A Note on
Semi-Supervised Learning using Markov Random Fields

Wei Li and Andrew McCallum
{weili, mccallum}@cs.umass.edu
Computer Science Department
University of Massachusetts Amherst

February 3, 2004

Abstract

This paper describes conditional-probability training of Markov random
fields using combinations of labeled and unlabeled data. We capture the sim-
ilarities between instances learning the appropriate distance metric from the
data. The likelihood model and several training procedures are presented.

1 Introduction

While obtaining labeled data is often expensive, unlabeled data is usually plenti-
ful and cheap. Several models have been proposed for semi-supervised learning in
which a combination of labeled and unlabeled data is used to train a learner for
some supervised task. However, some results with such models—including mix-
tures of multinomials trained by EM [Nigam et al.2000], and SVM transduction
[Joachims1999]—show that incorporating unlabeled data only sometimes improves
accruacy, and other times hurts accuracy [Nigam2001].

This paper characterizes situations in which unlabeled data hurts accuracy as
occurring when the “natural clustering” of the data is not in “good correspondence”
with the class labels. In other words, poor performance results when instances of
differing class labels are often found “near” each other, and “large distance spans
containing only a few instances” do not correspond to class boundaries.

Thus, this paper contends that having a good distance metric is a key require-
ment for success in semi-supervised learning. In many models the distance metric
is implicit and treated as a given, but the right distance metric is task-specific, and
should be learned. Consider that, given a set of inputs, it is reasonable to expect
that differing classification tasks could be performed on this set. For example, given
a set of news articles, one might classify them according to topic or according to
style. Different distance metrics would be appropriate to each task.

Previous work [McCallum and Minkal999] addresses this issue by using the lim-
ited labeled data and large quantities of unlabeled data to bootstrap the learning
of a distance metric for a multinomial naive Bayes classifier. In this classifier the
metric is represented with Polya trees (Dirichlet trees) as the prior over multinomial
mixture components. Polya trees are a distribution over multinomials, but unlike
the traditional Dirichlet, they can represent differing variance in different dimensions
(and thus can emphasize some dimensions while down-playing others). This model
has demonstrated some promise, however, discriminative or conditionally-trained
models tend to perform better classification than generative models. Thus we seek
a discriminative model that also learns a distance metric as an integral part of its
training.

This paper outlines a model for conditionally-trained, semi-supervised learning in
which distance metric learning is an integral part of training. The approach is based
on Markov random fields with tied parameters, in which there are some parameters
impacting classification of individual instances dependent on their features, and
other parameters encouraging instances with related, relevant features to share the
same class label.

2 A Purely Supervised Model for Classification

Consider a traditional log-linear, conditionally-trained classfier, (also known as a
maximum entropy classifier, or, in the case of a binary class label, logistic regression).
Let y be a class label from a finite set of classes, V), and let be some arbitrary input
on which various feature functions, f(z,y) return real values. The model defines
the conditional likelihood

Pa(ylz) = Zi exp (Z Akfk(%?/)) ;
z k

where Z, = 3, /cy exp (3, Arfe(z, %)) is the partition function.

The parameters A = {\...} are trained to maximize penalized log-likelihood of a
set of training labeled data Dy = {(x1,91),...(z;, y1)}. We will use the notation xy,
for the z’s in this labeled training set and yj, for the y’s in this labeled training set.
The penalized log-likelihood is

[2
£ = log(Pa(ylxs) = 3 log (Pa(yilas)) — 3 2k

i=1

E

where the second sum is a Gaussian prior on the parameters to handle sparsity in
the training data. For each y €) there is a separate “default feature” that is always
on independent of x; this allows the model to represent a class prior probability.

Standard optimization techniques such as conjugate gradient or limited-memory
BFGS [Byrd et al.1994, Malouf] can find the parameters that maximize this func-
tion. The gradient is

l
g—i) (Z fulais i) = PA(y’!xi)f(xi,y/)) -2

i=1 y'ey o

Note that this model corresponds to an undirected graphical model (also known
as a Markov random field) in which the observed random variables x; are connected
by an undirected edge to their corresponding random varibles y;, and the cliques of
the graph are exactly these pairs, with clique potential ®; = exp (35 M frx (@i, ¥i))-

3 A Semi-Supervised Model for Classification

Now consider the case where, in addition to labeled data Dy = {(x1,y1),...(x1, y1)},
we also have available unlabeled data Dy = {(z11),...(T13u) }-
We will use the notation xy for the x’s in the unlabeled set, and the notation
yu for the (unknown) labels of x;7. Furthermore, let x = x; Uxy and y =y Uyyp.
We wish to use the unlabeled data to improve parameter estimation. If we
use the classification model from the previous section, the unlabeled data have no
impact. One can see this by considering maximizing the likelihood

L = log PA(yrlx,xu) =log) Palyr,yulxr,xv)
yu

= log)» Pa(yr.|xr)Pa(yulxv) =log Pa(yr, |xz) > Pa(yulxv)
Yu Yu
= 10g PA(YL, |XL)

and noting that x;7 does not appear in the gradient 9L/0\.

For the unlabeled data to make a difference in conditional-likelihood training,
we must allow the unlabeled training data x;; to have some impact on the labels
yr. This is accomplished by introducing dependencies between x;; and yry..

One way (but not the only way) to do this is to add new features and weights
(and thus corresponding cliques of the undirected graphical model) that assess as-
pects of pairs of examples—(x;,y;) and (x;,y;)—across all pairs, (including both
labeled data, and unlabeled data with hypothesized labels). The corresponding new
complete-data likelihood model is

1
PA(yLaYU‘XL’XU) = fo exp (ZZ)\kfk;(xzayl) + ZZ)‘k’fk’($ia T, Yis y])) s
A 1<jg K

where Zy = >/ exp (ZZ Dok Sk (@i yi) + i Zop A S (i 24, y;)) is the new
partition function.

In some cases' it is reasonable to simplify this expression by ignoring the indi-
vidual values of y; and y;, and only determining whether or not the two classes are
equal. Let y;; = 1 iff y; = y;, and then the complete-data likelihood in this simpler
model is

1
PA(yr,yulxr,xv) = 7. P SN Neful@ive) D00 A fur (i, w5, i)
Tk i<j W

Parameter estimation in this new semi-supervised model maximizes the incom-
plete penalized log-likelihood:

L = logP\(yrlxr,xv)
= log) Palyr,yulxw,xv)
YU
1
= 1Og?ZeXP DY Akfe(@iyyi) + DY A fr (@i, 5, vij)
X yu ik i<j K
9 2
IR 3
2 %

The features frr and parameters \i parameterize the distance measure used to
compare two examples. For example, for a document classification task, one such
feature might be 0 in most cases, and 1 iff document x; and document x; both con-
tain the word “airplane” and y;; is 1; another corresponding feature would be 1 iff
the same word appeared in both, but y;; is 0. In such a scheme, parameters A cor-
respond to weights on each “dimension of the input space.” Of course, the features
frr could capture arbitrarily complex features of the input, including conjunctions,
and conjunctions could also be induced [McCallum2003].

Maximum likelihood parameter estimation in this model thus corresponds to
simultaneously learning a classifier and a distance metric that maximize the (penal-
ized) conditional likelihood of the labels given the labeled and unlabeled inputs.

When the number of labeled points is very small, the model might severely overfit
and the priors ¢ and ¢’ will become more important. The relative importance of
(1) using the features of an instance to classify it independently of other instances,
and (2) using the distance measure to encourage nearby points to agree on their
class label can be controlled by using different values for ¢ and ¢’. One might
also consider enforcing constraints based on the class label proportions found in the
labeled data, as in co-training [Blum and Mitchell1998].

!Situations in which this simplication may not be desirable include: (1) when there is structure
in the class label “output” space,), (such as a class hierarchy, DAG, distance measures, or other
relations); (2) when different pairs of classes should have their compatibility measured differently
i.e. class-specific distance metrics. We discuss this latter scenario further in Section 4.

Note that we could also use distinct means and variances on the Gaussian priors
for different features fr and fi/, and that this would be a simple and convenient
way to inject domain knowledge.

3.1 Approximate Classification

Exact inference in this model is intractable since the sum necessary for calculating
Zy includes an exponential number of addends,]x['y |, We can apply some ap-
proximate inference algorithms to this problem, such as loopy belief propogation or
TRP, a particular schedule for loopy belief propogation that has better convergence
properties. But since the graphical model is very densely connected with many
loops, these algorithms may not work very well. Another approach tries to approxi-
mate the joint classification with a graph mincut algorithm [Blum and Chawla2001].
This method constructs a graph of data instances and the edges between them are
assigned weights based on their similarities. Then the nodes are partitioned into
disjoint subsets by removing the edges with the least weights.

As for our model, we also use a graph partitioning algorithm to approximate
classification. But besides the similarities between instances, we want to consider
their individual classification scores as well. So we construct the graph in a slightly
different way. Let G = (V, &), where nodes V correspond to both the data points
x = x7, U xy and class labels). There are two types of weighted edges in £: For
each pair of data node x and class node y, they are connected with a weight of
exp (> M\efr(z,y)), the score of assigning class label y to . And the edge weight
between each pair of data nodes (x;,x;) measures the probability that they share
the same class label. In the simplified case where y;; € {0,1} is used, we set the
weight to be exp (3)\k’(fk" (24, Tj, 1) — fu(zi, Tj, 0))/2)

The graph partitioning algorithm we use is similar to the standard agglomer-
ative clustering algorithm, which iteratively merges the closest clusters. In our
case, we always find the most similar node and cluster based on some criteria
and then add the node to the cluster. We could also use correlation clustering
[Bansal et al.2002], but we have found this method to usually work better in prac-
tice [McCallum and Wellner2003]. The algorithm is described below:

1: Initialize clusters Cq, Co, ..., C'|y| such that C; contains one class node ;.

2: Add the data nodes in xj, to the clusters that contain their corresponding class
nodes.

3: D =xy

4: while D is not empty do

5: Find the heaviest edge between a data node x € D and a class node.

6: Let C; be the cluster that maximizes the average edge weight between its

members and x.
Ci=Ci+xz,D=D —x.
8: end while

This algorithm puts all the data nodes into |)| clusters, and for each cluster C;,
its members will be assigned the same class label y;. As we can see, this is a greedy
algorithm in the sense that the membership of a data node will not change once it
is determined. According to step 6, we choose the cluster for a node based on its
independent classification scores as well as its similarities to existing members. So
the ordering to consider the nodes will affect the clustering result. As shown in step
5, we always pick the node with the highest classification score first. We have also
tried merging the node and cluster with the highest average edge weight, it works
worse (but not significantly).

3.2 Parameter Estimation

To learn the parameters in our model, we need to maximize the incomplete penalized
log-likelihood:

L =1log Pa(yLlxr, xu) =log > PA(yr,yulxr,xu).
Yu

Note that the >°, =~ also includes an exponential number of addends, \xU||y | and we
experiment with various approximations to avoid calculating this sum.

To begin, we use only labeled data to learn the parameters by maximizing the
penalized log-likelihood:

L = logPar(yL|xr)

1
= IOgZ exp | DD Mefulwi,vi) + DD A fur (i, 5, 4ij)
XL Tk i<j &
72Ai S Ak
202 4 202"
k !

To apply standard optimization techniques such as limited-memory BFGS, we
need to provide the values of the objective function and its gradient:

i=1y'€y

oL l l / / Ak
8—)% = ka(x“yl)—z Z Pr(y'[xL) fi(zi,y) o2
=1

oL A
= S e @i xg,yp) = > Y Palyi vixo) fi (i, xj,955) | — U—g.

i<j i<j y;€Y yjey

This involves calculating the joint probability Pa(yr|xz) and the marginals P (y;|xr1,)
and P (ys,y;|x1). Since there is no efficient algorithm for exact inference, we have
tried various approximations to obtain these values.

First, we use woted perceptron for optimization, which only requires the gra-
dient. In order to avoid calculating the marginals in the gradient, we approxi-
mate the feature expectation >, /¢y Pa(y'|xL) fr(wi,y") with a single value f(x;,y*),
where y* = argmaz,ycyPx(y'|x1). And we find an approximate y* with the graph
partitioning algorithm described above, treating all the training instances as un-
labeled data. Similarly, >2,/cy Zy;ey Pa(y;, y51%L) fir (w4, 25, yi;) is replaced with
f(l'iaxﬁy;(j)'

The second solution is to calculate the joint and marginal probabilities using
approximate inference algorithms, and then apply limited-memory BFGS to train
the parameters. We choose TRP to perform the inference.

Another approach is to approximate Pj(yr|xz) with a simpler function form
P} (yr|xr), for which it is easy to perform exact inference. Therefore, we could cal-
culate the accurate values for the new log-likelihood £ we want to maximize and its
gradient. For instance, pseudo-likelthood training approximates the joint probability
of a set of random variables with the product of the conditional probabilities of each
variable given the others. In our case, we define P} (yr|xz) as

Pi(yrlxz) = J]Pa(ynlxc.y-n)
1
= [[o——exp | DD Mefwl@iwi) + DD M fur (i, 25, 5) |
n ZxLyy—n i k i<i K

where y_,, indicates all the y;’s in y, except y, and Zx, y_, is the normalization
factor.

We also explore a strategy we call local-joint training to construct the approxi-
mating function. Although it is difficult to calculate the joint probability when there
is a large number of instances, it is not a problem for a small set of variables. So for
each pair of nodes (x;,x;), we calculate the probability Pa(y;,y;|s, ;) by normal-
izing the potentials locally and then approximate the global probability Pa(yr|xr)
as their product:

Pi(yrlxe) =[] Palys yslai,)
i<j

- 10

i< TrT

exp (Z Ak(fe(@is vi) + fr(zj,95)) + Z)\k’fk’(xi7$jayij)> :
k

k,l

To better understand the effect of approximating the joint probability with the
product of all the pair-wise probabilities, consider the simple case where there are
only four variables {a, b, c,d}. Then we have

P(a,b,c,d) = P(a,b)P(c,d|a,b)
= P(a,b)P(c,d),

if we assume the independence between a,b and ¢, d. Similarly,
P(a,b,c,d) = P(a,c)P(b,d),

P(a,b,c,d) = P(a,d)P(b,c).

So given these independence assumptions, we approximate the joint as follows:

P'(a,b,c,d) = (P(a,b)P(c,d)) (P(a,c)P(b,d))(P(a,d)P(b,c))
= P(a,b,c,d)>.

In the general case, this approximation roughly raises the joint probability to
some power and thus multiplies the log-likelihood by a constant. Although the values
for P and P’ might be very different, the parameters that maximize them should be
similar, assuming independences. So we expect it to be a reasonable approximation.
When the independence assumption is violated, we might double-count the evidence
just as Naive Bayes classification.

For both pseudo-likelihood training and local-joint training, we can easily eval-
uate the approximating log-likelihood functions and gradients, which allow us to
learn the parameters efficiently using limited-memory BFGS.

It is easy to extend the local-joint training method to incorporate unlabeled
instances. We still approximate Py (yr|xr,xy) with the product of pair-wise prob-
abilities. However, the half labeled pairs, i.e., pairs with only one instance la-
beled, also contribute to this product. And we calculate their local probabilities
as Pa(yi|@y, mu) = > ey Pa(yr, ylw, 2u). We could also consider triples with one
unlabeled example: Pa(y;1,y;2|x;1, 22, 2,) = > oyey Pr(yil, 412, y|x1, 12, xy,)

4 Experiment Results

We present experimental results for the document classification task using the 20
newsgroup dataset. The preprocessing on the documents includes downcasing and
removing headers and stopwords. The features fi(x) are term frequencies and
fw (zi,zj) = min{ fr.(x;), fr(z;)} are the shared term frequencies.

The Gaussian means for the priors on \; and Ax are set to 0 and idf respectively.
Idf is the inverse of the number of documents that a term occurs in. We use it as the
means for Aps because in the information retrieval area, it is often combined with #f,
term frequency, to measure document similarities. Since there is only a small set of
labeled instances, we impose relatively tight variances on the parameters to reduce
overfitting. Currently we have 02 = ¢’> = 0.001, and the performance with larger
variances is worse.

In large data sets, calculating an affinity measure between all |x|? pairs of in-
stances is prohibitively expensive. The “canopies” method [McCallum et al.2000]
for efficiently pruning the set of pairs to be measured has been used with success

in several related situations, including [Pasula et al.2002]. It enables us to use a
large number of documents for training and classification. We use this method in
local-joint training with unlabeled instances, and the similarity measure is tf-idf. In
our experiments, we keep approximately 5000 pairs for about 2000 examples. We
do not use this method in testing because it significantly hurts the performance.

For all the training models discussed in the previous section, we conduct exper-
iments using the simplified features fi/(x;, x;,¥i;), where we only care if the two
classes are equal or not. But it is easy to extend this model to consider the in-
dividual values of y; and y; with additional parameters associated with them. In
this case, different classes could have different distance metrics. Currently we are
experimenting with this more complicated model.

The results reported here are all based on the graph partitioning algorithm
for test-time classification. Although we also experimented with TRP to perform
inference used in classification, it does not work as well as this algorithm.

A complete comparison of various training methods on the binary problem PC
vs. MAC is presented in Table 1. Furthermore, we compare their performances
with three traditional models that classify each instance independently: Naive Bayes
(NB), maximum entropy (ME) and support vector machines (SVM). We use 5 dif-
ferent amounts of labeled instances (shown in the first column of the table), and
perform 5 trials for each of them. After the labeled instances are randomly sam-
pled, we use the remaining instances as unlabeld data. The average classification
accuracies (and standard deviations in parentheses) are listed in the table.

As we can see, the results are very different for the four training methods with
labeled data only. Voted perceptron (VP), TRP and pseudo-likelihood (PL) didn’t
improve over the independent classifiers, while local-joint training (LJ) has signifi-
cantly better performance. To show the impact of learning the distance metric, we
conduct another experiment (IDF), which only learns \; but fixes Ax to idf. The
performance of this fixed distance metric is less than the metric learned by local-
joint training. We also use unlabeled data in local-joint training (LJU), and while
the performance is generally better, it is not statistically significantly so.

Test-time classification in our model is approximated by graph partitioning. To
evaluate the loss in performance due to this approximation, we compare the cluster-
ing result produced by the graph partitioning algorithm and the correct clustering
where each data node is placed in the same cluster as its class node. The crite-
rion is the difference between average inter- and intra-cluster similarities. And it
shows that the correct clustering is actually worse. This means that the graph par-
titioning algorithm misses the perfect classification because it is not the most likely
configuration, not because the algorithm is a bad approximation.

[[NB [ME [SVM | VP | TRP [PL [IDF [LJ [LJU |

20 | 64.42(6) | 64.31(7) | 65.40(6) | 58.46(1) | 68.45(4) | 66.24(5) | 70.88(7) | 76.92(6) | 75.20(11)
40 | 64.90(7) | 69.78(6) | 69.16(4) | 57.65(4) | 66.78(6) | 69.54(9) | 72.15(4) | 79.38(5) | 76.81(8)
60 | 69.87(4) | 73.40(2) | 72.57(2) | 68.20(14) | 70.25(12) | 73.50(13) | 80.79(3) | 86.63(2) | 85.57(3)
80 | 73.44(4) | 76.84(2) | 74.83(2) | 71.92(14) | 71.16(13) | 78.30(14) | 82.41(2) | 87.13(2) | 87.56(2)
100 | 73.77(5) | 77.09(2) | 75.36(2) | 70.23(14) | 82.18(4) | 77.67(8) | 82.20(3) | 86.92(1) | 87.84(1)

Table 1: Classification Accuracies (%)

5 Related Work

Semi-supervised learning has become an important research topic in the machine
learning community. A review of various techniques in this field is given in [Seeger2000].
Some recent work has focused on exploring the structure described by the un-
labeled data to change the classification boundaries. A common assumption of
these methods is to give the same classification to close data points. Szummer and
Jaakkola [Szummer and Jaakkola2001] propose a Markov random walk representa-
tion over unlabeled examples, resisting rapid change of class labels in high-density
regions. They use fixed affinity function for density calculation. Chapelle et al.
[Chapelle et al.2002] introduce a framework to design ”cluster kernels” so that the
distance between two points is smaller when they are in the same cluster. Blum
and Chawla [Blum and Chawla2001] use a graph partitioning algorithm for classifi-
cation, minimizing the number of close pairs that are assigned different class labels.
They discuss several ways to define similar examples, but they do not learn the
distance metric.

The most related work to this paper is [Zhu et al.2002] and [Zhu et al.2003a].
There are several differences in our approach, but it is not yet clear if our model
provides any strong advantages. Their latter paper uses Gaussian random fields
instead of discrete random fields, the continuous state space providing easier infer-
ence since there is an efficient closed form solution to the most likely configuration.
Similar to the parameters ;s in our model, they also have different weights associ-
ated with different features to measure the similarities between instances. However,
these weights do not depend on class labels. We think it is reasonable to have class-
dependent distance metrics. One can imagine that some features are meaningful to
a particular class but not to others. So we need to consider the (hypothesized) labels
to judge if two instances are close or not. Another difference between our approach
and Zhu’s is parameter estimation. Instead of maximizing the conditional probabil-
ity of labels given the instances, they try to minimize the average label entropy for
the unlabeled data. Again, this can be done in an efficient way. In the following
work [Zhu et al.2003b], they also try to maximize the data likelihood. In their basic
model, the classification is only based on the data manifold (the potentials between
data points—there are no potentials to the class prototypes). It can be further ex-
tended to incorporate an external classifier that also produces labels for unlabeled

10

data. However, the relative importances of these two kinds of information are de-
termined arbitrarily. On the other hand, we capture both the data structure and
their individual features in one model and learn the two sets of parameters simul-
taneously. So they can automatically adjust their values to appropriately balance
with each other.

6 Conclusion

This paper presents conditionally-trained Markov random fields with tied parame-
ters, which affect classification of individual instances based on their own features
and also capture the similarities between pairs of instances. Unlabeled data can be
used in both training and classification. We use a graph partitioning algorithm to
approximate inference and describe several training procedures.

Currently, we are exploring several directions to improve the performance. For
example, the similarity features fi/(z;,2;,i;) are now the shared term frequencies
between two instances. We are experimenting with more options. Furthermore, we
are using the simplified features that only care if the two classes are equal or not.
And we will extend them to include the individual class values. As the experiments
show, the local-joint training method has the best performance. The idea of approx-
imating the joint probability with the product of locally normalized probabilities can
be applied to larger pieces too. So we will continue working on this approach and
try to further improve parameter estimation.

References

[Bansal et al.2002] N. Bansal, A. Blum, and S. Chawla. Correlation clustering,
2002.

[Blum and Chawla2001] Avrim Blum and Shuchi Chawla. Learning from labeled
and unlabeled data using graph mincuts. In Proc. 18th International Conf. on
Machine Learning, pages 19-26. Morgan Kaufmann, San Francisco, CA, 2001.

[Blum and Mitchell1998] Avrim Blum and Tom Mitchell. Combining labeled and
unlabeled data with co-training. In COLT': Proceedings of the Workshop on Com-
putational Learning Theory, Morgan Kaufmann Publishers, 1998.

[Byrd et al.1994] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of
quasi-Newton matrices and their use in limited memory methods. Mathematical
Programming, 63:129-156, 1994.

[Chapelle et al.2002] O. Chapelle, J. Weston, and B. Schoelkopf. Cluster kernels for
semi-supervised learning. In Neural Information Processing Systems, 2002.

11

[Joachims1999] Thorsten Joachims. Transductive inference for text classification
using support vector machines. In Ivan Bratko and Saso Dzeroski, editors, Pro-
ceedings of ICML-99, 16th International Conference on Machine Learning, pages
200-209, Bled, SL, 1999. Morgan Kaufmann Publishers, San Francisco, US.

[Malouf] Robert Malouf. A comparison of algorithms for maximum entropy param-
eter estimation.

[McCallum and Minka1999] Andrew McCallum and Tom Minka. Semi-supervised
learning using distance metrics learned via dirichlet trees (unpublished work),
1999.

[McCallum and Wellner2003] Andrew McCallum and Ben Wellner. Object consol-
idation by graph partitioning with a conditionally-trained distance metric, 2003.

[McCallum et al.2000] Andrew McCallum, Kamal Nigam, and Lyle H. Ungar. Effi-
cient clustering of high-dimensional data sets with application to reference match-
ing. In Knowledge Discovery and Data Mining, pages 169-178, 2000.

[McCallum2003] Andrew McCallum. Efficiently inducing features of conditional
random fields. In Nineteenth Conference on Uncertainty in Artificial Intelligence

(UAI03), 2003.

[Nigam et al.2000] Kamal Nigam, Andrew K. McCallum, Sebastian Thrun, and
Tom M. Mitchell. Text classification from labeled and unlabeled documents using
EM. Machine Learning, 39(2/3):103-134, 2000.

[Nigam2001] Kamal Nigam. Using Unlabeled Data to Improve Text Classification.
PhD thesis, Pittsburgh, US, 2001.

[Pasula et al.2002] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser. Iden-
tity uncertainty and citation matching, 2002.

[Seeger2000] M. Seeger. Learning with labeled and unlabeled data, 2000.

[Szummer and Jaakkola2001] Martin Szummer and Tommi Jaakkola. Partially la-
beled classification with markov random walks. In Advances in Neural Informa-
tion Processing Systems, volume 14, 2001.

[Zhu et al.2002] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Learning
from labeled and unlabeled data with label propagation, 2002.

[Zhu et al.2003a] Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-
supervised learning using gaussian fields and harmonic functions. In Proceedings

of ICML-03, 2003.

[Zhu et al.2003b] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Semi-
supervised learning: From gaussian fields to gaussian processes., 2003.

12

