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ABSTRACT

Recent work in deduplication has shown that collective dedu-
plication of different attribute types can improve perfor-
mance. But although these techniques cluster the attributes
collectively, they do not model them collectively. For exam-
ple, in citations in the research literature, canonical venue
strings and title strings are dependent—because venues tend
to focus on a few research areas—but this dependence is not
modeled by current unsupervised techniques. We call this
dependence between fields in a record a cross-field depen-
dence. In this paper, we present an unsupervised gener-
ative model for the deduplication problem that explicitly
models cross-field dependence. Our model uses a single
set of latent variables to control two disparate clustering
models: a Dirichlet-multinomial model over titles, and a
non-exchangeable string-edit model over venues. We show
that modeling cross-field dependence yields a substantial im-
provement in performance—a 58% reduction in error over a
standard Dirichlet process mixture.

Categories and Subject Descriptors

H.2 [Information Systems]: Database Management; H.2.8
[Information Systems]: Database Applications—data min-
ing

Keywords

Data mining, information extraction, deduplication, Dirich-
let process mixture

1. INTRODUCTION
Deduplication is an important and difficult preprocess-

ing step in knowledge discovery. For example, consider the
venue portion of citations in the bibliographies of research
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papers. A single venue can be named by dissimilar strings—
for example, AAAI and Proceedings of the Fourteenth Na-
tional Conference on Artificial Intelligence, and other vari-
ants caused by typographical errors. Alternatively, differ-
ent entities can be denoted by identical strings—for exam-
ple, ISWC is a commonly-used abbreviation both for the
International Semantic Web Conference, and for the Inter-
national Symposium on Wearable Computers. Given clean
venue data, one can imagine computing many interesting
bibliographic measures, such as which venues are most con-
centrated around a small set of authors, which venues adopt
new terminology most frequently, and so on. But such mea-
sures will always be suspect unless the deduplication prob-
lem is solved well. Deduplication in general can be viewed
as a kind of clustering problem, in which we wish to cluster
mentions that refer to the same entity.

Recent work has shown that collective inference—such as
collective clustering over all mentions [9, 14], collective ex-
traction and deduplication [17], and collective deduplication
of different attributes [12, 6, 13, 14]—can significantly im-
prove performance. But although some methods compute
clusters collectively, there is an important sense in which
they do not model clusters collectively. Current generative
models include a model of canonical attributes, but they
do not model the fact that canonical attributes are depen-
dent. For example, research venues tend to focus on specific
research areas, and those areas are reflected in the titles
of the papers that they publish. We call this a cross-field
dependence, because even after record and attribute dedu-
plication have been performed, there is still a dependence
between the values of different fields in a record.

In this paper, we demonstrate the benign impact of mod-
eling cross field dependencies in the task of disambiguat-
ing research paper venues. We show that making a model
aware of the cross-field dependence between venue strings
and paper titles yields a significant increase in deduplication
performance. In particular, we present a Dirichlet process
mixture model that uses a single set of mixture components
to combine two disparate clustering models: a Dirichlet-
multinomial mixture for the titles, and a non-conjugate string-
edit distortion model for the venues. In this way, each venue
has a characteristic distribution not only of venue strings,
but also of title strings. This encourages merging venue
clusters with similar title distributions, even if their distri-
butions over venue strings are somewhat different.

The two different distortion models for titles and venues
reflect the fact that we expect different kinds of noise in



both types of fields. For observed title strings, we expect
that many citations will list the canonical title, while oth-
ers have small, weakly correlated typographical errors. For
observed venue strings, on the other hand, the edit distance
between coreferent strings is much larger: several words may
be added or deleted. Furthermore, while it is reasonable to
model typos in title strings as independent, in venue strings
often several variants appear equally commonly.

This application highlights a key advantage of graphical
modeling, namely its modularity. While earlier work shows
how standard nonparametric Bayesian methods can be ap-
plied to related coreference problems [2, 4], here we show
how such models can be combined in a modular way to
model cross-field dependencies.

We evaluate our models on real-world citation data that
is specifically designed to be hard for this task. A model
that incorporates cross-field dependence performs substan-
tially better than a standard DP mixture, yielding a 58%
reduction in error over a standard DP mixture, and a 48%
reduction in error over a reasonable heuristic baseline.

2. MODEL
In this section, we describe our model of venue and ti-

tle mentions. Each mention m contains a paper’s title tm

and venue vm, such as from the bibliography of a citing re-
search paper. These strings may contain typographic and
other errors. The data set as a whole is a set of mentions
{(vm, tm)}M

m=1. Each venue mention vm is a sequence of
words (vm1, vm2, . . . vm,N(vm)) and each title mention a se-
quence of words (tm1, tm2, . . . tm,N(tm)).

We describe our model by incrementally augmenting a
simple finite mixture model. All of our models are mixture
models in which each mixture component is interpreted as
an underlying venue. First, we describe a finite mixture
model of the venue mentions only, using a string-edit model
customized for this task (Section 2.1). Second, we modify
this model to allow an infinite number of components by
using a Dirichlet process mixture (Section 2.2). Then, we
augment this model with title mentions that are drawn from
a per-venue unigram model (Section 2.3), modeling a type
of cross-field dependence. Finally, we describe a venue-title
model in which the titles are drawn from a latent Dirichlet
allocation (LDA) model [3] (Section 2.4).

2.1 Finite Mixture Model over Venues
First we describe a finite mixture model, where the num-

ber of venues C is chosen in advance. The main idea is that
each true entity is modeled as a single component in a mix-
ture model, each of which generates canonical strings and
observed venue strings via a string-edit distortion model.
More specifically, the mixture proportions β are sampled
from a symmetric Dirichlet with concentration parameter
α. Each cluster c ∈ {1 . . . C} is associated with a canonical
venue string xc, which is sampled from a unigram language
model with uniform emission probabilities. For each men-
tion, the model selects a venue assignment cm (which is an
index into the set of venues) according to the venue propor-
tions β.

Finally, we generate the venue mentions vm = vm,0 · · · vm,a

for each mention of each cluster c. The venue mentions
are generate by distorting the venue’s canonical string xc =
xc,0 · · ·xc,b by an HMM string-edit model denoted p(v|xc).
Note that this model conditions on the canonical string of

the cluster. The HMM has three edit operations: substitute
in which a token xc,i is replaced by either an abbreviation,
or a lengthening of itself, insert which generates a token
of vm, and delete which removes a token of xc. Each edit
operation corresponds to a single state of the HMM. We
choose transition probabilities p(si = insert|si−1) = p(si =
delete|si−1) = 0.3 and p(si = substitute|si−1) = 0.4, so the
model favors substituting abbreviations for words and vice
versa.

For the emission probabilities, the delete state determin-
istically emits the empty token, because we condition on the
token that was deleted from the canonical string. The insert
state has uniform emission probability over the vocabulary
of venue tokens. Finally, the substitute state has a custom
emission distribution, to model the fact that acronyms are
common in venue strings. If vm,j is the current venue to-
ken and xc,i the current canonical token, then the emission
distribution is

p(vm,j |si,j = substitute, xc,i) =
{

a(xc,i)
−1 if xc,i starts with vm,j

l(vm,j)
−1 if vm,j starts with xc,i,

(1)

where a(w) is the number of words in the vocabulary that
are prefixes of w, and l(w) is the number of words for which
w is a prefix. Calculating the probability of a canonical
string generating a venue mention requires summing over
all sequences of edit states, which can be done efficiently
using the the forward algorithm for HMMs.

In summary, the finite-mixture model is

β ∼ Dirichlet(αu)

xc ∼ Unigram(u) (2)

cm |β ∼ β

vm |x, cm ∼ StringEdit(xcm),

In this notation, u is a uniform vector over the vocabu-
lary, that is, it is a vector of length V with each element
ui = 1/V ; and Unigram denotes a unigram language model.
Essentially, the prior on canonical strings xc is a uniform
distribution over strings. This an improper prior, but the
posterior is still well-normalized.

The graphical model for the finite mixture is shown in Fig-
ure 1. This model requires choosing the number of venues in
advance, which is obviously unrealistic. In the next section,
we remove this requirement.

2.2 Dirichlet Process Mixture over Venues
The finite mixture model requires specifying a number of

clusters a priori, which is unrealistic. For this reason, re-
cent work in unsupervised coreference [4, 8] has focused on
nonparametric models, and in particular the infinite limit of
(2), which is the Dirichlet process (DP) mixture. A Dirich-
let process mixture is a particular class of distributions over
distributions. In a DP mixture, this distribution over distri-
bution is used as a distribution over the mixing proportions.
A DP mixture is attractive for two reasons: first, the number
of components of the mixture can be inferred from data; and
second, samples from the induced cluster identities display
a rich-get-richer property that is natural in many domains.
For a review of modeling and inference using DPs and DP
mixtures, see Teh et al. [16].
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Figure 1: At left, finite mixture model over venues. The DP mixture is the infinite limit of this model. In
middle, venue-title DP mixture. At right, venue-title DP mixture with latent-dirichlet model over titles.

Probably the most intuitive way to understand the result-
ing distribution over venue strings in the Chinese restaurant
process representation. This is metaphor for describing how
samples are drawn from a DP mixture. Here we imagine
that the each venue mention corresponds to a customer at a
restaurant that contains an infinite number of tables. Each
table c represents a cluster of mentions (in other words, a
true venue), and associated with each table is a canonical
string xc (the “dish” served at that table).

Suppose we have a set of mentions that have already been
generated at tables 1 . . . C, where each venue c contains Nc

mentions. To generate a new mention, first we generate
which table the mention sits at, that is, which true venue is
assigned to the mention. This table cm is selected from the
following distribution:

p(cm = c|c1...m−1) ∝

{

Nc if c is an existing table

α if c = C + 1, i.e., a new table

(3)
The parameter α > 0 is a parameter of the Dirichlet pro-
cess, and affects how likely the model is to generate new
tables. If the mention does sit at a new table, then we gen-
erate a canonical string for the new venue, from a uniform
distribution over strings. Once that the mention has chosen
a table cm, it generates an observed venue string vm from
the canonical string xcm at that table. The observed string
is generated from the string-edit model of the last section.
This completes the description of the model.

It can be shown that this model is actually the infinite
limit of the finite mixture model, as the number of mixture
elements goes to infinity. This is the infinite limit of the
graphical model shown in Figure 1 (left).

To describe this more formally, consider a random variable
c that ranges over partitions of the integers {1 . . . M}. The
Chinese restaurant process defines a distribution over c—to
see this, imagine labeling the customers 1 . . . M . Denote this
distribution as CRP(α). Using this representation we can

describe the DP mixture model as

c ∼ CRP(α) (4)

xc ∼ Unigram(1) for c in 1 . . . |c| (5)

vm |x, cm ∼ StringEdit(xcm) (6)

In the above, cm refers to the index of the set in the partition
c that contains the integer m.

The advantage of the DP mixture is that it automatically
determines the number of clusters. This statement might
seem disingenuous, because perhaps we have swapped the
problem of selecting the number of clusters for the problem
of selecting the parameter α. In practice, however, this is
typically not an issue, because usually the number of clusters
selected by the model is not sensitive to α. In our data, it
is indeed the case that performance is not sensitive to the
choice of α (see Section 5.3).

2.3 DP Mixture over Venues and Titles
In the previous section, we presented an infinite mixture

over strings. But one of the contributions of this paper is
to show that such a model can be improved dramatically
by also considering information from paper titles. In this
section, we present a model that does this. We will call it
the DP venue-title model (DPVT).

The venue-title model jointly clusters venues and titles us-
ing a single set of latent variables that control both a string-
edit model for the venues and a Dirichlet-multinomial distri-
bution for the titles. Each venue c generates a distribution
θc over title words, and every mention m now generates all of
its title word tmi by a discrete distribution with parameters
θcm.

This model contains all of the factors in the venue-only
model, and in addition:

θc ∼ Dirichlet(λ,u)

tmi | cm, {θc} ∼ θcm

To see how this model incorporates cross-field dependence



between venues and titles, consider the graphical model in
the middle of Figure 1. Note that although the canonical
venues xc and title distributions θc are independent in the
prior, they are dependent in the posterior, because they are
coupled by the cm variables once the mentions are observed.

2.4 DP Mixture with Venues and Special-Word
Title Model

In the first venue-title model, every venue has a multi-
nomial distribution over title words. But we may hope to
achieve better performance by using a more flexible model
over title strings, for example, one that separates out com-
mon words from venue-specific words. Also, such a model
allows reporting title words that are strongly associated with
particular venues, which may be of interest in itself.

For this reason, in this section we describe an alterna-
tive title model in which the titles are generated by latent
Dirichlet allocation [3]. One topic is dedicated solely to each
venue, and a single “general English” topic is shared across
all venues. This is a simple version of the special words
model of Chemudugunta, Smyth, and Steyvers [5], so call
this model the DP mixture with venues and special-word ti-
tle model.

This model includes all of the factors of the venue-only
DP model, and in addition:

θg ∼ Dirichlet(λ0,u)

θc ∼ Dirichlet(λ,u) (7)

γc ∼ Beta(1, 1) (8)

zmi | c, γc ∼ Bernoulli(γcm)

tmi | θg, θc, zmi ∼

{

θg if zmi = 0

θc if zmi = 1

Here θg is a single corpus-wide distribution over title words,
while each θc is a venue-specific distribution over title words.
Each γc controls for each venue, how often that venue is to
use its venue-specific title distribution as opposed to the
general distribution. The graphical representation of this
model is shown in Figure 1.

3. INFERENCE
In this section we discuss two Markov chain Monte Carlo

(MCMC) samplers for our models. Given a set of observed
venue mentions v = {v1 . . .vM}, our concern will be to sam-
ple from the resulting posterior distribution p({xc}, {cm}|v)
over venue assignments cm for each mention and canonical
strings xc for each venue. Our inference algorithms are com-
plicated by the fact that the distribution p(vm |xcm) is not
conjugate to the prior over canonical strings p(xcm). In
many applications of the DP mixture model, the analogs
of those two distributions are conjugate, and in those cases
inference is simplified considerably.

3.1 DP Venue Model
First we describe the samplers for the basic DP venue

model. The state of the sampler is the set of all cluster
indices c = {cm} for each mention m and of canonical strings
x = {xc} for each cluster c from 1 . . . C. The main idea is
to use a block Gibbs sampler, alternating between sampling
the cluster identities and the canonical strings.

To sample cluster identities, we use a Metropolis-Hastings
step. We consider two different proposals: one which is

almost exactly a slight modification of Gibbs sampling and
a split-merge proposal. The Gibbs proposal is a modification
to Neal [11]. For every mention m ∈ {1 . . . M}, we propose
a new cluster c∗m from the distribution:

p(c∗m|c−m,v,x) ∝



















p(c∗m | c−m)p(vm|xc∗m
)

if c∗m is an existing cluster

p(c∗m|c−m)p(vm|xm = vm)

if c∗m 6∈ {1 . . . C}

(9)
That is, if the proposed cluster is one that already exists, the
proposal is proportional to the prior p(c∗m | c−m) times the
probability that the canonical string xc∗m

would be distorted
into the observed string vm of the current mention. This
is exactly the Gibbs proposal. If the proposed cluster is
new, then the proposal is proportional to the prior times
the probability that the observed string would be distorted
into itself. This is the part that is different from the Gibbs
proposal. Ideally, we would sample xc∗m

in this case; Neal
[11] suggests using the prior p(x), but this would lead to a
string that would hardly ever be close to vm. Here we are
mainly interested in finding a high-probability configuration,
which makes our choice seem reasonable.

The second proposal distribution that we use is the split-
merge proposal of Dahl [7]. Here the basic idea is to pick
two mentions m and m′. If the mentions are in different
clusters, the proposal merges them. If the mentions are in
the same cluster, the proposal splits that cluster into two,
one containing m and one containing m′, using a procedure
similar to sequential importance sampling.

Second, to sample the canonical strings xc, we use a Gibbs
step, but with the restriction that xc must be identical to one
of the observed venue strings in the cluster. This restriction
is a slight abuse, but seems to work well in practice. More
specifically, let k in 1 . . . Nc index the mentions assigned to
cluster c. Then the new canonical string x∗

c is sampled from
the distribution

p(x∗
c | c,v) ∝

Nc
∏

k=1

p(vk|x
∗
c)1{x

∗
c = vk for some k in 1 . . . Nc},

(10)
where the indicator function 1{x∗

c = vk for some k } en-
forces the restriction that canonical strings be somewhere
observed.

All the MCMC methods described in this paper require
a choice of starting configuration. Depending on the differ-
ent algorithms’ susceptability to local optima problems, the
choice of a starting point may impact the final configiration
they reach. We try to eschew this issues by initializing all
models with a complete shattering of the mentions. That is,
we have a number of venues equal to the number of citations,
and each citation is in its own venue.

3.2 Venue-title model
For the venue-title model, we use the same samplers as

above, except the proposal distribution in the cluster as-
signment steps must take into account the distribution over
title words, integrating out the mean vector θc. Call this
distribution p(tm|c∗m, t−m), that is, the probability of the
title mention tm being generated by the proposed cluster,
conditioned on the titles of the other mentions in that clus-
ter. This probability can be computed using a Polya urn



scheme:

p(tm|c∗m, t−m) =

N(m)
∏

i=1

p(tmi|tm1, . . . , tm,i−1) (11)

=

N(m)
∏

i=1

N{tmi=tmj ;j<i} + N{t−m,c=tmi} + λ

(i − 1) +
∑

m′∈cm\m
|tm′ | + V λ

,

(12)

where N{tmi=tmj ;j<i} is the number of words in tm that
precede word i and are identical to it; and N{t−m,c=tmi} is
the number of occurrences of the token tmi in the other titles
t−m,c in cluster c; and V the vocabulary size.

Now, when proposing a new cluster using the almost-
Gibbs proposal, we sample a new cluster assignment c∗m from
the distribution

p(c∗m|c−m,v) ∝



















p(c∗m | c−m)p(vm|c∗m)p(tm|c∗m, t−m)

if c∗m = cj for some j 6= m

p(c∗m|c−m)p(vm|c∗m,xm = vm)p(tm|c∗m)

if c∗m 6∈ {1 . . . C},

(13)
The difference from the venue-only version is the inclusion
of the term p(tm|c∗m).

3.3 Venue-Special words title model
Finally, we describe the modifications to the sampler for

the venue-special words title model. For this model, we add
to the state of the sampler the indicator variables zm =
{zmi}, which for each title word i in mention m, indicate
whether the word is to be sampled from the venue multi-
nomial with mean θc or from the general multinomial with
mean θg.

The venue-special words model requires two changes to
the sampler for the venue-title model. First, we add a
step to the outer block Gibbs sampler that resamples all
of the z variables given the cluster assignments and canoni-
cal strings. It is reasonable to propose a move that changes
cm but leaves zm unchanged, because the semantics of the
zm variables do not depend on the venue identity. As before,
let tmi be the title word of mention m in position i; θc(tmi)
be the element of the title mean vector θc for the word tmi;
and θg(tmi) be the analogous quantity in the general English
multinomial vector. Then, during the additional Gibbs step,
each zmi is sampled from the distribution

p(zmi = 1|zm,−i, z−m, c,x) ∝
θcm(tmi) + 1

θcm(tmi) + θg(tmi) + 2
,

(14)
where zmi = 1 indicates that tmi is sampled from the venue-
specific distribution.

The second change is that the proposal distribution in
the cluster assignment step changes slightly, because now
the distribution over titles depends on z. The new proposal
distribution is

p(c∗m|c−m,v, z) ∝



















p(c∗m | c−m)p(vm|c∗m)p(tm|c∗m, t−m, zm)

if c∗m = cj for existing cluster j

p(c∗m|c−m)p(vm|c∗m,xm = vm)p(tm|c∗m, zm)

if c∗m 6∈ {1 . . . C}.

(15)

4. RELATED WORK

The literature on deduplication is extensive. (Ironically,
deduplication is also known as coreference, record linkage,
and identity uncertainty in various different literatures.) A
growing body of work has shown that incorporating global
information can improve coreference. For example, McCal-
lum and Wellner [9] show that incorporating transitive clo-
sure into individual improves performance. Culotta and Mc-
Callum [6] have applied these models to venue coreference,
finding that jointly modeling coreference of records and fields
improves performance. Additionally, Singla and Domingos
[13, 14] perform simultaneous coreference of authors, pa-
pers, and venues using conditional undirected models, and
find a similar improvement. These models are all super-
vised, so our approaches have the advantage of not requir-
ing labeled training data, although they can readily exploit
labeled coreference data if it is available.

Several authors have used DP mixture models for dedu-
plication. The general framework of using a per-cluster mix-
ture model for coreference of research papers was introduced
by Pasula et al. [12]. A more detailed description of a sim-
ilar model is given by Milch [10]. These models generate
the number of venues from a log normal distribution. A
variant of this model which models the venue assignments
with a hierarchical DP was reported by Carbonetto et al.
[4], although they do not report a comparison with the log
normal model. Similarly, Bhattacharya and Getoor [2] use
a DP mixture model to perform deduplication of authors in
research papers.

None of the models above, however, incorporate cross-field
dependencies. For example, in the model of Carbonetto et
al., every canonical paper has a true title and distribution
over observed title strings, and every canonical author has
a distribution over observed author strings. But the model
does not represent that canonical authors tend to favor cer-
tain words in their canonical titles. Similarly, the Singla and
Domingos models [14] do incorporate the constraint that if
two paper mentions are identical, then so are the correspond-
ing venue mentions. But they do not have weights that say
if one title appears in a venue, then distinct titles with sim-
ilar words are likely to also appear in that venue. The key
contribution of our work is to explicitly model this cross-
field dependency. how the distribution over titles depends
on the venue, and to show that this leads to dramatically
better performance on venue coreference.

Another related model is by Haghighi and Klein [8], which
applies DP mixtures to noun-phrase corference, which is the
problem of determining which noun phrases in a document
refer to the same entity, such as George W. Bush and he.
This work is in similar spirit to ours, in that it augments the
basic DP mixture with additional variables tailored to spe-
cific coreference task. However, the specifics of their model
are very different, because they need to model notions such
as that pronouns can only refer to entities of a particular
gender, and that more salient entities in the discourse are
referred to using different language than less salient ones.

5. EXPERIMENTS
In this section, we compare the performance of the vari-

ous DP mixture models on citation data. We assemble an
especially hard data set of paper and venue mentions. We
first obtain a list of automatically extracted citations from
the Rexa database (http://rexa.info). The citations are
first segmented automatically using a conditional random



field documents into plaintext. This process is imperfect, so
the fields contain extraction errors as well as the expected
typographical errors. The data consists of the resulting were
mapped onto venue-title pairs, and duplicate citations (those
that were string identical in both fields) were collapsed.

We choose a dozen test venues, and assemble a corpus of
about 180 citations per venue, for a total of 2190 citations
1. Reflecting the coverage of a large-scale digital library,
the venues cover a range of topics including: artificial intel-
ligence, machine learning, computational physics, biology,
the semantic web, and wearable computing. After removal
of stopwords and punctuation symbols, there are 262 unique
venue strings. Also, in any mention that consists entirely of
a string of capital letters, we treat each capital letter as a
separate word. This allows the distortion model to more
easily align acronyms with their full names.

We compare four models:

• STR: A baseline heuristic. First remove stopwords
such as “an”, “of”, and “proceedings”. Then merge
string-identical venues. Finally, merge all venue clus-
ters that contain string-identical titles.

• DPV: The Dirichlet process mixture model over dis-
torted venue strings (Section 2.2).

• DPVT: The DP venue-title model (Section 2.3).

• DPVL: The DP venue/special-words title model. (Sec-
tion 2.4).

For each of the generative models we performed 1000 itera-
tions of block Gibbs sampling. To select the hyperparame-
ters α and λ, we perform a parameter sweep on a separate
small validation set.

We measure performance using the B3 metric of Bagga
and Baldwin [1]. For each mention mi, let ci be the set
of predicted coreferent mentions, and ti be the set of truly
coreferent mentions. The precision for mi is the number of
correct mentions of entity i—that is, those that appear in
both ci and ti—divided by the number of mentions in ci.
The recall is the number of correct mentions of entity i di-
vided by the size of ti. These are averaged over all mentions
in the corpus to obtain a single pair of precision and recall
numbers. The F1 is the harmonic mean of the precision and
recall.

5.1 Comparison of Models
Coreference performance for each of the four systems is

shown in Table 1. The baseline STR heuristic demonstrates
the difficulty of performing coreference on this dataset: string
identical mentions are not necessarily coreferent, and differ-
ent strings often refer to the same venue. The best perfor-
mance overall is obtained by the DPVT system, where we
set the concentration over title unigram distributions to be
λ = 0.6. This setting has the effect of favoring more peaked
unigram distributions over title words, where the peaks cor-
respond to words particular to that cluster. These results
demonstrate a marked improvement in coreference perfor-
mance by modeling the titles of the papers. F1 is increased
from 63.8% to 84.9% by adding title modeling to the DP
mixture, a 58% error reduction. The error reduction over
the STR baseline is 48%.

1The dataset is available on the web at http://www.cs.
umass.edu/~rhall/rexa/ven_coref.zip

Model Precision Recall F1
DPVT 86.4±0.84 83.4±1.32 84.9±1.06

DPVL 88.5±1.06 72.9±1.70 80.0±1.39

DPV 84.1±0.37 51.4±0.31 63.8±0.20

STR 88.9 56.5 69.9

Table 1: Percent B3 venue coreference performance
for the four systems. The small bars are the stan-
dard deviations across five independent chains.
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Figure 2: Comparison of Gibbs and split/merge
samplers on the venue-title model.

The DPVL model has slightly higher precision than the
DVPT model, but at a high cost to recall. It is plausible that
using more data would mitigate this effect. The data set con-
tains two venues which shared the name ”ISWC” (for Inter-
national Semantic Web Conference and International Sym-
posium on Wearable Computing), which the DPVL model is
able to disambiguate more accurately due to its more partic-
ular distributions over title words, as shown in Table 3. The
standard Dirchlet process mixture, on the other hand, will
almost always merge identical venue strings. Shown in Ta-
ble 2 are some example per-venue distributions over words
that were generated by the DPVL model. While common
words such as “a” and “for” are highly weighted in these
clusters, so are the less frequent but more topical words.

We test statistical significance using a stratified bootstrap
sampler. Namely, we bootstrap a confidence interval for
the B3F1 of all the methods by, for each true venue V
with nv mentions, we sample nv new mentions from V uni-
formly with replacement. The performance difference be-
tween DPVT and STR is highly significant (p < 0.01).

5.2 Comparison of Sampling Algorithms
We also compare the split-merge and Gibbs proposal dis-

tributions, described in Section 3.1. Although in the infinite
limit both techniques sample from the same distribution, for
finite sample sizes one sampler might converge significantly
faster to the posterior. The split-merge sampler that we
use [7] has been relatively recently proposed, and has not to
our knowledge been used for DP models of coreference, so it
is interesting to see if it performs better than more typical
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Table 2: Title words of three example clusters. highest weighted title words for three example clusters. Note
that ICDAR is the International Conference on Document Analysis and Recognition.

Intl. Symp. on Wearable Comp. Intl. Semantic Web Conf.
Realtime Personal Positioning System for
Wearable Computers.

Benchmarking DAML+OIL Repositories

Acceleration Sensing Glove (ASG).
TRIPLE - A Query, Inference, and Trans-
formation Language for the Semantic Web.

Table 3: Examples of ambiguous acronyms that are correctly disambiguated by the DPTL model. Shown in
bold are the canonical strings for the clusters. All of these mentions have the venue string “ISWC.”
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Figure 3: Sensitivity of DPVT model to title-
Dirichlet parameter λ.

inference algorithms. We measure this by the B3 perfor-
mance after each iteration of both samplers. This is shown
in Figure 2. Clearly, the samples from split-merge perform
much better than those of Gibbs sampling. The split-merge
sampler at 300 iterations finds venue assignments that are
comparable to those of the Gibbs sampler at 1000 iterations.

Interestingly, however, the split-merge sampler shows the
greatest benefit for the DPVT model (see Table 4). For
the other models, the improvement due to the split-merge
sampler is modest.

5.3 Sensitivity to Hyperparameters
There are two hyperparameters that must be tuned in the

DP venue-topic models: the strength parameter α of the
DP prior, and the concentration parameter λ that controls
how concentrated the per-venue title distributions are across
venues. We choose these parameters by parameter sweep
on a small development set of 200 mentions and 4 venues.

Model Split-Merge Gibbs
DPVT 84.9±1.06 80.5±1.20

DPVL 80.0±1.39 78.1±0.41

DPV 63.8±0.20 63.4±0.61

Table 4: Comparison of B3 F1 performance between
the two proposals used in Metropolis Hastings sam-
pling. Means and standard deviations are computed
from 5 independent trials.

(This is about 10% of the size of the test set.) The results
of the parameter sweep are shown in Figure 3. The model
is somewhat sensitive to the choice of the concentration λ
of the title Dirichlet prior. It is possible to sample λ based
on the training data [15], so that no labeled validation set is
required, but we leave that to future work.

The model is, however, not sensitive to choice of the DP
parameter α (not shown in the figure). Over 2 orders of mag-
nitude, taking α ∈ {0.01, 0.1, 1.0} yields comparable perfor-
mance (85.9, 84.9, and 85.6 F1 respectively).

6. CONCLUSIONS AND FUTURE WORK
We present an unsupervised nonparametric Bayesian model

for coreference of research venues. Although related models
have been applied to coreference of paper titles and authors,
research venues have several unique characteristics that war-
rant special modeling. By exploiting the fact that research
venues have a characteristic distribution over titles, we ob-
tain a dramatic increase in performance on venue corefer-
ence. In particular, the model is even able to accurately
split up venues that have string-identical abbreviations.

Several directions are available for future work. First, if
labeled training data is available, then this model readily
lends itself to semi-supervised prediction. This could be
necessary to match the performance of discriminative coref-



erence systems. It would also be interesting to extend this
model to deduplicate papers and authors.
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