
A Hidden Markov Model for Alphabet-Soup Word Recognition

Shaolei Feng Nicholas R. Howe R. Manmatha

Dept. of Computer
Science

University of
Massachusetts

Amherst, MA-01003
slfeng@cs.umass.edu

Dept. of Computer
Science

Smith College
Northampton,

MA-01063
nhowe@cs.smith.edu

Dept. of Computer
Science

University of
Massachusetts

Amherst, MA-01003
manmatha@cs.umass.edu

Abstract

Recent work on the “alphabet soup” paradigm has

demonstrated effective segmentation-free character-based

recognition of cursive handwritten historical text docu-

ments. The approach first uses a joint boosting tech-

nique to detect potential characters - the alphabet soup.

A second stage uses a dynamic programming algorithm

to recover the correct sequence of characters. Despite

experimental success, the ad hoc dynamic programming

method previously lacked theoretical justification. This

paper puts the method on a sounder footing by recasting

the dynamic programming as inference on an ensemble

of hidden Markov models (HMMs). Although some work

has questioned the use of score outputs from classifiers

like boosting and support vector machines for probability

estimates, experiments in this case show good results from

treating shifted boosting scores as log probabilities.

Keywords: character detection, word recognition, in-

ference models, cursive, historical manuscripts

1. Introduction

Handwritten cursive documents continue to pose chal-

lenges for text recognition methods. Handwritten docu-

ments with large vocabularies [16] and handwritten his-

torical documents [14, 8] are particularly challenging.

One recently proposed approach employs high-quality let-

ter detection techniques in an unsegmented framework to

identify the characters present in each word [7]. Called

an “alphabet soup” paradigm after the jumble of candi-

date letter detections produced, this technique must then

determine the correct sequence of characters that form the

word tag. The prior work uses a dynamic programming

method without a formal inference model. In this paper

we present a more principled approach using using an en-

semble of hidden Markov models for the letter assembly

task.

To create the “alphabet soup”, a joint boosting algo-

rithm modeled on work in object recognition [15] detects

individual letters by scanning across a word or document

image. Performing detection rather than segmentation al-

lows the method to easily entertain many overlapping hy-

potheses for letters and position. The particular method

used here employs an ensemble of easily testable features,

taking advantage of those that are common to multiple

characters. For example d, o and g all share a common

part, and a single test may provide evidence in favor of or

against all three. The training phase of joint boosting de-

liberately selects features which are common to multiple

character classes. This both decreases the amount of train-

ing required and increases the number of samples per fea-

ture, resulting in robust detection with relatively shorter

training time.

Letter detection is applied to every position along the

horizontal extent of a word image, resulting in a large

number of possible character detections for every word -

only some of which are correct. (The procedure may also

be applied to entire lines or even page images, but we fo-

cus on words in this paper.) Valid characters may also be

missed in the detection phase. Further analysis must there-

fore identify the correct sequence. Previous work does

this using generic dynamic programming [7] but hidden

Markov models (HMMs) offer a more principled way to

find a sequence with maximum posterior probability. One

advantage of the HMM is that it decouples the detection

steps from the other steps in the process and allows one

both to understand the technique better and to more easily

make changes to different parts of the estimation.

The character detections occur at known positions and

therefore can be placed in order, such that the detections

corresponding to the correct sequence appear strictly from

left to right. The model used is an ensemble of HMM’s

generated automatically from the detection sequence and

statistics from analysis of a training corpus. One HMM is

created for each possible word length, from one character



up to the total number of detections. The HMM for word

lengthm hasm states (plus implicit states for start and end

of word). Each regular state generates a corresponding

detection, while transitions between states correspond to

character transitions with probability derived from a tran-

scribed corpus. For each length of HMM, the Viterbi al-

gorithm determines an optimal sequence, and thus the en-

semble of HMMs produces one optimal sequence for each

length. The globally optimal sequence with correct length

is found by dividing the probability of each sequence by

its length m and selecting the maximum.

Estimating the generative probability correctly is cru-

cial to good accuracy. Two different techniques are used

to estimate the generative probability. The first approach

fits Poissonians for valid and non valid detections on a

character basis and from these computes a mapping from

scores to probabilities. The second approach transforms

the weighted score from the detection stage to a proba-

bility, treating a linear shift of the detection scores as log

probabilities. Although previous work with support vec-

tor machines [2] and boosting [12] has indicated that the

scores cannot reliably be used as probabilities, the experi-

ments here show perhaps surprisingly that the latter tech-

nique works quite well. In fact it is identical in implemen-

tation to the dynamic programming technique used for as-

sembling the characters in prior work [7].

The next section discusses related work. This is fol-

lowed by a summary of the preprocessing and letter de-

tection steps, as described in more detail elsewhere [7].

Section 4 presents the new HMM framework. The last

two sections describe experiments with the new system

and conclude the paper.

2. Related Work

Offline handwriting recognition has worked well in

small-vocabulary and highly constrained domains like

bank check recognition and high postal address recog-

nition. In recent years researchers have investigated

large vocabulary handwritten documents using HMM’s

[11, 16]. Marti and Bunke [11] proposed to use a Hidden

Markov model (HMM) for handwritten material recog-

nition. Each character is represented using a Hidden

Markov model with 14 states. Words and lines are mod-

elled as a concatenation of these Markov models. A statis-

tical language model was used to compute word bigrams

and this improved the performance by 10%. Vinciarelli

et al. [16] used a similar model. Both papers used con-

strained modern handwriting to test their results.

Handwritten historical manuscripts are even more

challenging since the vocabulary may be large, they are

often noisy and there are few constraints on them. Even

papers of single historical figures like George Washington

consist of multi-authored multi-writer collections; George

Washington had almost 30 secretaries over the years who

helped him draft and write the letters. Rath et al [10]

focus on recognizing historical handwritten manuscripts

using simple HMMs with one state for each word. By

adding word bigrams from similar historical corpora they

showed that the word recognition rate on a set of pages of

George Washington’s documents approached 60%. The

experiments here are done on the same corpus. Adamek et

al. [1] use novel features with nearest neighbors to obtain

good performance on this dataset. Feng and Manmatha [5]

compared a number of different kinds of models includ-

ing conditional random fields and HMM’s and showed

that smoothing was important for good performance. Ed-

wards et al. [4] use gHMM’s to recognize Latin manu-

scripts. Rath et al. [14] used relevance models to create a

search engine for historical documents while Howe et al.

[8] used boosted decision trees to recognize handwritten

documents.

The alphabet soup approach to word recognition re-

sembles recent work on breaking visual CAPTCHAs [13].

This work also detects potential letters and searches for a

likely combination, but uses a different algorithm for the

assembly step. Also, no results have appeared in the liter-

ature for general text recognition under this method.

While HMM models have a strong history in both print

and handwritten character recognition [9], the ensemble

of HMM’s proposed here is new and based on a model for

aligning printed word characters to ground truth as pro-

posed in [6].

3. Character Detection

Character detection works on binarized document im-

ages. Gradients of the binarized images are categorized

into eight cardinal orientations and aggregated over spa-

tial bins at three orders of resolution to yield a histogram

of gradients (HoG) descriptor of the neighborhood around

each point [3]. These 2830-dimensional descriptors cap-

ture the location and direction of gradient edges in the

neighborhood, and thus serve to describe any charac-

ter that may be present in the area. Joint boosting [15]

searches for common patterns across classes, building up

sets of feature tests that can classify each character type

present in the document.

The boosting training set includes some character ex-

amples identified by hand and additional examples iden-

tified automatically from a document transcript [7]. The

128 combined training examples of each character class

are used to train a joint boosting classifier, which learns

to identify each individual class from its descriptor. This

classifier, when applied to fresh HoG descriptors of pre-

viously unseen points, functions as the desired letter de-

tector. Any point whose classifier score for a character

exceeds a threshold (set at -5) becomes a potential letter



detection. In cases where a sequence of adjacent points

all exceed the threshold, only the local maximum point is

retained as a candidate. Nevertheless, the classifier can

identify numerous false positives due to the low thresh-

old. The word recognition step described below deter-

mines which are real by finding the sequence of detected

characters with the greatest probability of correctness.

4. A Hidden Markov Model for Word
Recognition

In this section, we propose a hidden Markov model

(HMM) to recognize a sequence of characters of fixed

length given the character detection results. Note that

generation of the required HMM probabilities proceeds

automatically from statistics measured on a training cor-

pus with transcript and the specific sequence of character

detections. A custom HMM provides a natural way to

determine the most probable sequence of characters se-

lected from the detection sequence, which may contain

both false positives and false negatives due to ambigui-

ties in the written characters and imperfections in the de-

tector. The HMM explicitly combines information about

character transition, character visual appearance, and the

horizontal spacing.

As a sequence model, the HMM has the advantage

of utilizing character dependence information for decod-

ing. The proposed HMM model recovers the most prob-

able sequence of detected characters by integrating infor-

mation on the character dependence, the visual appear-

ance and the relative positions of detected characters. Let

D =< d1, d2, . . . , dn > represent the sequence of can-

didate detections obtained in the detection step, where n

indicates its length. Each element dk in the detection se-

quence is denoted as a triple dk = (ck, φk, xk), where

xk is the cartesian coordinate of the k-th detection, ck the

character and φk the detection score for detecting ck at

that position. Since false positives may exist in the candi-

date detection sequence, the lengthm of the genuine word

is taken as an integer within [0, n], i.e. 0 ≤ m ≤ n. 0 cor-

responds to the extreme case where all detections are false

positives. For each possible length m of a possible latent

word, we build an HMM consisting ofm state nodes, each

of which generates the observation at a particular position

of the detection sequence. We represent the state sequence

of the HMM as S =< s1, s2, . . . , sm >, where each state

si in the HMM is an integral index to a position in the

candidate detection sequence. The observation sequence

O =< o1, o2, . . . , om > denotes the feature vectors gen-

erated by each of the state nodes. For example, if si = 10
then oi is the feature vector extracted at the 10-th detec-

tion position from the word image. The HMM estimates

the joint probability of the feature vector sequence and the

Figure 1. Diagram of the HMM with length equal to 7,

showing hidden states and observation points. Note

that the state at each node determines the corre-

sponding observation point.

hidden position sequence P (O,S) as:

P (O,S) =
m∏

i=1

P (si|si−1)P (oi|si) (1)

where P (si|si−1) is the transition probability which in-

dicate the possibility of transition from one position si−1

to another si in the detection sequence, and P (oi|si) the

probability of generating the feature vector oi from the

sith possible detection. Figure 1 shows the diagram of the

HMM with length equal to 7.

Inference in the HMM requires requires finding the S̃

maximizing P (O,S), i.e.:

S̃ = argmax
S

P (O,S) (2)

4.1 Probability Estimation

4.1.1 Generative Probabilities

The generative probability P (oi|si) in this model is

the probability of image feature set oi given a true de-

tection at the si-th detection position. The scores from

the output of the boosting detector need to be mapped to

probabilities.

One approach models the distributions of positive and

negative detection scores to get an estimate of P (oi|si). A

given boosted detector comprises some number of feature

tests representative of each character class on the training

set. Positive examples of the class should pass most of

the tests, and negative examples should fail most of them.

The distribution of both positive and negative scores may

therefore be modeled by a Poissonian distribution. Fit-

ting a Poisson to the observed distribution on a training set

yields a smooth curve, which allows one to map scores to

probabilities. Figure 2 shows the score profiles and their

fitted models for one character class.

A second alternative estimate of P (oi|si) comes di-

rectly from the exponential of the score φsi
reported by

the letter detector, times a constant β small enough to en-

sure that P (oi|si) << 1 (see Equation 3). The Viterbi



Figure 2. Histogram of detection scores for positive

(green) and negative (red) examples of the letter ’h’.

The positive scores have been exaggerated by a fac-

tor of 10 for visibility. Curves show fitted Poissionian

curves, used to estimate the generative probability.

algorithm computes probabilities using Equation 1. By

taking the logarithm of both sides in Equation 1 it can

be shown that a constant mβ is added to all character

chains of the same length and hence this does not affect

the output of the Viterbi algorithm (which maximizes like-

lihood). In the final step when chains of different lengths

are compared, the scores are divided by the length m and

hence the constant is again the same for all chains. That is,

the choice of β does not change the result. Thus previous

work using dynamic programming on the raw detection

scores [7] turns out to be equivalent in implementation to

inference using Equation 3. Experiments show that this

approach works well. Effectively, the boosted scores are

treated as logarithms of the generative probabilities, up to

a constant. This is somewhat surprising since the litera-

ture indicates that the output scores of classifiers such as

support vector machines [2] and AdaBoost [12] are not

necessarily good probability measures.

P (oi|si) = βexp(φsi
) (3)

4.1.2 Transition Probabilities

The transition probability P (si|si−1) is essentially the

transition from the si−1-th detection dsi−1
to the si-th de-

tection dsi
, which measures the possibility that two con-

secutive characters in the real word correspond to the

si−1-th and the si-th candidate detections respectively.

(Note that si and si−1 are consecutive Markov states, but

do not necessarily refer to consecutive detections.) This

probability is determined by two different components

of the detections: the candidate characters and the carte-

sian coordinates/positions of the detection. The candidate

character transition models the statistical dependency of

characters, i.e. the conditional probability of one char-

acter occurring given the previous character. The posi-

tion transition models the relative horizontal separation of

different characters in word images. This probability pe-

nalizes unusual (too large or too small) separations of the

two candidate detections. Formally, the character transi-

tion P (csi
|csi−1

) is estimated from the smoothed bigrams

of characters in the training set (or from an external cor-

pus). The position transition is estimated as a Gaussian

function of the separations:

P (xsi
|xsi−1

) = (4)

exp(−
((xsi

− xsi−1
) − µsisi−1

)2

2σ2
sisi−1

)

where µsisi−1
is the mean separation of the characters csi

and csi−1
estimated from training set, and σsisi−1

the cor-

responding standard deviation. The transition probability

P (si|si−1) is estimated as a weighted combination of the

character and position transitions:

P (si|si−1) = λP (csi
|csi−1

)+ (1−λ)P (xsi
|xsi−1

) (5)

where λ determines the weights for the two components.

The value of λmay be estimated from a validation set. For

simplicity, we have used a predefined value in our experi-

ments.

The character separation µsisi−1
and deviation σsisi−1

numbers are estimated from a model that assigns a width

and deviation to each character type, and averages them to

find the corresponding value for any two characters. The

character widths in turn are measured from estimated po-

sitions of the characters in training data with supplied tran-

script. Values for common characters are used directly,

while uncommon characters are smoothed. The treatment

of this problem is reported elsewhere [7].

4.2 Decoding the Most Likely Word

The Viterbi algorithm is used to determine the most

likely state sequence S̃ of an HMM; for the HMM of any

given length m denote this as S̃m. The algorithm keeps

track of both the most likely state at each position of the

word and the likelihood associated with it. Specifically,

the log likelihood of decoding the i-th state as the k-th

candidate detection is calculated as:

γi(k) = φk +
k

max
j=0

[γi−1(j) + log(P (k|j))] (6)

where the latent constraint j ≤ k ensures that the de-

coding never traverses the detection sequence backwards.

During the decoding, the Viterbi algorithm keeps track of

the path leading to the current state k by recording its prior

state ψi(k) at each step i:

ψi(k) = arg max
1≤j≤k−1

[γi−1(j) + log(P (k|j))] (7)



Since we build a separate HMM for each possible

length (0 ≤ m ≤ n) of the real word, after the Viterbi

decoding we get the n most likely word labels of different

lengthes. We denote these most likely words as Wm and

the corresponding likelihoods as γm, with 0 ≤ m ≤ n.

Note that although we define a separate HMM for each

possible word length, the Viterbi scores calculated for a

shorter sequence can be reused with a longer sequence for

significant computational savings. Thus the Viterbi scores

γm+1(k) at the m + 1 step can be calculated using the

scores γm(k) calculated at the last step of the sequence of

length m according to Equation 7.

The character sequencer just described identifies the

best character sequence for each possible length up to

the total number of detections n. Comparing γm be-

tween sequences of different length may be misleading

since longer sequences include more terms and hence

may potentially have a bias toward lower score. In gen-

eral, any specific word containing more letters may be

expected to have lower likelihood than a shorter word

since more letters offer more possible combinations over-

all. The normalized likelihood therefore picks the correct

sequence more often when comparing possibilities of dif-

ferent lengths.

γ̂m =
γm

m
(8)

Then the most likely word is the Wm̃ with:

m̃ = arg max
m

γ̂m (9)

5. Experiments

We test the new inference method under the same ex-

perimental conditions used to evaluate the original alpha-

bet soup algorithm. Twenty pages of correspondence from

the letters of George Washington make up the test set.

These are written in longhand script by several of Wash-

ington’s secretaries, so they represent multiple styles. We

use the same word image segmentations as previous work

[10]. The distribution of word lengths appears in Figure 3.

The experiments follow a 20-fold cross-validation

methodology, with nineteen pages used for training and

one page for testing, alternated until all pages have been

tested. Only half the pages (either the even or odd pages

not including the test page) are used to build the letter de-

tector, since this is the most time consuming step and ten

pages easily provide sufficient training samples of most

characters. All nineteen training pages contribute to the

estimation of character bigrams and separations.

The joint boosting process builds a letter detector

based on 2000 feature tests, trained on 128 examples of

each character class. There are sixty character classes to-

tal, including all lowercase letters, numerals, most upper-

case letters, and one instance of the British pound symbol

£. Candidate detections include all points with φk > −5

Figure 3. Distribution of word lengths in the GW20

corpus.

Table 1. Results of inference on the ensemble of

HMMs using two different generative probability es-

timates. Character error rates are computed as to-

tal string edit distance between the ensemble pre-

diction and ground truth, divided by the number of

ground truth characters. Allowable edits include eli-

sions, insertions, and one-for-one or two-for-one sub-

stitutions.

Probability Score Profile Raw Boosting

Estimate: Models Score

Character

error rate (%): 39 ± 4 19 ± 4

that are local maxima of φk with respect to their neigh-

bors.

Table 1 presents the results of inference on the en-

semble of HMMs using the two different estimates of

the generative probability described in Section 4.1.1. We

choose to cite character error rates here to emphasize the

fact that our method performs character-by-character in-

ference. The first result given, based upon score profiling

as illustrated in Figure 2, represents a new experiment.

The second, based upon Equation 3, represents results

equivalent to prior work [7]. As is evident from the ta-

ble, the second method gives much better results.1 This

indicates that treating boosting scores as log probabilities

may be more reasonable than could be expected expected

based upon existing research [12].

6. Conclusion

Establishing an HMM model for character assembly in

alphabet soups improves our understanding of that word

recognition process. Simultaneously, it highlights areas

that could benefit from further investigation, in particular

1With postprocessing, the word-recognition rate using this imple-

mentation averages 72% on the George Washington letters for unre-

stricted vocabulary [7].



the generative probability estimates and the comparison of

word predictions of different lengths.

The noticeable difference in the error rate between our

two estimates of the generative probabilities highlights the

importance of this crucial measurement, and serves as mo-

tivation to find estimates that will serve better still. The

utility of the raw boosting scores in this capacity comes as

a surprise in light of prior results to the contrary. This may

indicate a superior property of joint boosting as compared

with other boosting variants. In any case, the discov-

ery would not have been possible without the theoretical

framework provided by the ensemble-of-HMMs model.
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