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1. Introduction

Recent work on hierarchical priors for n-gram language
modeling [MacKay and Peto, 1995, Teh, 2006, Gold-
water et al., 2006] has demonstrated that Bayesian
methods can be used to reinterpret well-known non-
Bayesian techniques for smoothing sparse counts.
However, sparse counts are not unique to language
modeling—they are ubiquitous throughout NLP—and
the same ideas may be used to reinterpret and enhance
other non-Bayesian NLP models, thereby extending
the reach of Bayesian methods in natural language.

In addition to word order—the focus of n-gram lan-
guage modeling—natural language also exhibits com-
plex syntactic structures. Dependency trees are a
useful way of representing these kinds of structures.
Dependency trees encode relationships between words
and their sentence-level, syntactic modifiers by repre-
senting a sentence as a tree with a node for each word.
The parent of each word is the word that it most di-
rectly modifies. Despite modeling different kinds of
structure, generative models of dependency trees are
similar to n-gram language models in that they both
decompose the probability of a sentence into a product
of probabilities of individual words given some (typ-
ically sparse) word-based context. In n-gram mod-
els, the context is the preceding words, while in de-
pendency modeling it is the word’s parent and some-
times its siblings. Thus, while the actual contexts
used by the models are different, the underlying idea—
that contexts consist of nearby words—is the same.
The models do differ in two important ways, however.
First, while all information (word identities and order)
is observed in an n-gram model, dependency models
require inference of the latent structure of each depen-
dency tree. Second, unlike n-gram modeling, in which

trigrams are smoothed with bigrams and so on, the
choice of context reductions for dependency models is
less obvious and must be decided by the modeler.

In this paper, we describe two hierarchical Bayesian
models for dependency trees. First, we show that
Eisner’s classic generative dependency model [1996]
can be substantially improved by (a) using a hierar-
chical Pitman-Yor process as a prior over the distri-
bution over dependents of a word, and (b) sampling
the model hyperparameters (section 3). These changes
alone yield a significant increase in parse accuracy over
Eisner’s model. Second, we present a Bayesian depen-
dency parsing model in which latent state variables
mediate the relationships between words and their de-
pendents. This model clusters dependencies into states
using a similar approach to that employed by Bayesian
topic models when clustering words into topics (sec-
tion 4). The inferred states have a syntactic flavor and
lead to modestly improved accuracy when substituted
for part-of-speech tags in the parsing model.

2. Background

In this section, we briefly review the hierarchical
Pitman-Yor process and its application to n-gram lan-
guage modeling. The Pitman-Yor process [Pitman and
Yor, 1997] has three parameters: a base measure m,
a concentration parameter α, and a discount param-
eter 0 ≤ ǫ < 1. In an n-gram language model the
probability of word w in the context of h (a sequence
of n − 1 words) is φw|h. Letting ρ(h) be the reduc-
tion of h, obtained by dropping the left-most word,
each probability vector φh = {φw|h} can be given a
Pitman-Yor prior, with parameters mρ(h), αn−1 and
ǫn−1. The base measure mρ(h) is shared by all con-
texts h′ with reduction ρ(h′) = ρ(h). The effects of



P (sn | s
π(n), wπ(n), cπ(n), sσ(n), dn) P (wn | sn, s

π(n), wπ(n), cπ(n), dn) P (cn | sn, wn)

s
π(n), wπ(n), cπ(n), sσ(n), dn sn, s

π(n), wπ(n), cπ(n), dn sn, wn

s
π(n), s

σ(n), dn sn, s
π(n), dn sn,

s
π(n), dn sn,

Table 1. Contexts (in order) used by Eisner for estimating probabilities.

using a Pitman-Yor prior are best explained in terms
of drawing a new observation from the predictive dis-
tribution over words given h, obtained by integrating
out φh: If the observation is the first to be drawn, it is
instantiated to the value of a new “internal” draw from
mρ(h). Otherwise, it is instantiated to the value of an
existing internal draw, with probability proportional
to the number of observations previously “matched”
to that draw minus ǫn−1, or to the value of a new
internal draw, with probability proportional to αn−1.
The Pitman-Yor process may be used hierarchically—
i.e., mρ(h) may be given a Pitman-Yor prior, with pa-
rametersmρ(ρ(h)), αn−2 and ǫn−2, and integrated out.
Similarly for mρ(ρ(h)) . . .m∅. This yields a hierarchy
of Pitman-Yor processes encompassing all context re-
ductions. The internal draws at one level are treated
as observations by the next level up, and there is path
from each observation to top-level uniform base mea-
sure u via the internal draws. The observation counts
in the predictive distribution are effectively smoothed
with higher-level counts, determined by the number of
observations (or lower-level internal draws) matched to
each internal draw in the hierarchy. The hierarchical
Pitman-Yor process was applied to n-gram language
modeling by Teh [2006] and Goldwater et al. [2006].

For real-world data, the number of internal draws at
each level and the paths from the observations to the
top-level base measure u are unknown. Since these
quantities determine the counts used in the predictive
distribution, they must be inferred using either Gibbs
sampling or an approximate inference scheme.

Bayesian n-gram language modeling was first explored
by MacKay and Peto [1995], who drew connections be-
tween non-Bayesian interpolated language models and
hierarchical Dirichlet priors. Teh [2006] and Goldwater
et al. [2006] showed that using a hierarchical Pitman-
Yor process prior as described above leads to a model
of which Kneser-Ney smoothing is a special case.

3. A Hierarchical Pitman-Yor

Dependency Model

In this section, we describe the first of our Bayesian
dependency parsing models. This model is best ex-
plained by starting with a reinterpretation of Eisner’s

dependency model [1996] from a Bayesian perspective.
Eisner’s model generates sentences using a parent-
outward process. Each parent generates a sequence
of children starting in the center and moving outward
to the left and then similarly to the right. Conditioned
on the parent, the sequence of children in each direc-
tion is a first order Markov chain. The probability of
a sentence consisting of words w, with corresponding
part-of-speech tags s, case values c (see below) and
tree t, generated according to this process, is

P (s,w, c, t) =
∏

n

P (sn | sπ(n), wπ(n), cπ(n), sσ(n), dn)

P (wn | sn, sπ(n), wπ(n), cπ(n), dn)

P (cn | sn, wn).

(1)

where dn is the direction of wn with respect to its
parent, π(n) is the position of wn’s parent, σ(n) the
position of wn’s immediately preceding sibling (mov-
ing outward from wn’s parent in direction dn), and
y(n) is the position of wn’s final child. The case cn of
each word wn may be one of four values: lower, upper,
mixed, or first capitalized word in the sentence.

Eisner estimates each probability in equation 1 from
training data D (tagged, cased sentences and their
trees) by interpolating between probability estimates
computed using various reduced conditioning contexts.
The complete set of conditioning contexts for each
variable (i.e., tag, word, case) are shown in table 1.

Alternatively, however, equation 1 can be rewritten as

P (s,w, c, t) =
∏

n

θsn | s
π(n)wπ(n)cπ(n)sσ(n)dn

φwn | sn,s
π(n)wπ(n)cπ(n)dn

ψcn | snwn

(2)

where θs′w′c′s′′d is the distribution over part-of-speech
tags for the context consisting of parent tag s′, parent
word w′, parent case value c′, sibling tag s′′, and di-
rection d. Similarly, φss′w′c′d is the distribution over
words for the context defined by tag s, parent tag s′,
parent word w′, parent case value c′, and direction d.
Finally, ψsw is the distribution over case values for the
context consisting of tag s and word w. Eisner’s in-
terpolation method is then equivalent to giving each



probability vector a hierarchical Dirichlet prior—e.g.,

θs′w′c′s′′d ∼ Dir (θs′w′c′s′′d |α2,ms′s′′d) (3)

ms′s′′d ∼ Dir (ms′s′′d |α1,ms′d) (4)

ms′d ∼ Dir (ms′d |α0,u) (5)

with α2 = α1 = 3 and α0 = 0.5 (the parameter val-
ues used by Eisner). Under these hierarchical priors,
the predictive distributions given data D (computed
as described by MacKay and Peto [1995]) are identical
to the interpolated probabilities used by Eisner.

This Bayesian reinterpretation of Eisner’s model has
two advantages: Firstly, the concentration parameters
may be sampled, rather than fixed to some particu-
lar value. Secondly, it is also possible to use priors
other than the hierarchical Dirichlet distribution—for
example, a hierarchical Pitman-Yor process prior:

θs′w′c′s′′d ∼ PY (θs′w′c′s′′d |α2,ms′s′′d, ǫ2) (6)

ms′s′′d ∼ PY (ms′s′′d |α1,ms′d, ǫ1) (7)

ms′d ∼ PY (ms′d |α0,u, ǫ0). (8)

Priors for φss′w′c′d and ψsw can similarly be defined
using the context reductions shown in table 1.

3.1. Inference

Given the above hierarchical Pitman-Yor dependency
parsing model and a training corpus D, consisting of
tagged, cased sentences and their trees, there are two
tasks of interest: sampling hyperparameters (αs and
ǫs) and inferring trees for unseen test sentences.

Having inferred a set of internal draws for D, typical
concentration and discount parameters can be deter-
mined using slice sampling [Neal, 2003]. Then, given
a set of hyperparameter values U , the parents for all
words in a test sentence can be jointly sampled us-
ing an algorithm that combines dynamic programming
with the Metropolis-Hastings method. The resultant
algorithm is similar to that of Johnson et al. [2007a,b]
for unlexicalized probabilistic context-free grammars.

For each sentencew, a proposal tree t′ is sampled from
the following distribution using a dynamic program
based on Eisner’s O(N3) parsing algorithm 1:

P (t′ | s,w, c,D\s,w,c,t, U)

≃ P (t′ | s,w, c, {θ̂s′w′c′s′′d, φ̂ss′w′c′d, ψ̂sw}, U) (9)

∝ P (s,w, c, t′ | {θ̂s′w′c′s′′d, φ̂ss′w′c′d, ψ̂sw}, U), (10)

where D\w,s,c,t is the corpus excluding the tagged,
cased sentence of interest and its previously sampled

1Details are omitted due to space restrictions.

tree t. The probability vectors θ̂s′w′c′s′′d, φ̂ss′w′c′d and

ψ̂sw are the predictive distributions over tags, words
and case values given D\w,s,c,t and the current set of
internal draws and paths. The proposal tree t′ is sam-
pled from an approximation to the true posterior since
sampling from the true posterior is not possible.

Having generated a proposal tree t′, it is accepted with
probability given by the minimum of 1 and

P (s,w, c, t′ | D\s,w,c,t, U)

P (s,w, c, t | D\s,w,c,t, U)

P (s,w, c, t | D\s,w,c,t, Θ̂, Φ̂, Ψ̂, U)

P (s,w, c, t′ | D\s,w,c,t, Θ̂, Φ̂, Ψ̂, U)
,

(11)

where Θ̂ = {θ̂w′,s′,c′,s′′,d}, Φ̂ = {φ̂s,w′,s′,c′,d} and Ψ̂ =

{ψ̂w,s}. If t′ is rejected, then the previously sampled
tree t is kept as the current assignment for w.

3.2. Results

Dependency parsing models are typically evaluated by
computing parse accuracy—i.e., the percentage of par-
ents correctly identified. The hierarchical Pitman-Yor
dependency model was used to parse the Wall Street
Journal sections of the Penn Treebank [Marcus et al.,
1993]. To facilitate comparison with other dependency
parsing algorithms, the standard train/test split was
used (sections 2–21 for training and section 23 for test-
ing), and parse accuracies were computed using the
maximum probability trees. The Penn Treebank train-
ing sections consist of 39,832 sentences, while the test
section consists of 2,416 sentences. Words that occur
in the test data but not in training and words that
occur once in training data but never in the test data
were replaced with unseen types. data, while tags
for the test data were inferred using a standard part-
of-speech tagger [Ratnaparkhi, 1996]. 2 Punctuation
words were excluded from all accuracy calculations.

We compared four different priors: (i) Hierarchical
Dirichlet with fixed concentration parameters, set to
the values used by Eisner. When used with an ap-
proximate inference scheme known as the maximal
path assumption, this model variant is identical to
Eisner’s model; (ii) Hierarchical Dirichlet with slice-
sampled concentration parameters; (iii) Pitman-Yor
with fixed concentration parameters, set to the val-
ues used by Eisner, and fixed discount parameters
set to 0.1; (iv) Pitman-Yor with slice-sampled hy-

2The generative nature of the dependency parser means
that it is possible to sample part-of-speech tags for test sen-
tences at the same time as sampling their trees. However,
this is computationally expensive and gives very similar
performance to using tags from Ratnaparkhi’s tagger.



Path Assumption

Maximal Minimal

Dirichlet fixed α values [Eisner, 1996] 80.7 80.2
Dirichlet sampled α values 84.3 84.1

Pitman-Yor fixed α and ǫ values 83.6 83.7
Pitman-Yor sampled α and ǫ values 85.4 85.7

Table 2. Parse accuracy of the hierarchical Pitman-Yor dependency model.

perparameters. For each prior, two approximate in-
ference schemes—the maximal and minimal path as-

sumptions [Cowans, 2006]—were compared. For the
model variants with sampled hyperparameters, fifty
slice sampling iterations was sufficient for convergence.

Parse accuracies are shown in table 2. These re-
sults show that (a) using a hierarchical Pitman-Yor
prior and (b) sampling hyperparameters both give con-
siderable performance improvements over a hierarchi-
cal Dirichlet dependency parser with fixed concentra-
tion parameters and the maximal path assumption
(equivalent to Eisner’s model). Using a hierarchical
Pitman-Yor prior and sampling hyperparameters yield
orthogonal improvements of 3%–5% each over Eisner’s
parser. Together, these two modeling choices yield a
26% error reduction. The differences in parse accuracy
between the approximate inference schemes (maximal
and minimal path assumptions) are not significant.

The accuracies for the model variant that is equivalent
to Eisner’s dependency model (hierarchical Dirichlet
prior, maximal path assumption, fixed concentration
parameters) are lower than those reported in Eisner’s
original work [Eisner, 1996]. This is because Eisner’s
results were obtained using an extensively filtered data
set with only 400 test sentences (e.g., sentences with
conjunctions were discarded). In the time since Eis-
ner’s model was published a different train/test split
has become standard, and the results reported in ta-
ble 2 were computed on the now-standard split.

Although state-of-the-art dependency models, such as
the discriminative maximum-margin method of Mc-
Donald [2006], achieve higher parse accuracy, it is pos-
sible that further enhancements to the Pitman-Yor de-
pendency model would yield similar results while re-
taining the benefits of a generative model. Possible
enhancements include a detailed consideration of con-
texts and reductions, aggregation across multiple tree
samples, Gibbs sampling the internal draws and paths
done by Teh [2006], and using a letter-based language
model as a top-level base measure [Cowans, 2006].

4. A “Syntactic Topic” Dependency

Model

One advantage of a generative approach to dependency
modeling is that other latent variables can be incorpo-
rated into the model. To demonstrate this, we present
a second Bayesian dependency model with latent state
variables that mediate the relationships between words
and their dependents. These variables result in a syn-
tactic clustering of parent–child dependencies. This
model can be considered to be a dependency-based
analogue of the syntactic component from the syntax-
based topic model of Griffiths et al. [2005]. The mod-
els differ in their underlying structure, however: In
the dependency model in this section, the underlying
structure is a tree that combines both words and unob-
served syntactic states; in Griffiths et al.’s model, the
structure is a simply a linear chain over latent states.
This difference means that there are two kinds of latent
information that must be inferred in the dependency-
based model: The structure of each dependency tree
and the identities of the latent states. In Griffiths et
al.’s model, only the latter need be inferred.

4.1. Model

The generative process underlying the model in this
section is similar to that of the model presented in the
previous section. The main difference is that instead
of generating a child directly, a parent word first gen-
erates a syntactic state, which then generates the child
word. Additionally, for computational efficiency, the
children in each direction are independent conditioned
on their parent. The probability of an untagged sen-
tence w with latent states s and tree t is given by

P (s,w, t) =
∏

n

θsn |w
π(n)

φwn | sn
, (12)

where θw′ is the distribution over latent states for par-
ent word w′, and φs is the distribution over child words
for latent state s. Parent words are collapsed down to
the latent state space and children are generated on the
basis of these states. As a result, the clusters induced
by the latent states exhibit syntactic properties and
can be thought of as “syntactic topics”—specialized



distributions over words with a syntactic flavor. Each
of the probability vectors in equation 12 is given a
single-level Dirichlet prior as shown below:

θw′ ∼ Dir (θw′ |α,m) (13)

φs ∼ Dir (φs |β,u) (14)

The base measure m and concentration parameter α
for the prior over over θw′ are optimized together.

4.2. Inference

Given a training corpus D = {w, t} consisting of un-
tagged sentences and their corresponding trees, there
are two tasks of interest: Sampling latent states for
D, and sampling states and trees for unseen test sen-
tences. States for a training sentence are sampled us-
ing Gibbs sampling. Each state sn is sampled from the
conditional distribution for that state given all other
state assignments, and the training data:

P (sn =k | {w}, {s}\n, {t}, U) ∝

P (wn | sn =k, {s}\n, {w}\n, {t})

P (sn =k | {s}\n, {w}\n, {t}),

where the subscript “\n” denotes a quantity that ex-
cludes data from the nth position in the corpus.

Given a set of training sentences and trees and a sin-
gle sample of training states, the trees and states for
unseen test sentences may be sampled using an aug-
mented version of the dynamic program in section 3.1.

4.3. Results

The true dependency trees and words in Penn Tree-
bank sections 2–21 were used to obtain a single sam-
ple of latent states. These states, trees and words were
then used to sample states and trees for the 2,416 sen-
tences in Penn Treebank section 23. Some example
states or “syntactic topics” are shown in table 3. Each
column in each row consists of the words most likely
to be generated by a particular state. The states ex-
hibit a good correspondence with parts-of-speech, but
are more finely grained. For example, the states in
the first and third columns in the top row both corre-
spond to nouns. However, the first contains job titles,
while the third contains place names. The states in
the fourth and fifth columns in the top row both cor-
respond to verbs. However, the fourth contains transi-
tive past-tense verbs, while the fifth contains present-
tense verbs. This kind of specificity indicates that
these states are likely to be beneficial in other tasks
where part-of-speech tags are typically used, such as
named entity recognition and machine translation.

Type of Tree

Sampled Max. Prob.

POS tags 55.3 63.1

50 states 59.2 63.8
100 states 60.0 64.1
150 states 60.5 64.7
200 states 60.4 64.5

Table 4. Parse accuracy of the “syntactic topic” model on
the Penn Treebank (standard train/test split). As a base-
line, the latent states are fixed to part-of-speech tags. Re-
sults for sampled trees are averaged over ten samples.

The quality of these “syntactic topics” was measured
by using them in place of part-of-speech tags in su-
pervised parsing experiments. The latent state depen-
dency model (with 50, 100, 150 and 200 states) was
compared with an equivalent model in which the states
were fixed to true part-of-speech tags for both training
and test data. These results are shown in table 4. Us-
ing the sampled states gives an improvement in parse
accuracy of approximately 5% for sampled trees and
an improvement of 1.6% for the most probable trees.
Although this is a modest improvement, it is a clear
quantitative indication that the discovered states do
indeed capture syntactically meaningful information.

5. Related Work

There has been much recent interest in nonparamet-
ric Bayesian models for PCFGs with latent variables
[Liang et al., 2007, Petrov et al., 2006, Finkel et al.,
2007], as well as general inference and learning frame-
works for Bayesian PCFGs [Johnson et al., 2007a,b].
While previous work has focused on latent variables,
state splitting, and inference in unlexicalized PCFG
models, the dependency models presented in this pa-
per are lexicalized. Lexicalization, in which parent–
child statistics are incorporated into the model, is an
important technique for building high-accuracy pars-
ing models, although state-splitting and discriminative
models can obtain similar benefits. Unfortunately, lex-
icalized models are much more likely to suffer from
sparsity problems. As a result, smoothing is critical—
as reflected in the structure of our hierarchical prior.
Previous nonparametric Bayesian models for gram-
mars have not concentrated on smoothing issues.

6. Conclusions

In this paper, we introduced a new generative depen-
dency parsing model based on the hierarchical Pitman-
Yor process. Using this model, we showed that the



president year u.s. made is in
director years california offered are on
officer months washington filed was ,

chairman quarter texas put has for
executive example york asked have at

head days london approved were with
attorney time japan announced will and
manager weeks canada left had as

chief period france held ’s by
secretary week britain bought would up

10 would more his ms. sales
8 will most their mrs. issues
1 could very ’s who prices
50 should so her van earnings
2 can too and mary results
15 might than my lee stocks
20 had less your dorrance rates
30 may and own linda costs
25 must enough ’ carol terms
3 owns about old hart figures

Table 3. Example states inferred by the “syntactic topic” model. Each column in each row shows the words most likely
to be generated as children by states inferred from Treebank dependency trees. (From a model with 150 states.)

performance of Eisner’s generative dependency pars-
ing model can be significantly improved by using a
hierarchical Pitman-Yor prior and by sampling model
hyperparameters. On the Penn Treebank data, this
leads to a 26% reduction in parsing error over Eisner’s
model. We also presented a second Bayesian depen-
dency model, in which the local dependency distri-
butions are mediated by latent variables that cluster
parent–child dependencies. Not only do the inferred
latent variables look like finer-grained parts-of-speech,
they result in modestly improved parse accuracy when
substituted for part-of-speech tags in the model. Our
future work will include models that combine depen-
dency trees with both semantic and syntactic topics.
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