
Evaluating query log segmentation for frustration
detection

Henry Feild
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003
hfeild@cs.umass.edu

James Allan
Center for Intelligent Information Retrieval

Department of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003
allan@cs.umass.edu

ABSTRACT

We explore the problem of identifying and grouping infor-
mation needs within a stream of queries. Our dataset con-
tains sequences of queries issued by medical specialists to a
domain-specific search system. Because the system allows
for group logins, a sequence of queries could come from any
number of specialists sharing an access point (for example,
in an emergency room). We present several approaches for
segmenting the stream of queries into tasks. Our ultimate
goal is to detect frustrated searchers who are unsuccessful at
satisfying their information needs. With that task in mind,
we present an alternative evaluation measure and compare
it to task-agnostic measures.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Query formulation

General Terms

Algorithms, Experimentation, Measurement

Keywords

task segmentation, query log mining, user frustration, search
goal

1. INTRODUCTION
Search engines serve to help users satisfy some informa-

tion need (i.e., a task). However, when a user has trouble
completing his task, he will likely become frustrated. We
would like to explore methods of detecting when a user is
frustrated, which would be helpful in two ways. First, a sys-
tem that is capable of detecting frustration can modify its
behavior to address the user’s frustration. Second, the sys-
tem could log when it believes the user is frustrated for ret-
rospective failure analysis. For example, to examine search

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

sessions where users seem frustrated, but fulfill their infor-
mation need by clicking a document. Such sessions could
uncover parts of the search system or interaction process
that cause disruptions to search. More importantly, these
sessions contain potential solutions: the users found a way to
bypass these problems and ultimately succeed in their tasks.
In both situations, the system can be improved to help fulfill
more information needs, resulting in better search.

Past research in human-computer interaction, information
science, and information retrieval has observed user frustra-
tion in Web search [1, 2, 6, 9, 10]. One study found that
Web browsing, which presumably includes Web search, is the
most frequent source of user frustration, followed by email
and word-processing [2].

We know of little work on automatic detection of frustra-
tion and none strictly applied to information retrieval (IR).
In this paper, we will use a task-based frustration detector,
which considers user-system interactions from the beginning
of a task to the most recent query for that task. The user
interactions we consider are: logging in or out of the system,
issuing a query, clicking on or printing a document, clicking
on a system suggestion, or paging through results.

A hurdle for such task-based frustration detectors is multi-
task sessions. In these sessions, users try to satisfy more
than one information need. These may be contiguous or
interleaved. Jones and Klinkner found that roughly 17% of
tasks are interleaved within search sessions from a three-day
sample of Yahoo! query logs [5]. Spink et al. observed that
81% of two-query sessions and 91% of three or more query
sessions included multiple topics from samples of AltaVista’s
query logs [8]. In our dataset, we found that up to 94% of
7–10 query sessions have multiple tasks and as many as 10%
of tasks are interleaved. Such sessions are problematic for a
task-based frustration detector because the user interactions
from one task bleed into the other tasks, hampering the
ability of the detector to estimate the users’ frustration with
respect to the actual tasks.

We can address the problem of detecting frustration across
multiple, interleaved tasks by performing task-segmentation
on the search session and then using interactions within each
task to decide a user’s frustration.

We focus here only on detecting general frustration and
ignore specific causes. We do not examine how a system
could be modified to deal with frustrated users; we instead
leave this to future work. It is our opinion, however, that
detecting and particularly dealing with a particular user’s

frustration are very likely dependent on the cause of the
frustration.

We use a simple, automatic method to detect frustration
and evaluate several task segmentation methods based on
the performance of the frustration detector on the segmen-
tations. Our dataset consists of 100 user sessions with be-
tween 7 and 10 queries sampled from one month of query
logs from a medical publication search system. Each session
was manually segmented into tasks to use as a gold standard.

We find that evaluating task segmentation by the accu-
racy of classifying pairs of queries as belonging to the same
task is not sufficient for frustration detection. Rather, tech-
niques that perform well at segmentation do not necessar-
ily produce segmentations on which the frustration detector
performs well.

2. BACKGROUND
In this section, we describe previous work from the areas of

task segmentation and user frustration and satisfaction. We
also provide definitions of the terms used in the remainder
of the paper.

2.1 Related Work
There is a large body of research concerning query log

mining and how events in the logs should be organized into
sessions or tasks.

Jansen, Spink, and Kathuria [4] explored three ways of
defining a user session from the events in a query log. The
first considered all events that shared a common IP address
and cookie. The second method used a combination of IP
address, cookie, and time-out between consecutive events.
The third method considered IP address, cookie, and a lex-
ical similarity between consecutive queries. Specifically, if
two consecutive queries with the same IP and cookie shared
at least one word in common, they were considered a part
of the same session. They found the third method to be
the best with 95% accuracy on sessions examined from Dog-
pile.com.

Spink et al. [8] conducted a qualitative investigation of
multi-query sessions from AltaVista’s query logs. They found
that 81% of two-query sessions and 91% of three or more
query sessions included multiple topics. They also observed
that the variety of topics covered in multi-tasking sessions
was broad. For example, one user entered queries related to
fashion alongside queries of a medical nature. Finally, they
found frequent topic changes were present in sessions with
three or more queries.

Jones and Klinkner [5] defined a user search session to con-
sist of all user activity within a fixed time window. They de-
fined a search goal as an atomic information need, resulting
in one or more queries and a search mission as a related set
of information needs, resulting in one or more goals. They
then annotated a sample of sessions from Yahoo!’s query
logs, assigning each query within a session a goal and mis-
sion identifier. These definitions allow goals and missions to
be interleaved. Indeed, Jones and Klinkner found that 16%
of goals and 17% of missions interleaved in their 312 user
sessions sample.

They then investigated logistic regression classifiers to ad-
dress two tasks. The first was to automatically find goal
or mission boundaries between pairs of consecutive queries
within a session. They were able to do this with 90.8% ac-
curacy for mission boundaries and 93.0% accuracy for goal

boundaries. The second task was to classify pairs of queries
from within a session as belonging to the same goal or mis-
sion. This was accomplished with an accuracy of 88.8% for
missions and 97.2% for goals.

Our work builds on that of Jones and Klinkner, but with
the goal of identifying frustration within goals or missions.
We also explore the questions on a particular vertical search
system where conclusions from the general Web may not
apply.

Huffman and Hochster [3] examined how a relevance mea-
sure based on the top three documents returned by the first
query in a user sessions compares to session-level user sat-
isfaction. They found that “this relationship is surprisingly
strong”. Because of the nature of their experimental setup,
the sessions they examined probably did not contain multi-
ple tasks. Thus, if a similar study was to be performed on
full sessions from a query log, task segmentation would be
important.

Bilal and Kirby [1] examined the search behaviors of mid-
dle school and graduate students on the Yahooligans! search
system. They found that over 50% of the graduate student
were frustrated at some point during their search session.
However, 89% of the graduate students felt satisfied with
their search by the end. This demonstrates that frustration
does not necessarily lead to dissatisfaction.

Wang, Hawk, and Tenopir [10] conducted a study to ex-
plore the interaction of graduate students with a Web search
interface. They found that “negative feelings can result in
a decision to give up on the right strategy”. Thus, address-
ing frustrated users could avoid such situations. Ceaparu et
al. [2] examined user frustration in the context of a variety
of computer applications. They found that Web browsing
caused the most frustration, in part because of its popular-
ity.

2.2 Definitions
We will use the Jones and Klinkner’s definitions for goal

and mission [5]. We define a session to be a set of query
log events that share the same session cookie identifier. We
will also define a task to be either a search goal or mission.
Thus, goals and missions differ only in their granularities of
a task.

To obtain a working definition of frustration, we look to
the human-computer interaction literature. Ceaparu et al
state that “people are frustrated if they are prevented from
achieving expected satisfying results” and that “satisfaction
is also defined as the completion of a goal or task” [2]. The
authors go on to say that “users can still achieve satisfaction
in their tasks despite the presence of frustration in the path
of task achievement”. In this paper, we use the following
definitions with regard to frustration and satisfaction:

Frustration is the affective state of the user at any given
point in a search and is based on the interactions between
the user and the search system up until that point. A user
is frustrated if the events leading up to this moment in time
are preventing the achievement of satisfaction with respect
to the task. Thus, frustration is defined on the event-level.
We will specifically consider frustration at query-events.

Satisfaction is the affective state of the user at the end
of their search task. A user is satisfied if the task has been
successfully completed. Thus, satisfaction is defined on the
task-level.

Goals Missions
Min 1.0 1.0
Median 1.0 2.0
Mode 1.0 1.0
Max 10.0 10.0
Avg 1.9 3.1

Table 1: General statistics about the number of queries per
goal and mission in the sample sessions used.

We will assume that users’ state of frustration at the time
a query is entered is the same as their satisfaction if the task
were to have ended with the previous event. Therefore, frus-
tration is a function of success at different intervals during
a task.

3. DATASET ANALYSIS
This study focuses on task segmentation in query logs

from the UpToDate medical publication database search sys-
tem. The database serves hundreds of thousands of clin-
icians across 140 countries1. The search system receives
about 250,000 queries across 115,000 sessions per day. Ses-
sions are tracked using a session cookie. Averaged over ten
months of query logs, there are 2.2 queries per session.

It is interesting to investigate searcher frustration on this
data set, since the primary users are medical professionals.
When information needs are related to someone’s health,
it is important to help address those needs as quickly as
possible—and keep the user as non-frustrated as possible
along the way.

To explore methods of evaluating task-segmentation, we
first created a gold standard for a sample of user sessions.
We randomly selected 100 sessions with between 7 and 10
queries from February 2008. These sessions were used with
the expectation that they would be more likely to contain
multiple tasks, and at the same time, were not so long as
to be overly burdensome for annotators. The 100 sessions
contained 819 queries.

We asked annotators to re-enact each session as though
they were the searcher, much as the annotators in Jones and
Klinkner’s study did [5]. They were to label each query with
a goal and mission identifier, such that all queries that they
felt belonged to the same goal shared a goal identifier, and
likewise for the missions. In addition, any time a new goal
or mission identifier was used, the annotators were asked to
enter a description of the goal or mission. Annotators were
permitted to look up information in other resources, such
as the Internet, to better understand the user intent. Our
annotators were computer science graduate students, one of
which was one of the authors, and not always familiar with
the medical vocabulary of queries (e.g., “bun gi bleed”, which
refers to blood urea nitrogen gastrointestinal bleeding).

Across the 100 sessions, annotators found 424 goals and
267 missions. Ninety-four percent of sessions have more than
one goal while 67% have more than one mission. There
are 1.9 queries per goal and 3.1 queries per mission (see
Table 1). Missions consist of roughly 1.6 goals. Each session
has an average of 4.2 goals and 2.7 missions. Forty-seven
goals or 9.5% were revisited, while only 19 missions or 4.5%

1http://www.uptodate.com/home/about/about.html

were revisited. This is lower than in previous work [5] that
dealt with Web search. This could be a reflection of the
population of users in this study. Since our system is used by
medical professionals, it may be that the searches are geared
toward very specific information needs (e.g., “what is the
recommended treatment of this condition in a diabetic?”).

4. TASK SEGMENTATION
In this section, we describe the task-segmentation meth-

ods we examine. The results of these techniques are pre-
sented in Section 6. We chose a variety of simple techniques
as baselines, such as assigning each query its own task or
assigning one task to all queries within a session. We also
explore a variety of timeouts, such that all queries occur-
ring between session boundaries or timeouts are considered
a part of one task, and no tasks span those boundaries. Typ-
ical boundaries are 15 and 30 minutes, meaning that as soon
as there has been no logged user interaction with the system
for at least 15 or 30 minutes, a new task boundary is de-
clared. A 15-minute timeout is used by our medical search
organization to do session analysis. A 30-minute timeout
was found to be effective in task segmentation by Randlin-
ski and Joachims [7], though Jones and Klinkner found this
was not the case with their sample of Yahoo! query logs [5].
In addition to looking at just the typical timeouts, we evalu-
ate task-segmentation using timeouts of 0 to 120 minutes at
one minute increments. This way, we can find the optimal
timeout for the medical users of this system.

We also trained a maximum entropy classifier using fea-
ture sets that past research has shown to work well [5], with a
few exceptions. The features used are listed in Table 2. The
keyword-based features used in this study depend on a set
of keywords that are associated with each document in the
our corpus. These keywords are assigned by human editors
at the time of publication. The keyword-based features are
the cosine similarity between the top 5, 10, 25, and 50 doc-
uments returned by a pair of queries. We use th pEOS q2
feature to specify the probability of the second query in a
pair occurring at the end of a search session as opposed to
the probability of its occurring as a user’s last query before
midnight, as it was used by Jones and Klinkner [5]. The
query reformulations used for the log-based features were
aggregated over the query logs from November 2007 through
January 2008.

Two classifiers were trained and tested using 10-fold cross-
validation; one for goals and the other for missions. Below
we use ‘task’ to mean either goals or missions. To train
the classifier, we took all pairs of queries such that 1) the
queries were from the same session and 2) the second query
in the pair occurred after the first. Each pair was labeled as
belonging to class ‘same’ if the two queries were a part of the
same task according to the gold standard and ‘different’
otherwise.

This pair-wise classification is convenient and easy to un-
derstand; however, it does not necessarily segment a session
into tasks. Problems arise when the output of a classifier
forms a contradiction. For example, consider the queries
q1, q2, and q3. Lets suppose that our classifier assigns the
following labels:

〈q1, q2〉 ← same

〈q1, q3〉 ← same

〈q2, q3〉 ← different

Feature Description

Query log based

llr LLR(q1, q2); log-likelihood ratio of the
co-occurrence of q1 and q2.

pEOS q2 Probability that q2 is the last query in
a session.

pq12 p(q1→q2)
maxqj

p(q1→q2)

entropy x q1
P

i
p(q1|qi) lg p(q1|qi)

entropy q1 x
P

i
p(qi|q1) lg p(qi|q1)

nsubst x q1 count(X : ∃p(X → q1))
nsubst x q2 count(X : ∃p(X → q2))
usubst q2 x count(X : ∃p(q2 → X))
seen in logs qp True if LLR(q1, q2) > n for some n.
p change

P

i
p(q1 → qi) : q1 6= qi

Keyword based

keywordSim 5 The cosine similarity between human-
editor assigned keywords for the top 5
documents retrieved for q1 and q2.

keywordSim 10 Uses the top 10 documents.
keywordSim 25 Uses the top 25 documents.
keywordSim 50 Uses the top 50 documents.

Temporal

inter query 5 True if more than five minutes have
passed between q1 and q2.

inter query 30 True if 30+ minutes have passed.
inter query 60 True if 60+ minutes have passed.
inter query 120 True if 120+ minutes have passed.
time diff The time (in seconds) that has passed

between q1 and q2.
seq queries True if q2 immediately follows q1 in the

session log.

Word and character similarity

lev Normalized Levenshtein edit difference
between q1 and q2

edlevGT2 True if the Levenshtein difference is
greater than 2.

char pov # of common prefix characters.
char suf # of common suffix characters.
word pov # of common prefix words.
word suf # of common suffix words.
commonw # of common words.
wordr Jaccard distance between sets of words

in q1 and q2.

Table 2: The features used to train the same-goal and same-
mission classifiers.

How is this supposed to be segmented? q1 should go with
q2 and q3, but we should not put q2 and q3 together. If we
suppose that the gold standard has all three of the queries
belonging to the same task, then we can see that the above
classification is 67% accurate. However, in light of the con-
tradiction, we have to ignore at least one of our classified
labels, which could reduce our accuracy to 33% or, if the
final label were ignored, raise our accuracy to 100%.

A clustering method would be helpful, since it could de-
cide which query pairs should be kept together and which
ones should be kept separate. The problem is, we need some
sort of distance measure to use for clustering.

Fortunately, maximum entropy classifiers output proba-
bilities in addition to class labels. The particular classifier
used in this study uses 0.5 as a threshold, so any query pair
having a probability of being from the same task greater
than 0.5 is assigned the class ‘same’ and ‘different’ oth-
erwise. We can use the pair-wise probability as a distance
measure, and then stop clustering when no two clusters have
a distance greater than 0.5.

As a distance function, we can use average-link (the aver-
age distance between the queries in two clusters), minimum-
link (the smallest distance between any two queries from
two clusters), and maximum link (the maximum distance
between any two queries from two clusters).

In addition to the distance measure, we also explore two
inherently different methods of clustering with regard to the
amount of information available at each stage of the cluster-
ing. The first method, on-line clustering, is meant for use
in live systems for dynamic task segmentation. The second
method, retrospective clustering, is useful for failure anal-
ysis and other off-line activities that make use of all the
information that was generated from a user session.

4.1 On-line task clustering
In on-line clustering, we are given the logged events from

a session one at a time in chronological order. Each time we
are given a query, we add it to an existing task or create a
new task.

This is useful for a live search system that tries to keep
track of what task a user is currently working on. If a
user has searched for information about the—we will assume
disjoint—tasks of fishing and restaurants and their most re-
cent query is about pike, the system might want to pull
information from the events that are specific to the ‘fishing’
task to help aid the search.

We implemented this clustering technique with average-,
minimum-, and maximum-link distance functions. In on-
line clustering, the incoming query is a singleton and it is
compared with each of the existing clustered tasks. Thus,
merges only occur between a singleton and a cluster with
one or more queries.

4.2 Retrospective task clustering
Retrospective task clustering allows for all of the logged

events to be examined at the time of clustering. This tech-
nique can be used as soon as a search session is complete.
Rather than merging the most recent query with an existing
task or creating a new one, this method takes an agglomer-
ative approach: initialize every query as a singleton cluster
and then merge the closest two. This is performed until the
stopping criterion is met. We also implemented this cluster-
ing method with the three distance functions above.

Retrospective clustering should perform better than on-
line clustering since it has more information available, en-
suring that only the best clusters are merged. This would
make it more reliable for retrospective analysis of search ses-
sions, such as providing statistics.

Ultimately, however, the best method to use for retro-
spective analysis can be decided empirically, as reported in
Section 6.

5. FRUSTRATION DETECTION
Assume we are given a task consisting of some number of

user interactions and a new query. Our goal is to predict if

TP FP TN FN

Goals

Näıve Detector 119 109 545 46
Always Frustrated 165 654 0 0

Missions

Näıve Detector 143 151 479 46
Always Frustrated 189 630 0 0

Table 3: Lists the true positive, false positive, true negative,
and false negative counts between two objective frustration
classifiers and the frustration labels provided by human an-
notators. The frustrated label is considered a positive
observation.

the user is frustrated or not when the new query is issued.
The frustration label is not saying that the user is frustrated
with the query or its results, which we have yet to see, but
rather that the user is frustrated at the point in time when
he enters the query.

We adopt a very simple method that says a user is frus-
trated if he did not click on any results for the previous query
in the task. Even though this method does not necessarily
use all of the preceding user interactions in the task to make
a prediction, its reliance on the most recent events in the
task make it sensitive to the task segmentation. If we do
a poor job segmenting tasks, we should do poorly here, as
well.

Table 4 shows an example of an actual session from the
medical query logs with three goals, one of which is in-
terleaved. The task assignments and frustration labels are
shown for the gold standard, for a segmentation where each
query is assigned to its own task, and for a segmentation
where all queries are considered part of the same task. The
tasks in the example are goal-based, so two queries are a part
of the same task if they are part of the same atomic infor-
mation need. The example demonstrates how the accuracy
of task segmentation can affect frustration detection. Table
5 shows the same session, but with same-mission labels.

To evaluate this objective frustration detector, we would
need to have feedback from the original searchers about
their level of frustration for each query they entered. We
do not have this information, however. Instead, we asked
our annotators to indicate their intuition as to whether or
not the searcher was frustrated on the goal- and mission-
level for each query. They were told to mark the searcher
as frustrated if they felt they themselves would have been
frustrated at that point in the search. Because this work fo-
cuses on task segmentation and not frustration detection, we
present the following agreement data to demonstrate where
the näıve frustration detector lies with regard to the anno-
tations and a baseline that assumes the searcher is always
frustrated.

Table 3 shows the contingency table values for the näıve
frustration detector and the always-frustrated baseline ver-
sus the annotators’ frustration labels. For frustration detec-
tion on goals, the näıve detector has 81% accuracy, 52% pre-
cision, and 72% recall. Always classify the user as frustrated
achieves 20% accuracy, 20% precision, and 100% recall. In
other words, always classifying the user as frustrated will
annoy more users than the näıve approach.

Technique Goal Mission
One task per query 72.10% 43.03%
One task per session 27.90% 56.97%

Timeouts

15-minute timeout 53.06% 73.98%
30-minute timeout 49.42% 74.64%
Best performing timeouts

0-minute timeout 72.10% 43.03%
11-minute timeout 56.27% 76.00%

Using classifier results

No clustering 74.93% 75.56%
on-line, average-link 74.78% 75.70%
on-line, minimum-link 75.04%⋆ 74.38%
on-line, maximum-link 74.08% 76.99%⋆

retrospective, average-link 74.78% 74.54%
retrospective, minimum-link 74.84% 75.31%
retrospective, maximum-link 74.08% 76.40%

Table 6: The accuracy of a number of same-task classifi-
cation techniques. The accuracy is measured on pair-wise
classification of queries as belonging to the same task within
a session. The timeouts refer to maximum amount of time
that can pass between two consecutive events in a sessions
before a new task is begun. All events between such bound-
aries, as well as the session start and end, are considered to
be a part of the same task. The best results are denoted
with an asterisks.

This shows that the simple frustration detector, while it
still mislabels many instances of frustration, largely agrees
with the annotators’ labels. It should be noted that using
an always-not-frustrated baseline is not appropriate here.
While the accuracy and precision will be high, the recall is
always zero, therefore making it no different from today’s
search interfaces, which do not detect frustration. A recall
of zero also causes all F -measures to be undefined, rendering
them useless as an evaluation metric.

6. EVALUATION
In this section, we describe how the task segmentations

were evaluated directly and with respect to their effect on
frustration detection.

6.1 Same-task evaluation
In previous studies, accuracy is reported directly for task

segmentation [5, 7]. We do this by comparing the same-task
labels for each of the query pairs from segmentation tech-
niques with the gold standard for both goals and missions.
In the sample of sessions, there are a total of 3,021 query
pairs. According to the annotators, 843 pairs (56.97%) have
a same-goal label and 1,721 pairs (27.92%) have a same-

mission label.
Table 6 shows the accuracies for each of the segmentation

techniques. Considering just segmenting tasks by timeouts,
0-minutes, which is the same as assigning one task per query,
performed best for goals at 72%. An 11-minute timeout
worked best for segmenting missions at 76%. Overall, using
on-line clustering with the minimum-link distance function
was most accurate for goal segmentation (75%), and on-line
clustering with the maximum-link distance function was best

Gold std. One Goal per Query One Goal per Session
Event No. Query/Event ID Frust. ID Frust. Err. ID Frust. Err.

1 renal transplant 1 NF 1 NF 1 NF
2 renal transplant and hypertension 2 NF 2 NF 1 F X
3 norvasc 3 NF 3 NF 1 F X
4 〈click〉 3 3 1
5 renal transplant 2 F 4 NF X 1 NF

Table 4: Three examples of how a session might be segmented into goals and the corresponding frustration labels applied.
The first baseline assigns every query to its own goal whereas the second baseline assigns every query to the same goal. The
frustrations labels (abbreviated ‘Frust.’) are ‘F’ for frustrated and ‘NF’ for not frustrated. The gold-standard task labels are
with respect to the assumed user goals. Two of the queries seek information about kidney transplants, one is about kidney
transplants for patients with hypertension, and Norvasc is a drug used to treat hypertension. Errors are marked when an ‘X’.

Gold std. One Mission per Query One Mission per Session
Event No. Query/Event ID Frust. ID Frust. Err. ID Frust. Err.

1 renal transplant 1 NF 1 NF 1 NF
2 renal transplant and hypertension 1 F 2 NF X 1 F
3 norvasc 1 F 3 NF X 1 F
4 〈click〉 1 3 1
5 renal transplant 1 NF 4 NF 1 NF

Table 5: Three examples of how a session might be segmented into missions and the corresponding frustration labels applied.
The first baseline assigns every query to its own mission whereas the second baseline assigns every query to the same mission.
The frustrations labels (abbreviated ‘Frust.’) are ‘F’ for frustrated and ‘NF’ for not frustrated. The gold-standard task labels
are with respect to the assumed user missions. All of the above queries have to do with information about renal transplants
and drugs used to treat hypertension. Errors are marked when an ‘X’.

 0

 0.2

 0.4

 0.6

 0.8

 1

1-task-per-query

1-task-per-session

Alw
ays Frustrated

N
ever Frustrated

2-m
in Tim

eout

15-m
in Tim

eout

30-m
in Tim

eout

O
n-line, avg

O
n-line, m

in

O
n-line, m

ax

R
etro, avg

R
etro, m

in

R
etro, m

ax

Frustration detection on goal segmentations

Accuracy
Precision

Recall
F.75

Figure 1: A comparison of frustration classification for sev-
eral goal-segmentation techniques using four evaluation met-
rics (accuracy, precision, recall, and F0.75).

 0

 0.2

 0.4

 0.6

 0.8

 1

1-task-per-query

1-task-per-session

Alw
ays Frustrated

N
ever Frustrated

6-m
in Tim

eout

15-m
in Tim

eout

30-m
in Tim

eout

O
n-line, avg

O
n-line, m

in

O
n-line, m

ax

R
etro, avg

R
etro, m

in

R
etro, m

ax

Frustration detection on misison segmentations

Accuracy
Precision

Recall
F.75

Figure 2: A comparison of frustration classification for sev-
eral mission-segmentation techniques using four evaluation
metrics (accuracy, precision, recall, and F0.75).

Technique Accuracy F0.75

Simple Baselines

One task per query 72.16% —
One task per session 83.88% 69.80%
Always frustrated 27.84% 33.97%
Never frustration 72.16% —

Timeouts

15-minute timeout 85.47% 72.05%
30-minute timeout 85.47% 72.02%
Best performing timeouts

2-minute timeout 86.08%⋆ 73.40%⋆

Using classifier results

on-line, average-link 76.80% 47.47%
on-line, minimum-link 76.92% 47.84%
on-line, maximum-link 76.56% 47.06%
retrospective, average-link 76.80% 47.47%
retrospective, minimum-link 76.68% 46.82%
retrospective, maximum-link 76.56% 47.06%

Table 7: The accuracy and F0.75 scores for detecting frus-
tration on a number of goal-segmentations. The values are
measured on a per-query basis. The best results are denoted
with an asterisks.

for mission segmentation (77%). For both same-goal and
same-mission classification, the difference between the best
clustering technique’s accuracy and that for the baselines
and timeouts are statistically significant at the p = 0.05
level.

In general, we find that with accuracy as the optimization
measure, all categorization techniques we tried were compa-
rable and typically beat simpler approaches. It seems clear
that classifiers are successful, a result consistent with Jones
and Klinkner [5].

However, we are interested in detecting frustration.

6.2 Frustration detection evaluation
To evaluate frustration detection, we report both the ac-

curacy of the frustration labels for each issued query in a
session as well as F0.75. Recall that the F -measure formula
is as follows:

Fα =
1

α 1
P

+ (1− α) 1
R

,

where P is the precision and R is the recall. We chose
α = 0.75 because in the case of detecting frustrated users, it
seems more important to avoid mislabeling non-frustrated
searchers than frustrated ones. That is, in an on-line setting
we do not want to pester satisfied users, and in a retrospec-
tive setting, we do not want to suggest someone does failure
analysis on successful tasks. This α value gives more weight
to precision (mislabeling non-frustrated searchers) than re-
call (mislabeling frustrated searchers).

Table 7 and Figure 1 show several evaluation metrics of
the frustration detection for each goal-segmentation method.
In addition, two simple baselines are shown; the first as-
sumes the user is always frustrated and the second that the
user is never frustrated. For goal segmentation, timeouts
worked best. Timeouts of 15 and 30 minutes outperformed
both the simple baselines and the classifier results, both with
an accuracy of 85% and an F0.75 score of 72%. Overall, a

2-minute timeout has the optimal F0.75 score of 73% and an
accuracy of 86%. The differences between the accuracy and
F0.75 score for the 2-minute timeout and that of the cluster-
ing methods are all statistically significant at the p = 0.05
level. All of the clustering methods performed roughly the
same, but rarely very well, in contrast to the results of Sec-
tion 6.1.

Figure 2 shows the same metrics for the mission-segmentation
methods. This graph is less interesting, as the clustering
methods perform comparably to the timeout methods. A
6-minute timeout performed best with 91% F0.75 score and
95% accuracy. However, if we use a different stopping cri-
teria for on-line clustering using the maximum-link distance
function, we can achieve a better F0.75 score here. Specif-
ically, raising the stopping criterion from 0.5 to 0.64, we
get an F0.75 score of 93%. A similar increase occurs with
higher stopping criterion for the other clustering methods.
The differences in accuracy and the F0.75 scores between the
timeouts and clustering methods are not statistically differ-
ent at the p = 0.05 level.

7. DISCUSSION OF RESULTS
In this section, we discuss several interesting observations

about the results from Section 6. We see that the same-
goal classification accuracy for the clustering methods corre-
sponds nicely to the frustration classification accuracy. How-
ever, for all the other segmentation techniques, accuracy rose
dramatically. So while the on-line clustering method using
minimum-link distance performed best at the actual task-
segmentation, using a 2-minute timeout substantially out-
performed all clustering techniques in frustration detection.
This tells us that same-goal classification is not sufficient for
frustration detection on the goal level in our sample.

In contrast, same-mission classification transferred well to
frustration detection.

Task segmentation itself still important for our task. For
example, in our sample of sessions there are an average of
4.61 goals per mission that has at least one instance of frus-
tration. This compares to 2.44 goals per mission with no
instances of frustration. While we did not utilize this infor-
mation for mission segmentation, it seems like a reasonable
feature to add.

It should be noted that the classifiers used to produce
the distance measures used in task clustering were not op-
timized. Performing best-subsets regression to find the best
set of features for goal and mission segmentation may have
produced a more accurate same-task classifier. We also did
not try other classifiers, such as decision trees or support
vector machines. The focus of this study was to examine
the effects of evaluating task segmentation with frustration
detection.

8. SUMMARY
We showed several clustering methods that can be used

to remove contradictions introduced when classifying pairs
of queries as belonging to the same task. We also showed
that segmentation techniques that perform well at same-task
classification do not necessarily perform well for other task-
based applications, particularly frustration detection. Fu-
ture research should be conducted to evaluate task-segmentation
classifiers constructed to optimize frustration detection.

In this paper, we considered a simple heuristic for detect-
ing user frustration. We did not explore how a search system
might be modified in order to address certain types of frus-
tration. Future work includes an investigation into the types
of user frustration, examining machine learning approaches
to detecting varying types of frustration, and exploring the
effect of various system interventions on user frustration.

9. ACKNOWLEDGMENTS
We thank Niranjan Balasubramanian and Sam Huston for

their feedback regarding this research. This work was sup-
ported in part by the Center for Intelligent Information Re-
trieval and in part by UpToDate. Any opinions, findings and
conclusions or recommendations expressed in this material
are the authors’ and do not necessarily reflect those of the
sponsor.

10. REFERENCES
[1] D. Bilal and J. Kirby. Differences and similarities in

information seeking: children and adults as Web users.
Information Processing and Management,
38(5):649–670, 2002.

[2] I. Ceaparu, J. Lazar, K. Bessiere, J. Robinson, and
B. Shneiderman. Determining Causes and Severity of
End-User Frustration. International Journal of

Human-Computer Interaction, 17(3):333–356, 2004.

[3] S.B. Huffman and M. Hochster. How well does result
relevance predict session satisfaction? In Proceedings

of the 30th annual international ACM SIGIR

conference on Research and development in

information retrieval, pages 567–574. ACM Press New
York, NY, USA, 2007.

[4] B.J. Jansen, A. Spink, V. Kathuria, and S. Koshman.
How to Define Searching Sessions on Web Search
Engines. Lecture Notes in Computer Science,
4811:92–109, 2007.

[5] Rosie Jones and Kristina Lisa Klinkner. Beyond the
session timeout: automatic hierarchical segmentation
of search topics in query logs. Proceedings of CIKM

2008, 2008.

[6] J. Lazar, J. Feng, and A. Allen. Determining the
impact of computer frustration on the mood of blind
users browsing the web. In Proceedings of the 8th

international ACM SIGACCESS conference on

Computers and accessibility, pages 149–156. ACM
New York, NY, USA, 2006.

[7] F. Radlinski and T. Joachims. Query chains: learning
to rank from implicit feedback. In Proceedings of the

eleventh ACM SIGKDD international conference on

Knowledge discovery in data mining, pages 239–248.
ACM New York, NY, USA, 2005.

[8] A. Spink, M. Park, B.J. Jansen, and J. Pedersen.
Multitasking during Web search sessions. Information

Processing and Management, 42(1):264–275, 2006.

[9] Y. Tonta. Analysis of Search Failures in Document
Retrieval Systems: a Review. The Public-Access

Computer Systems Review, 3(1):4–53, 1992.

[10] P. Wang, W.B. Hawk, and C. Tenopir. Users’
interaction with World Wide Web resources: an
exploratory study using a holistic approach.
Information Processing and Management,
36(2):229–251, 2000.

