codes, the average precision is 48.7%. The
principal category is the top candidate in 42.2% of the cases, and is in the top 10 in 74.9%
of the cases.

3.3.2 Document-score weighting

Of all the methods of determining w;. described in section 3.1.1, only upweighting the prin-
cipal DX code was better than the baseline. None of the other document-score weighting
methods produced any improvement.

The best value for the principal diagnosis code weight (wp) was 1.8. Note that this
was the value that maximized average precision. A value of 3 would have maximized the
top candidate measure. However, in all of the tuning experiments reported in this paper, we
maximized average precision in the tuning set, since this is the only measure that summarizes
the performance of the full ordering of codes.

As can be seen in the Table 2 in the row labeled Princ, this weighting scheme produced
a 2.7% increase in average precision over the baseline, a 26.7% increase in the top candidate
measure, and a 9.9% increase in the top 10 measure. A similar pattern is seen with category
scores.

Note that principal DX weighting causes a larger increase in the top candidate measure
than in average precision or in the top 10 measure. This weighting scheme moves the principal
DX code to the top of the list more than it gets correct codes onto the list of candidates.

3.3.3 Structured queries

Table 2 shows the results when the test document is converted into query which is a weighted
sum of sections. Formulating the query as a weighted sum with weights of 1, combined
with a principal DX weight of 1.8 (Wsum condition) produces a 10.2% improvement in
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average precision over the baseline, a 51.1% increase in the top candidate measure, and a
16.2% increase in the top 10 measure. Combining the the optimal section weights found
in the tuning procedure with the best principal DX weight (Sec condition) yields a 13.6%
improvement in average precision, a 60% increase in the top candidate measure, and a 21.6%
increase in the top 10 measure. A similar pattern is seen with category scores.

It is interesting that the #wsum version of the documents is such an improvement over the
flat free-text version, even before the sections are differentially weighted. The improvement
is probably due to the length normalization INQUERY performs at each #sum node, which
has the effect of giving more weight to short sections and less weight to long sections.

3.3.4 NLP tags and fields

None of the methods of using the WO tags improved the results. No improvements occurred
using field operators and the fielded database, either for sections or for WO tags.

3.4 Discussion: Generality of the document structure analysis

Taking advantage of the section structure of the documents afforded a substantial gain in
retrieval accuracy. Since the labelling of sections was a heuristic step requiring a few weeks of
tweaking a set of regular expressions, one could question the general value of this approach.
However, the section labelling program would continue to successfully tag new documents
like the old ones. At a site where the format of discharge summaries was more standardized,
or in a database where the sections were already in different fields, this step could be more
completely automated.

4 Bayesian Independence Classifiers

Deciding whether to assign a given ICD9 code ¢ to a document can be conceived as a text
categorization problem: should the document be placed in the class of code ¢ type documents
or not?

We trained a large number of binary classifiers, one for each code, using the large, prela-
beled corpus of discharge summaries as the training set. The Bayesian independence classi-
fier, described more fully below, uses Bayes theorem to estimate the probability of category
membership for each category and each document. The probability estimates are based on
the co-ocurrence of codes and features (terms) in the training set, and assume the features
are independent. Some of these codes have a large number of training examples (the most
frequent code occurred in 2364 of the 10902 training documents), but most do not. Obvi-
ously, the number of examples of a code in the training set will have a large effect on the
quality of the classifier that can be trained from the examples.

The form of the Bayesian classifier used here [3] does not consider term frequency, but
only whether a term occurs in the data.
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4.1 Method

A set of 1068 classifiers were trained, one for each code that occurred 6 or more times in
the training data. First, the documents were stopped and stemmed using the standard
stop list and (Porter) stemmer in the INQUERY system. The resulting stemmed terms
were the potential features for the classifiers. Second, up to forty features (stemmed terms)
were chosen for each classifier (code) according to mutual information [12], subject to the
following constraints: Terms must have length >1, they cannot begin with a digit, they
must contain at least one alphabetic character, they must co-occur at least two times with
the code. Forty terms were obtained for most codes. The exceptions were codes with few
training examples, where fewer than forty terms met the criteria. Preliminary experiments
showed that increasing the number of features above 40 did not improve performance.

The probabilistic model described by Lewis [3] was used for training the classifiers. Our
classifiers are all binary - a document either has a code or it doesn’t have the code, so the
model takes the following form:

P(C|Doc) = P(C)-T] (P(Az-|033.(i()Ai|Doc) N P(Ai|C;.(§ZF;4i|DOC)>

1

where:

) = Prior probability any doc is in class C

) = Probability any doc has feature A;

) = Probability any doc does not have feature A;
P(A;|Doc) = Probability that the test doc has feature A;

) = Probability that the test doc does not have feature A;

) Probability that docs in class C have feature A;

) = Probability that docs in class C do not have feature A;

We estimate

1 if the test doc has feature A;
P(Ai|Doc) = { 0 1if the test doc does not have feature A;

and use the following log probability as a score for code c:

g _1 log (P(A;|C)/P(A;)) if the test doc has feature A;
corec = log(P —I_Z log (P A; |C)/P(ZZ)) if the test doc does not have feature A4;

and the following estimates:

P(C) = (n.+ 5)/(N+1)
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P(AIC)  (df,q+ -5)/(nr +2)

P(A) (e +.5)/(N+1)
PA|C) _ 1-—(dfput.5)/(n +2)
P(4) — 1—(ne+.5)/(N+1)

where N is the total number of documents, n, is the number of relevant documents, that
is, the number of documents with code ¢, n; is the number of documents with the feature
A;, and df,; is the number of relevant documents that have the feature A;.

The model yields an estimate of the log probability that a code is assigned to a document.
We do not attempt to determine a threshold and make a binary membership decision. In-
stead, we produce a ranked list of code candidates for each test document, ordered according
to this probability. This output is comparable to that produced by the k-nearest neighbor
classifier, facilitating the comparison between them, and their combination.

The results presented for k-nearest-neighbor performance in Table 2 include all 3261
ICDY9 codes that occur in the training corpus, regardless of how many training examples
existed for these codes. (Only 789 of these codes are correct assignments in in the test data.)
In fact, some of the codes had very few training examples, as few as 1. We do not know the
minimum number of examples we need to train on to get a reasonable Bayesian classifier,
be we decided to restrict our analyses to codes that occur at least six times in the training
data. There are 1068 such codes.

In order to compare the Bayesian classifier with the k-nearest-neighbor classifier, we also
computed the k-nearest-neighbor results based only on codes that occur 6 or more times in
the training data. In practical terms, we pretend that the list of codes for a (test or training)
document includes only those codes which occur 6 or more times in the training corpus. We
removed any test documents whose principal diagnosis code was removed by this restriction.

4.2 Results

The Table 3 show the Bayesian and k-nearest-neighbor results on the test data restricted to
codes that occur six or more times, and restricted to test documents whose principal diagnosis
code was not eliminated by this frequency criterion. This set has 157 test documents in it
and tests 1068 different codes. Note that the k-nearest-neighbor data in this table have
been restricted to the same subset of codes and documents. For this reason, the baseline
k-nearest-neighbor scores in this table are substantially higher than the baseline in in Table 2.

Note also that the category scoring is done differently for the Bayesian classifier. To get
scores for category assignments, classifiers were trained for categories. To make the k-nearest-
neighbor conditions comparable, they were rerun as if the training and test documents had
only category scores assigned to them.

Although the k-nearest-neighbor and Bayesian results are not significantly different in
average precision, they do show some striking differences in the other measures. The k-
nearest-neighbor classifier is better at getting correct codes, and particularly the principal
diagnosis code, to the top of the candidate list, but the Bayesian classifier is better at getting
more codes onto the list. This can be seen to a certain extent in Table 3, in that the Bayesian
classifier is much worse than k-nearest-neighbor in the TopCand measure, about the same
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Full codes

Principal Principal
Average code is top code in
Precision candidate top 10 Recall at 15 | Recall at 20
KNN 6 48.9 45.9 80.9 63.2 67.1

Bayes 6 475 —2.8|35.7 —22.2|81.5 +0.8|688 489|747 +11.3
RF 6 42.1 -139 344 -25.0|8l5 408|630 —04|67.1 0.0
Categories
KNN 6 55.2 56.0 84.6 70.0 73.1

Bayes 6 53.3 —3.6|41.2 —-26.5|85.7 +13|7.1 +473]79.0 +8.1
RF 6 51.0 75396 —-294 8.2 40.7[69.2 —-12|743 +1.6

Table 3: Performance of Bayesian and Relevance Feedback Classifiers - codes occurring >6
times

in the top 10 measure, and better in the Recall 15 and Recall 20 measures. This pattern
is more apparent when one examines the precision at 11 recall levels, in Table 4. The k-
nearest-neighbor classifier is much better at low recall levels, and the Bayesian classifier is
much better at high recall levels.

5 Relevance Feedback

Relevance feedback is another approach to training a classifier for an ICD9 code. It is similar
to the Bayesian approach in that we train a classifier for each code or category based on the
co-occurrence of codes and terms. In this case, the classifier is a query, which is run against a
database of test documents. A successful query retrieves documents that should be assigned
the code with higher scores than documents that should not be assigned the code.

The relevance feedback classifier is very much like the Bayesian classifier. There are two
major differences, concerning the use of term frequency and the use of terms that don’t occur
in relevant training documents.

Our Bayesian classifier considers only whether a term occurs or does not occur in a
document, not how often the term occurs in the document. This classifier ignores terms
frequency both in feature selection and in training the classifier. The relevance feedback
classifier also does not consider term frequency in feature selection, but it does use term
frequency in determining weights for the terms in the trained query.

The Bayesian classifier chooses terms by mutual information, which means it can select
terms which are strongly associated with documents in the class, or terms that are strongly
associated documents that are not in the class. For example, the term “male” is selected as
one of the features for a lelomyoma of the uterus, and the classifier gives this term a high
negative weight. If the term “male” occurs in the document, it counts strongly against this
diagnosis. The relevance feedback classifier selects only terms that are strongly associated
with documents that are in the class.
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Precision and % change 157 queries
Recall | KNN 6 | Bayes RF

0| 81.0 |72.7 —-10.1|71.0 —12.3
10| 79.4 | 718 —09.7|69.0 —13.2
20| 745 |66.0 —11.4|64.1 —14.0
30| 65.9 |57.7 —125|56.2 —14.8
40 | 56.2 |51.7 —08.0|46.1 —17.9
50 | 53.0 |50.2 —05.2 439 —-17.2
60 | 373 |39.7 4064 | 31.0 -16.8
70| 273 |329 4204|255 —6.7
80 | 24.1 |29.7 4236|209 -13.0
90 | 19.7 |254 4292|178 9.7
100 | 19.6 |25.1 4283|177 —9.7
avg | 489 |475 —02.8|421 -13.9

Table 4: Precision at 11 standard recall points for Bayesian and Relevance Feedback Classi-
fiers

5.1 Method

The relevance feedback algorithm was essentially the same as that used in TREC4 [13] and
is more fully described there. Relevance feedback began with null queries. First, terms were
chosen by comparing their occurrences in relevant and non-relevant training documents.
Weights were assigned using the Rocchio formula applied to INQUERY’s 2.1 weighting
scheme. Finally, the weights were adjusted using a technique similar to that of Buckley
and Salton and others [14, 15].

5.1.1 Term selection

For each ICD9 code, all terms occurring in the relevant documents (training documents with
that code) were identified and ranked by their relative occurrences in the relevant and a
subset of the non-relevant documents (documents without the code) in the large training
corpus of discharge summaries, that is, by:

df’rel . dfnon'rel

Ny Npr

where df,.; is the total number of relevant documents containing the term, df,, ..., 1s that
count in non-relevant documents, n, is the number of relevant documents, and n,, is the
number of non-relevant documents. The number of nonrelevant documents that went into
the training was min(n,,, 15 - n,).

The top 40 terms in this ranking were chosen, and a weighted sum query was built from
these terms, the weights from the Rocchio formula:

1

Z belief

T nonrel

ﬁ-niZbelief—’y-

T rel
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where 8 =2, v = %, and the belief for term ¢ in doc d was calculated by the formula:

log((n: +0.5)/N)
log(N +1)

200 g Lo8(tfea +0.5)

04+4+0.6-(0.4 -min(l, ——— .
+ ( min(1, maztf, log(maztf, + 1)

)

where tf, ; is the occurrences of term ¢ in document d, maztf, is the largest number
of times any term occurs in documents d, n; is the number of documents in the collection
containing term ¢, and N is the total number of documents in the collection,

5.1.2 Weight adjustments

Weights were adjusted by an iterative procedure which tried to optimize the performance of
the query on the training set. For each term in the query, terms weights were adjusted one
a time and the slightly modified query was evaluated. Each change was retained only if it
improved effectiveness on the entire training set. Weights were adjusted in 5 passes, with
factors of 2.0,1.5, 1.25, 1.125, and 1.0625. In each pass, each term was potentially reweighted
by Wnew = Wprey - Pass_factor. A pass was terminated when no term’s reweighting improved
the results.

5.2 Results

The rows labeled RF 61in Table 3 show the relevance feedback results in comparison with the
k-nearest-neighbor and Bayesian classifiers. The test is restricted to codes that occur six or
more times in the training corpus in the same way that the k-nearest-neighbor and Bayesian
data were. Overall performance is substantially worse than that of the k-nearest-neighbor
and Bayesian classifiers. It scores low where each of the other classifiers scores low, but does
not score high where they score high. Average precision is lower than that of the k-nearest-
neighbor and Bayesian classifiers, the top candidate measure is comparable to the Bayesian
classifier, that is, much lower than k-nearest-neighbor . The relevance feedback classifier is
comparable to the k-nearest-neighbor classifier on the recall 10 and recall 15 measures, that
is, substantially lower than the Bayesian classifier.

6 Combining Different Classifiers

6.1 Method

The k-nearest-neighbor classifier was combined with each of the other classifiers in linear
combinations (weighted sums) in several different ways to test 2-way combinations of classi-
fiers. For each code ¢, the 2-way combination score for a given test doc is:

Score. = k - scorepnne + (1 — k) - scoreother c

where Score. is the test document’s combined score for code c. scoregp,. is a function of
the test document’s k-nearest-neighbor score for code c. scorestper 1s a function of the test
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Condition | Component Score | Component Score

1 KNN rank Bayesian rank

2 KNN rank Bayesian rank of normalized score
3 KNN score/20 | Bayesian normalized score

4 KNN rank Relevance Feedback rank

5 KNN score/20 | Relevance Feedback score

Table 5: Components of 2-way combination classifiers

document’s score for code ¢ on either the Bayesian or relevance feedback classifier. The
functions are described in more detail in sections 6.1.1 and 6.1.2 below.

The component scores are summarized in Table 5 for each of the five 2-way combinations
tested. The parameter k£ above was tuned separately for each of the five combinations, using
one of the 255 document tuning sets. Values ranging from .1 to .9 in steps of .1 were tested.
This optimization process was carried out separately for the full code classifiers and for the
category classifiers.

Combinations 1, 2, and 3 merged the k-nearest-neighbor and Bayesian classifiers. Combi-
nation 1 used scores based on the ranks of the codes assigned to each document. Combination
2 was similar, but the Bayesian rank was based on a normalized score which is described in
section 6.1.2 below. Combination 3 used normalized scores rather than ranks. Combinations
4 and 5 merged the k-nearest-neighbor and Relevance Feedback classifiers. Combination 4
was based on ranks, and Combination 5 was based on scores.

Combination 6, not shown in Table 5, is a 3-way combination of the k-nearest-neighbor
score/20, the normalized Bayesian score, and the relevance feedback score. We tested all
possible triples of coefficients ranging in tenths from .1 to .9 in which the coeflicients summed
to one. These tests used the same tuning set of 255 documents that the 2-way combinations
were tuned on.

6.1.1 Ranks

For a given document, each rank-based component (k-nearest-neighbor , Bayesian, or rele-
vance feedback) score for code ¢ was determined as follows:

N — rankcomponent,c 1if ranked

score te = 1
component,c {0 otherwise

Recall that the k-nearest-neighbor method yields a candidate list of codes for each test
document. This does not include all possible codes, but only those codes which were in the
top 20 retrieved documents. In contrast, the Bayesian and relevance feedback classifiers give
a score for each possible code (class) for each test document. Codes that were not k-nearest-
neighbor candidates for a document were given a score of zero for rankyp, .. Furthermore, in
all the combinations below, performance was better if the k-nearest-neighbor candidate lists
included only codes which occurred in two or more retrieved documents. For this reason,
10N kg, scores for codes which occurred in only one retrieved document were also set to
zero before combination with Bayesian or relevance feedback candidate lists.
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Full codes

Principal Principal
Average code is top code in

k Precision candidate top 10 Recall at 15 | Recall at 20
KNN 48.9 45.9 80.9 63.2 67.1
Bayes 475 —28 357 —222|8l5 +40.8|68.8 489|747 +11.3
1 31(520 +64|408 —11.1|803 —-0.8|681 +7.7]729 8.7
2 b5 |539 +103(389 —-153|803 —-08|679 +75|726 +8.1
3 6 |55.3 +13.0 | 46,5 +1.4|86.0 +6.3| 721 +14.1|76.4 +13.9
RF 42.1 —-139 344 -250|815 408|630 —04 671 0.0
4 71537 499|446 —2.8]|822 1.6 | 675 +6.8|71.8 +47.1
5 3556 +13.8 465 +1.4|879 487|715 +13.1|75.7 +12.8
Categories
KNN 55.2 56.0 84.6 70.0 73.1
Bayes 53.3 —3.6 |41.2 —-26.5|85.7 413|751 +73]79.0 +8.1
1 b5 |596 +80|517 —-78|879 +39|747 +68|80.0 +94
2 41599 +85|445 -—-206|86.8 +26|75.0 +72|788 +7.8
3 6 |62.1 +12.6 | 57.1 +2.0|90.7 471|774 +10.6|81.1 +11.0
RF 51.0 —7.5|396 —29.4 8.2 407|692 —-12|743 +1.6
4 8572 +3.6|56.0 +0.0|8.2 +0.7|71.8 +26|77.2 456
5 3631 +14.2 571 420912 478 |79.0 +12.8|824 +12.7

Table 6: Performance of 2-way combination classifiers - codes occurring >6 times

6.1.2 Normalization of component scores

For the combinations using scores rather than ranks, the scores had to be normalized. The
k-nearest-neighbor and Bayesian scores were normalized in different ways to fall in a range
between 0 and 1. Relevance feedback scores already fell in this range, so they did not need
to be normalized. K-nearest-neighbor scores were divided by 20, and Bayesian scores were
divided by the maximum score for that code, that is, the score that would have been attained
for a hypothetical document that had all the terms which had larger coefficients for presence
of the term than for absence of the term, and which did not have any terms which had larger
coeflicients for absence of the term than for presence of the term. Note that normalization
by the maximum possible score for the code changes the ranks of code candidates for each
document, because each code is normalized by a different quantity.

6.2 Results

Table 6 shows the results of all five 2-way combinations of the k-nearest-neighbor and other
classifiers comparison with the best versions of the individual classifiers. It is striking that
all the combinations perform much better than the individual classifiers. It is particularly
surprising that the the relevance feedback combination classifier performs as well as or better
than the Bayesian combination classifier, although the relevance feedback classifier alone
was quite a bit worse than the Bayesian classifier alone. Combinations involving normalized

18



Full codes

Principal Principal
Average code is top code in
Precision candidate top 10 Recall at 15 | Recall at 20
KNN 6 48.9 45.9 80.9 63.2 67.1
Bayes 6 475 —28 357 —222|8l5 4+0.8|68.8 489|747 +11.3
RF 6 42.1 —139 344 —-25.0 815 +0.8|63.0 —0.4|67.1 40.0

Bayes Combo 55.3 +13.0 | 46.5 +1.4 |86.0 +6.3|72.1 +14.1| 764 +13.9
RF Combo 55.6 +13.8 465 +1.4|879 487 |75 +13.1|75.7 +12.8
3 Way Combo 57.0 +16.6 | 46.5 +1.4 |91.1 +12.6 | 73.2 +15.9 | 77.6 +15.6

Categories

KNN 6 55.2 56.0 84.6 70.0 73.1

Bayes 6 53.3 —3.6|41.2 —-265|85.7 413 |7.1 +73|79.0 481
RF 6 51.0 —-7.5|396 -—29.4 8.2 40.7|692 —-12|743 +1.6

Bayes Combo 62.1 +12.6 | 57.1 +42.0 | 90.7 47.1 | 774 +10.6 | 81.1 +11.0
RF Combo 63.1 +14.2 571 420|912 +78|79.0 +4+12.8|82.4 +12.7
3 Way Combo 65.0 +17.7|59.9 +6.9|91.2 47.8|80.0 +14.2|83.9 +14.8

Table 7: Summary of best classifiers - codes occurring >6 times

scores were better than combinations involving ranks.

Consequently, when we tested combinations of all three classifiers, we used k-nearest-
neighbor scores normalized by dividing by 20, Bayesian scores normalized by the maximum
possible score each classifier, and non-normalized relevance feedback scores. Scores from
three classifiers were combined in the same way as scores from 2 classifiers. The optimal set
of coefficients was .3 for the k-nearest-neighbor classifier, .1 for the Bayesian classifier, and .6
for the relevance feedback classifier. As can be seen in Table 7, this three way combination
was better than any of the 2-way combinations in all measures.

7 Discussion

7.1 Combining Classifiers

Table 7 shows the performance of the best classifiers of each type on all the measures de-
scribed in section 3.2.1.

Combining a k-nearest-neighbor classifier with another classifier yielded a substantial im-
provement in accuracy over either classifier alone, and the combination of all three classifiers
was the best of all. Detailed analyses of the outputs of each classifier showed that they had
somewhat complementary strengths and weaknesses. The k-nearest-neighbor classifier was
good at getting the principal DX code at the top of the list of candidates, probably because
of the principal DX weighting. It was also good at getting other codes to the top of the list
(good at low recall levels). The other classifiers were worse at getting correct codes to the
top of the list. The Bayesian classifier was better than the k-nearest-neighbor and relevance
feedback classifiers at getting correct codes onto the list, that is it was better at high recall
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levels.

It is somewhat surprising that the relevance feedback combination classifier was as good
or slightly better than the Bayesian combination classifier, given that the relevance feedback
classifier alone was substantially worse than the Bayesian classifier alone. It is also suprising
that the optimal 3-way combination had such a higher weight on the relevance feedback
component (.6) than on the Bayesian component (.1). An examination of of the codes
assigned to individual documents suggested a possible explanation for this pattern. There
were several documents on which neither individual classifier (k-nearest-neighbor or relevance
feedback) did well, but the combined classifier did very well. An examination of the candidate
lists of codes for these cases showed that the k-nearest-neighbor and relevance feedback
classifiers proposed very different codes for these documents. For a code to appear high on
the list for the combined classifier, it must occur moderately high on both lists. Only the
correct codes did so.

We have confirmed our hypothesis that using multiple classifiers improves classification
performance, just as using multiple retrieval methods improves retrieval effectiveness.

7.2 Improving the results with more training data

Performance in this task is far from the level required for unsupervised automatic coding.
However, this system could form a component of a computer-aided coding system. It could
present a list of codes as candidates to be checked by an expert coder. As Table 7 indicates,
this system would get the principal DX code as the top candidate 46.5% of the time, it would
have the principal DX code in the top 10 candidates 91.1% of the time, and it would have
77.6% of the correct codes in the top 20 candidates.

All the results so far are based on codes which have at least 6 examples in the training
corpus. Six examples is a small number of training cases to base our training on, and we
believe the results would improve with more training data. To illustrate the effects how
more training data would improve the results, we performed a series of tests using the 3-
way combination classifier in which we restricted the data to codes which met a minimum
frequency criterion in the training data. Figure 4 shows how average precision improves as
the minimum frequency is varied from 6 to 500.

Figure 4 does not give the clearest possible picture of the effects of amount of training,
however, because the number of training cases is confounded with the number of codes in
the test. That is, when we look at codes occurring 100 or more times in the data, we are
computing precision based on a ranked list of 89 codes. When we consider codes occurring 6
or more times in the data, we are computing precision over the ranked list of 1068 codes for
each document, reflecting a choice among 1068 rather than 89 codes, a more difficult task.

Figure 5 shows the data partitioned in a way that avoids the confounding in Figure 4.
The test documents have been grouped by the frequency of the principal diagnosis code for
the document but precision is still computed using the ranked lists of 1068 codes. The data
point at frequency 6 includes the documents whose principal diagnosis code occurs between
6 and 12 times in the training data. The data point at frequency 13 includes the documents
whose principal diagnosis code occurs between 13 and 24 times in the training data, etc.

Figure 5 shows a rapid rise in average precision as the frequency in the training data rises
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Figure 4: Average precision as a function of minimum number of training examples

from 6 to 25, then it rises more slowly. Clearly performance is better when each code has 25
or more training examples.

How do these results compare to other attempts at automatic coding and categorization in
the medical domain? Researchers at the Mayo Clinic [10] have used a method called ExpNet
which is very similar to our k-nearest-neighbor classifier and which yields performance very
similar to that of our k-nearest-neighbor classifier when applied to a problem with similar
parameters.

Yang and Chute report categorization performance on two different data sets, one for
surgical reports in which the classes were ICD9 categories, and one for a set of MEDLINE
documents. Although their surgical report task was more like ours in content, the task was
very different. The average text had only nine words, and needed to be associated with one
code. There were many duplicate texts, and a total of 281 codes were trained. On this easy
tasks, their average was 88%. Recall that our data set contained texts averaging 633 words in
length, had 3261 (different) codes, with an average of 4.4 codes per text. Yang and Chute’s
MEDLINE data set was somewhat comparable to ours, averaging 168 words per document,
17 categories per document, and a total of 4020 different codes. Their performance of 35%
was very similar to the 37.5% attained by our baseline k-nearest-neighbor classifier. The
improvements to our k-nearest-neighbor classifier brought the performance up to 42.5%, and
the three way combination classifier was at 57% average precision, greatly exceeding their
results.
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Figure 5: Average precision as a function of frequency of principal DX code

7.3 Future Directions

Our next step in the k-nearest-neighbor approach is to take advantage of yet another level
of structure in these documents. Our associates are using NLP techniques to tag phrases
in the discharge summaries with five subtypes each of diagnoses and signs or symptoms [7].
Our hypothesis is that performance will be improved by giving more weight to the items
selected in this way.

The Bayesian and relevance feedback classifiers could be possibly enhanced by training
two levels of classifiers. The first level classifiers would assign categories of codes (the code
without the subcategories after the decimal points). The second level would choose the best
subcategory for each code. This approach is motivated by the observation that the candidate
lists often contained many codes of the same category, pushing other correct codes lower on
the list. This is not surprising, since codes for related conditions would have very similar
evidence. A classifier which was trying to distinguish a code from other codes in the same
category could be more discriminating than a classifier trying to distinguish a code from all
the others.

Another method would be to obtain the text of the ICD9-CM Tabular List and Alphabetic
Index, and to automate the lookup procedures used by manual coders. This method would
be particularly useful in just the cases where the other two categorization methods would
fail — the codes for which there is too little (or no) training data.

This technique would confront us with a vocabulary mismatch problem which was not a
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major part of the k-nearest-neighbor and other categorization techniques mentioned above.
In our work so far, we have been matching test documents against a corpus of training doc-
uments of exactly the same kind. They have a varied vocabulary, but there is no systematic
difference between the training and test documents. In contrast, the vocabulary used in the
discharge summaries is systematically different from the controlled vocabulary of the ICD9
descriptors. Our preliminary research has shown this to be a serious problem, and we are
now experimenting with using the UMLS Metathesaurus to alleviate the mismatch problem.
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