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Abstract 

In this report, I present a combined approach 

of language modeling and an automatically 

built answer model for finding answers from 

the relevant documents. We make use of a 

data-mining technique, Snowball, to collect 

patterns for the answer model. It only needs a 

few samples to start with and the patterns are 

automatically evaluated. As shown by the test 

results, this model outperforms our current 

heuristic approach in the QuASM system and 

the answer model is proven to be helpful. 

 

1. Introduction 

The goal of question answering is to provide 

users with short phrases that explicitly answer 

their questions. So unlike document retrieval, 

which returns a list of relevant documents, a 

QA system needs to perform an additional task 

called answer extraction. An easy solution to 

this problem is to do a secondary retrieval on 

the returned documents. However, the success 

of traditional IR techniques usually relies on 

the similarity between the word distributions 

of queries and relevant documents, which is 

not always true for questions and answers.  

 

The NLP and IE communities have explored 

alternative techniques for answer extraction. 

In our current QA system QuASM, a question 

is classified according to the type of answer it 

is seeking, and entity phrases are recognized 

in the documents. Then we score the answers 

in a heuristic way, which considers the match 

between entity types and the question class, as 

well as context information.  

 

In this report, I present an answer extraction 

framework that combines both IR and NLP/IE 

techniques. We start with language modeling 

[1], a statistical approach that has gained more 

and more successes in the IR area. The basic 

idea is to build one language model for each 

answer candidate1, and rank them according to 

their probabilities to generate the question.  

 

At the same time, we also want to use the 

question class information, which has not been 

utilized by language modeling. Instead of just 

comparing question class with entity types as 

QuASM does, we build an answer model for 

every class of questions to capture all kinds of 

answer patterns. 

 

The intuition behind the answer models is that 

questions often ask about binary relations. For 

example, in the TREC-10 evaluation, most 

“location” questions ask about the following 

three relations:  

<organization, headquarter>, 

<person, hometown> and 

<country, capital>. 

Then an answer should be a piece of text that 

expresses the corresponding relation. So once 

we have a collection of text patterns for those 

relations, we could evaluate answer candidates 

by comparing them against those patterns. 

 

To automatically collect answer patterns, we 

borrow a semi-supervised learning technique, 

Snowball [2], from the data-mining area. We 

 
1The current requirement for answer extraction is to restrict 
the result within a certain length of text, i.e., approximately 
two sentences. For the rest of the report, the term “answer 
candidate” is used to refer to any two consecutive sentences. 



use weighted vectors to represent the patterns, 

which allow us to define the degree of match 

between patterns and answer candidates, and 

furthermore, to adjust the pattern generality by 

changing the matching threshold. 

 

The rest of this report is organized as follows: 

in section 2, I will review some related work; 

section 3 describes our approach, including 

the implementation of language modeling for 

answer extraction, the algorithm for building 

the answer models, and how to use the answer 

models and combine them with the language 

models; section 4 presents evaluation results; 

section 5 is a discussion about our method and 

section 6 concludes the report. 

 

2. Related Work 

People have long noticed the surface string 

mismatch between the question formulation 

and the string containing its answer. Various 

directions were explored to solve this problem. 

Berger et al. [3] propose a machine learning 

approach to answer extraction, which makes 

use of a training set of answered questions. 

The learning process is designed to capture the 

relation between questions and answers with a 

statistical model. Four strategies have been 

examined. Adaptive TFIDF is an extension to 

the traditional tf-idf algorithm, which adjusts 

the idf weight of each word to maximize the 

accuracy of answering training questions. The 

second method, Automatic Query Expansion, 

learns the correlation between question terms 

and answer terms from the training data, based 

on their mutual information. Then the system 

could automatically expand a query with its 

related answer words. These two models can 

be viewed as variants to existing document 

retrieval techniques, while the other two are 

quite different. The Statistical Translation 

Model explicitly addresses the lexical chasm 

between questions and answers, and treats the 

answer extraction problem as bilingual text 

translation. A stochastic matrix is learned to 

capture the co-occurrences between words in 

questions and words in answers. The fourth 

method, Latent Variable Model, attempts to 

cluster a question and its answer based on 

their underlying topic. While these machine 

learning techniques improve the accuracy for 

finding correct answers, all of them require a 

large set of training data, which is usually not 

available for various QA tasks. 

 

Brill et al. [4][5] search the answers on the 

Web instead of a single, small dataset. The 

abundance and variation of the data provide 

better chances to find answers that match the 

questions. Given a question, they generate 

multiple queries and send them to a search 

engine. Then the retrieved summaries are 

processed to extract answers and score them 

based on several factors. In the case that it is 

required to find answers within a given data 

source, such as the TREC evaluation, they just 

locate the answers in the dataset using some 

projection schemes.      

 

Most other systems make use of linguistic 

resources or NLP/IE/KR techniques such as 

dictionaries, WordNet, named entity extraction, 

POS tagging, etc [6][7][8][9][10][11][12][13]. 

Predictive Annotation (PA), as described in 

the system GuruQA [12][11], is a technique 

that applies named entity tagging for answer 

extraction. The basic idea is to recognize what 

type of entity the question is looking for and 

then use it as a guide for the answer. While 

this approach being explored in many QA 

systems, PA has implemented it in a different 

way. Instead of extracting answers from the 

documents retrieved by a traditional IR system, 

PA modifies the retrieval process directly. It 

works as follows. An NE tagger is used on the 

documents and the entity types (referred to as 

QA-tokens) are indexed as well as the entity 

words. Then when a question comes, it will be 



classified and converted into a query that 

includes the corresponding QA-token for the 

question class. This query is forwarded to the 

search engine. It is easy to see that the match 

between QA-tokens automatically contributes 

to the score of a passage and eventually affects 

the ranking of answer candidates. 

 

Breck et al. [13] use knowledge representation 

and natural language processing techniques 

for answer extraction, treating it as finding 

variable bindings that satisfy a logical format 

of questions. After the relevant documents are 

retrieved using traditional IR methods, they 

are then processed to dynamically generate a 

knowledge base. Questions are thus converted 

into KR queries that are used to find answers 

in the knowledge base. Note that some of the 

predicates used for document representation 

correspond to various types of named entities 

and are generated using an NE tagger.   

 

Srihari and Li [10] have studied IE techniques 

in different levels for the QA task. They make 

use of a natural language shallow parser to 

capture the structural information in questions 

in order to classify them correctly. Note that 

they have a larger set of question categories 

than typically used. For example, there are 

several sub-types for the “location” class, such 

as city, country, mountain, river, and so on. In 

response, they require a more specific named 

entity tagger that could recognize the above 

entities. This extended NE tag set matches the 

expected answer and entities in the documents 

more accurately, and also provides a better 

foundation for the next level of IE application, 

i.e., defining relationships between entities. 

What they propose is to extract all kinds of 

relationships for the entities and use them 

directly as answers when questions ask about 

such relations. For example, for a “person” 

entity, the interesting relationships include his 

name, title, age, gender, birth time, birthplace 

and so on. This can be viewed as an extension 

to the conventional MUC relation extraction 

task in the sense that it covers more types of 

relations and thus a wide range of questions. 

 

Instead of constructing a large list of entities 

and their relationships from the documents, 

another approach tries to maintain a set of 

answer patterns to capture such relations and 

applies them to the documents when questions 

are given. The success of Soubbotin et al. [14] 

on the TREC-10 evaluation relies much on a 

large set of such patterns, which are manually 

defined and very extensive. Actually, this kind 

of patterns has also been used in other QA 

systems to some extent [15][16]. Let us revisit 

Brill et al.’s system [4][5]. When formulating 

queries from a question, they apply a set of 

rewriting rules, which essentially correspond 

to the expected answer contexts. The number 

of patterns used here is far less than the ones 

used by Soubbotin, but they still work quite 

well when searching the Web, where even 

several simple patterns are very likely to hit 

the answers. 

 

Another example would be MURAX [6], a 

QA system that searches answers in an online 

encyclopedia and uses some simple heuristic 

patterns to help answer extraction. One family 

of patterns is defined based on the observation 

that for some questions, especially for “what” 

and “which” questions, the target is explicitly 

specified and the answer should be an instance 

of it. Suppose a question starts with “What 

river …?”. Then we know that its answer is a 

river instance. So MURAX applies a set of 

patterns indicating this “instance of” relation 

to answer candidates and gives high credits to 

those who match the relation with the target 

phrase. Another type of patterns deals with the 

situation when target terms are unrecognizable. 

MURAX then tries to identify the question 

term, as demonstrated by the underlined part 



in question “Who killed Abraham Lincoln?”. 

In this case, the answer should be related to 

the question term by the verb. So MURAX 

simply matches the verb in answer candidates 

with various patterns corresponding to active 

and passive forms. Actually, this idea has been 

extended by following researches, which no 

longer require the occurrence of the same verb 

to capture the relation between question term 

and answer term. 

 

Given the effectiveness of answer patterns, the 

remaining question is how to obtain them. All 

the above systems use handcrafted methods, 

while an alternative is to automatically learn 

the patterns. In the IE area, people have been 

studying a similar problem, i.e., how to induce 

information extraction rules automatically. A 

popular approach is to apply machine learning 

techniques to obtain the rules from annotated 

training data. For example, CRYSTAL [17] is 

a system that builds a dictionary of concept 

node definitions and applies them to unseen 

texts to extract new information. The concept 

nodes represent the information that users are 

interested in, and the definitions describe their 

context restrictions such as sentence structures 

and occurrences of certain words. It requires a 

set of parsed, annotated sentences to generate 

such rules. 

 

RAPIER [18] makes use of a simpler pattern 

representation that does not include syntactic 

information. So there is no need to parse the 

texts. They use some more robust techniques 

such as POS tagging and WordNet to construct 

the rules. The learning algorithm is inspired by 

inductive logic programming and it generates 

patterns by gradually dropping constraints to 

cluster the more specific patterns into more 

general ones. 

 

Craven et al. [19] present a machine learning 

approach to construct a knowledge base from 

the Web documents, which includes relations 

as well as entities. One assumption of this task 

is that relations among different entities are 

usually reflected by the link structure of the 

Web pages, which then becomes an important 

component of the resulting rules. To achieve 

this, the training data is composed of not only 

individual labeled pages but also the relations 

among them. The learning algorithm employs 

a first-order representation for the rules and 

searches them in a general-to-specific way. 

 

As we can see, all of the above methods need 

a large manually tagged training set in order to 

obtain reliable patterns. And the rules learned 

from one dataset are usually not transferable 

to other datasets. So for different applications, 

we need different training data. To avoid the 

large amount of manual labor involved in the 

training procedure, people try to reduce the 

required label information. An example would 

be AutoSlog-TS, as introduced by Riloff [20]. 

The basic idea is to exhaustively generate an 

extraction pattern for each noun phrase in the 

training set and then evaluate all of them. The 

evaluation method assumes that the training 

corpus can be divided into two sets: relevant 

and non-relevant, with regard to a particular 

domain. Then the relevance rate for a pattern 

could be calculated as the number of times it 

being activated in a relevant document divided 

by the total number of times activated by any 

document in the corpus. This is a major factor 

in the evaluation criterion. As we can see, the 

manual effort has been reduced from tagging 

the training set to differentiating relevant and 

non-relevant documents. However, this still 

requires going through every document in the 

training corpus to decide its relevancy.  

 

The difficulty to obtain labeled data is not 

unique to our problem. In many applications, 

it is easy to get a large number of unlabeled 

examples, but expensive to get labeled ones. 



So the machine learning community has been 

studying semi-supervised learning techniques, 

which take advantages of abundant unlabeled 

data to reduce the need for labeled data. One 

approach is to apply EM to generative models, 

treating the labels of unlabeled data as missing 

values. Nigam et al. [21] propose a combined 

model of EM and a naïve Bayes classifier for 

text classification. The basic algorithm trains a 

classifier using the initial labeled documents. 

Then it probabilistically labels the unlabeled 

documents and trains a new classifier based on 

all documents and their labels. This process is 

repeated until convergence. The assumption 

behind this algorithm is that the documents are 

generated by a mixture model and each class 

corresponds to a mixture component. To deal 

with the cases that the assumption is violated, 

they further propose two extensions: assigning 

different weights to the labeled and unlabeled 

data, and modeling each class with multiple 

mixture components. 

 

A widely used technique for semi-supervised 

learning is bootstrapping. The basic idea is to 

start with a very small set of labeled instances 

and iteratively enlarges it by predicting labels 

for unlabeled examples. There are many ways 

to decide which unlabeled instances should be 

added. A typical example of bootstrapping is 

Co-Training. It applies to the datasets whose 

features could be naturally divided into two 

sets and each of them is sufficient to learn the 

classifier given enough labeled examples. As 

there is only a small amount of labeled data, 

two classifiers are learned independently using 

the two feature sets. Then they incrementally 

label unlabeled examples, and at each round, 

the newly labeled instances will be added to 

the other classifier’s training set. Co-Training 

was first proposed by Blum and Mitchell [22] 

for web page classification. Then it has been 

applied to various text processing tasks, such 

as statistical parsing [23], statistical machine 

translation [24] and reference resolution [25]. 

 

Bootstrapping has also shown successes in IE 

area. For example, Riloff et al. [26] present a 

multilevel mutual bootstrapping technique that 

builds a semantic lexicon and a dictionary of 

extraction patterns at the same time. Starting 

with a handful of seed semantic entities, they 

alternatively select the best pattern and use it 

to extract new entities, which will be used to 

generate the next pattern. The criterion used to 

evaluate patterns is composed of two factors. 

One of them is the ratio for a pattern to hit a 

lexicon entry and the other is the number of 

such hits. 

 

Another application of bootstrapping methods 

is to extract relation pairs from text documents, 

such as DIPRE [27] and Snowball – the one 

we are using for answer pattern collection. As 

we will see later, the basic ideas of these two 

systems are very similar to Riloff’s approach. 

However, as dealing with different tasks, they 

differ in many implementation aspects such as 

pattern representation and pattern generation. 

Bootstrapping has also been applied to answer 

extraction for the QA task. An example is the 

system proposed by Ravichandran and Hovy 

[28]. A comprehensive comparison between 

this approach and our model will be presented 

in the discussion section. 

 

3. System Description 

 

3.1. Language Models 

A language model is a probability distribution 

over a vocabulary of words. Given a language 

model, we can calculate its probability to 

generate a piece of text as follows: 

),...,|()...|()(),...,( 111211 −
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The simplest model is the unigram model, 

which assumes independence between words. 

So the above formula becomes: 
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To make use of a language model, we usually 

need to first estimate it from some sample data. 

The most common method for estimation is 

the Maximum-Likelihood-Estimation, which 

is actually counting the frequencies. To avoid 

overfitting, we need to use some smoothing 

techniques to make it more general. 

 

As for our answer extraction task, we build 

one unigram language model for each answer 

candidate and then calculate its probability to 

generate the question. Since we are estimating 

the language model from just two sentences, 

we have a severe problem of sparse data. So 

adequate smoothing becomes critical in this 

case. We have used the whole set of retrieved 

documents as a background model to smooth 

the probabilities estimated from the answer 

candidates:  

)()1()()( 21 wPwPwP λλ −+=  

Here P1(w) is the probability estimated from 

the answer candidate, P2(w) is the probability 

from the background model and 
�
 = d / (d + constant), 

where d is the length of the answer candidate 

and the constant is determined empirically. 

 

3. 2. Answer Models 

An answer model is a collection of patterns to 

express several binary relations pertaining to a 

class of questions. In order to build this model, 

we actually build one sub-collection for each 

relation and then merge them together. The 

method we used is Snowball, a bootstrapping 

approach that simultaneously extracts relation 

pairs and patterns from text documents. The 

algorithm is sketched below. To better explain 

the procedure for pattern collection, I use the 

relation of <organization, headquarter> as an 

example. 

 

3.2.1 Seeds 

The first step is to find several samples. One 

advantage of Snowball is that we don’t need a 

large number of training data. Only five pairs 

are used as the initial seeds: 

• <Microsoft, Redmond> 

• <Boeing, Seattle> 

• <IBM, Armonk> 

• <Intel, Santa Clara> 

• <Exxon, Irving> 

 

3.2.2 Occurrences 

Then Snowball finds all occurrences of every 

seed. An occurrence of a relation tuple refers 

to a sentence that contains the two entities of 

the pair. Consider the following sentence: 

“Microsoft is based in Redmond.” 

It is an occurrence of <Microsoft, Redmond>. 

 

Each occurrence is divided into five parts:  

   left + entity-1 + middle + entity-2 + right 

Entity-1 and entity-2 are the two components 

of the tuple and the other three are the strings 

surrounding them. Note that we also consider 

punctuations as part of the strings since they 

were proven to be helpful in the evaluation of 

Snowball. There are restrictions on the lengths 

of strings. If the middle part is longer than a 

certain length, which is 10 tokens in practice, 

the occurrence is ignored. This is because we 

don’t want to extract too complicated patterns. 

Furthermore, we limit the left and right parts 

to a 5-token window surrounding the entity 

pair. The next step is to convert the context 

strings into weighted vectors. It will be later 

discussed that our patterns are represented in 

the same way. This representation is more 

flexible to decide if patterns or occurrences 

match each other. We could define the degree 

of match between patterns and set a threshold 

to show how close we require two matching 

patterns to be. In this way, we won’t miss a 

new tuple even if its context is slight different 

from our patterns. This flexibility cannot be 



achieved by using text strings since it requires 

exact string match for two patterns to match 

each other. The weight of a token t in a vector 

is defined in terms of the number of times it 

occurs in the corresponding string s (denoted 

by C(t)): 

∈
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This roughly shows how important this token 

is in this context. As well as tokens, the three 

vectors also have weights associated with 

them to show their individual importance. In 

practice, we set WL = WR = 0.2 and WM = 0.6. 

This is because the middle part is generally 

more useful than the other two to decide the 

relationship. To distinguish between the two 

possible orders for the two entities, we use 

another indicator that is set to be true if the 

first entity occurs before the second. So the 

above example occurrence is represented as 

follows: 

 

 order = “true” 

 left = “” 

 middle = “<is:0.58>, <based:0.58>, <in:0.58>” 

 right = “<.:1.0>” 

 

3.2.3 Pattern Generation 

This step is to cluster similar occurrences and 

then calculate their centroids to form patterns. 

We define the similarity between occurrences 

or patterns in terms of the inner products of 

their weighed vectors. The score is calculated 

as follows: 

 

If p1.order != p2.order, then Sim(p1, p2) = 0; 

    Else Sim(p1, p2) = 

WL * InnerProduct(p1.left, p2.left) 

   + WM * InnerProduct(p1.middle, p2.middle) 

   + WR * InnerProduct(p1.right, p2.right) 

 

We also define the similarity between two 

clusters as the similarity between the centroids. 

At the beginning of the clustering algorithm, 

every occurrence is in one individual cluster. 

We then repeatedly merge similar ones. Let 

C(k) denote the set of clusters at iteration k, 

the following rules are used to get C(k+1): 

 

C(k+1) ← empty set; 

For each cluster C in C(k): 

    Let C’ be its most similar cluster in C(k+1); 

    If Sim(C, C’) >= threshold, merge C into C’; 

    Else add C to C(k+1); 

 

The similarity threshold is set to be 0.6, and 

the algorithm repeats until no merge is done. 

Then we extract all the centroids as patterns. 

 

3.2.4 Exploring New Tuples 

To find new tuples using the patterns, the first 

problem we need to address is to identify the 

potential tuples, i.e., entities of the particular 

types. So we apply a named entity tagger on 

the documents to recognize entities of interest. 

As for <organization, headquarter> relation, 

we construct three weighted vectors for every 

pair of “organization” and “location” entities 

that occur in one sentence, the same way as 

we deal with occurrences in 3.2.2. Then the 

candidate occurrence is compared to extracted 

patterns. If it is similar enough to one of them 

as the threshold equals 0.6, we will extract the 

<organization, location> pair as a new tuple. 

Note that we might get one pair using various 

patterns, possibly with different match scores. 

We keep all those information because they 

will help us decide which tuples should be 

saved and which should be removed. 

 

One important feature of Snowball is that the 

patterns and new tuples can be automatically 

evaluated. Along with the flexibility of our 

pattern matching scheme comes the risk of 

getting unreliable patterns and tuples. And the 

erroneous patterns or tuples in early iterations 

will accumulate and lead the future collection 



to a wrong direction. So we need a method to 

evaluate patterns and tuples, and only keep the 

high-quality ones. The basic idea is that if a 

tuple is in the seed set of current iteration, we 

then believe it is valid and can be used to 

judge the newly discovered tuples. Here we 

assume that the first entity is the key for the 

relation, i.e., no two tuples share the same first 

entity. For example, <Microsoft, Redmond> is 

used for the first iteration of <organization, 

headquarter> collection as a seed, i.e., a valid 

tuple. Then any <Microsoft, other location> 

pair we find is considered invalid. This gives 

us a criterion to judge whether a tuple is valid 

or not, and furthermore, to score the patterns 

according to the qualities of the tuples they 

discover. For each pattern, we define its belief 

as: 

belief(p) = positive / (positive + negative) 

Here, positive is the number of valid tuples 

discovered by this pattern and negative is the 

number of invalid tuples. So at the same time 

that new tuples are extracted, the beliefs of our 

patterns are also updated. 

 

The above method can only tell which tuples 

are valid or invalid, but cannot evaluate other 

tuples that are not seeds and don’t share the 

same first entity with any seed. In this case, 

we define a tuple’s belief based on the patterns 

that discover it: 

belief(t) = 1 – Πp(1 – belief(p) * Sim(t, p)) 

A tuple will get a high score if it is supported 

by reliable patterns with high confidences. 

Naturally, we set the belief to be 1 for a valid 

tuple and 0 for an invalid tuple. 

 

After the new tuples are evaluated, we can 

select some good ones to merge to the seed set 

and start the next iteration. The threshold for 

the <organization, headquarter> relation is 0.8. 

It may vary among different relations. Usually 

we run 2 or 3 iterations to get enough patterns. 

 

3.2.4 Parameter Summarization 

As we can see, there are many parameters that 

need to be empirically set. And I summarize 

our choices in the following table: 

 

Max Length Weight Threshold 

LL 5 WL 0.2 T1 0.6 

LR 5 WR 0.2 T2 0.6 

LM 10 WM 0.6 T3 0.8 

 

There are three thresholds. T1 is for clustering 

similar occurrences, T2 is used to extract new 

tuples with collected patterns and T3 is the 

score threshold for selecting good tuples. Note 

that T3 is not constant and the number listed 

above is for the <organization, headquarter> 

relation. 

 

3.3. Combining Two Models 

For language modeling, we have a natural way 

to measure the probability for a candidate C to 

be the answer to question Q as: 

PL(C|Q) ∝ P(Q|C), 

where P(Q|C) is the probability that question 

Q is generated from the underlying language 

model of candidate C. 

 

As for the answer model, we should define the 

probability for a candidate to be the answer in 

terms of its similarity to the corresponding 

answer model. Let T(C) be the set of tuples 

discovered from candidate C using patterns in 

the question’s answer model. Then it is further 

restricted to the tuples whose first part appears 

in the question. Only the tuples satisfying this 

restriction could be the target of the question 

and thus affect our belief in the candidate. 

Then we can define 

PA(C|Q) ∝ t∈T(C) belief(t) 

To combine the two models together, we use 

linear combination, where 

P(C|Q) = �  * PL(C|Q) + (1–� ) * PA(C|Q) 

 

It is the final score used to rank the answer 



candidates. Before combination, we need to 

normalize the results from the two models to 

the same scale. The value of �  is determined 

empirically.  

 

4. Evaluation 

The evaluation has two purposes: the first one 

is to see if language modeling is adequate for 

answer extraction, and the other is to test the 

effectiveness of answer models. 

 

For the first part, we conduct an experiment 

on the TREC-10 dataset, which contains 687 

questions and 11 classes. The performance is 

measured by MRR, the mean-reciprocal-rank. 

The table below shows a comparison between 

QuASM’s heuristic approach and language 

modeling on individual classes and average 

performance: 

 

Class # of Q Heuristic LM 

A 53 0.283 0.232 

B 14 0.238 0.179 

D 9 0.111 0.204 

F 93 0.543 0.598 

L 109 0.553 0.446 

O 39 0.489 0.685 

P 113 0.593 0.582 

R 9 0.278 0.167 

T 73 0.305 0.288 

W 16 0.325 0.469 

X 168 0.278 0.407 

Avg. 696 0.421 0.448 

 

Although I have listed the experiment results 

of language modeling for different classes, we 

know that the class information is not included 

yet. But even with this restriction, the average 

performance of language modeling is as good 

as the heuristic model. So it is reasonable to 

believe that language modeling is an adequate 

framework for answer extraction and we can 

further improve its performance by using the 

class information.  

To test the effectiveness of the answer models, 

we choose the “location” (L) questions to do 

the experiments. Based on our previous results, 

the heuristic model performs much better than 

the language models for this class. So we are 

interested to see if adding the answer models 

helps. 

 

The database used for building the answer 

models is made up of 16 TREC corpora. For 

each document, we extract the TEXT part, 

segment it into sentences and mark out the 

entities with IdentiFinder [29]. 

 

The answer model for the “location” questions 

is composed of patterns for the following three 

relations:  

• <organization, headquarter> 

• <person, hometown> 

• <country, capital> 

 

Some of the patterns collected along with their 

beliefs are listed below: 

 

<organization, headquarter> 

 order = “false” 

 left = “<In:1.0>”  

 middle = “<a:0.58> <for:0.55> <spokesman:0.51>  

         <spokeswoman:0.05>” 

 right = “<the: 0.26> <said:0.26> <company:0.13>” 

 belief = 0.9 

 

 order = “true” 

 left = “”  

 middle = “<is:0.58> <in:0.58> <based:0.58>” 

 right = “<.:0.86>” 

 belief = 0.85 

 

 order = “true” 

 left = “”  

 middle = “<is:0.51><headquartered:0.51><in:0.51>” 

 right = “<.:1.0>” 

 belief = 0.8 

 



<person, hometown> 

 order = “false” 

 left = “<the:0.49> <in:0.33>”  

 middle = “<town:0.69> <of:0.71>” 

 right = “<.:0.47>” 

 belief = 0.9 

 

 order = “true” 

 left = “”  

 middle = “<born:0.60> <in:0.60> <was:0.46>” 

 right = “” 

 belief = 0.86 

 

<country, capital> 

 order = “false” 

 left = “<In:1.0>”  

 middle = “<a:0.46> <said:0.46> <official:0.46>” 

 right = “<to:0.36> <was:0.27>” 

 belief = 1.0 

 

 order = “false” 

 left = “<in:0.40>”  

 middle = “<capital:0.71> <of:0.71>” 

 right = “<the:0.14>” 

 belief = 0.9 

 

 order = “true” 

 left = “<in:0.20>”  

 middle = “<capital:0.5> <’:0.5> <s:0.5> <of:0.5>” 

 right = “” 

 belief = 0.76 

 

The individual performances of these relations 

are as follows: 

 

Relation # of Q LM Combined 

<O, H> 21 0.325 0.787 

<P, H> 12 0.396 0.667 

<C, C> 50 0.545 0.663 

 

The performance of the combined model on 

the whole “location” set is presented below. 

Note that there are 26 questions that do not 

belong to any of the three relations and will 

not benefit from the answer models. 
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As we can see, the best result is achieved 

when �  = 0.5 and MRR = 0.603 for this value. 

It is a significant improvement over language 

modeling only (0.446), and it is also better 

than the heuristic model (0.553). 

 

5. Discussion 

The basic idea of Snowball was inherited from 

an existing technique called DIPRE [22]: Dual 

Iterative Pattern Relation Expansion. These 

two approaches share the same bootstrapping 

procedure to extract structured relations. They 

both need very minimal samples to start with 

and then iteratively discover relation patterns 

and tuples. As DIPRE searches the World 

Wide Web, Snowball restricts itself to fixed 

collections of text documents and makes two 

major modifications. 

 

The first difference is pattern representation. 

In DIPRE, a pattern is defined as a five-tuple 

<order, urlprefix, prefix, middle, suffix>. All 

of them are kept in Snowball except urlprefix 

because it is no longer available when we are 

not searching the World Wide Web. And the 

three context items prefix, middle and suffix, 

which are strings in DIPRE, are replaced with 

weighted vectors in Snowball. 

 

As patterns are represented in different ways, 



the operations upon them, such as how to 

generate patterns from occurrences and how to 

decide if a pair matches a pattern, are also 

different. Since DIPRE uses strings for the 

contextual information, it is simpler to define 

those operations. To generate patterns, DIPRE 

divides occurrences into groups based on their 

orders and middles. Then for each group, one 

pattern is defined as follows: order and middle 

are the same as the occurrences in the group, 

urlprefix is the longest matching prefix of all 

urls, prefix is the longest matching suffix of 

all prefixes and suffix is the longest matching 

prefix of all suffixes. Given the patterns, the 

problem of matching relation pairs against 

them is a binary decision of string matching. 

More specifically, it requires the pair to occur 

in a document whose URL has the same prefix 

as the pattern’s urlprefix and the context 

matches its prefix, middle and suffix. This has 

been implemented using regular expressions. 

So in DIPRE, a pair either matches a pattern 

or does not match. There is no state in the 

middle. But Snowball has introduced the idea 

of matching degree, which allows us to adjust 

the patterns’ generality. As we can see, DIPRE 

is very similar to a special case of Snowball, 

where its matching threshold is set to be 1. 

 

Another modification made by Snowball is to 

incorporate a method that could automatically 

evaluate the patterns based on their precisions 

in finding valid tuples. Furthermore, the newly 

discovered tuples can also be evaluated and 

only the good ones are kept as seeds for the 

next iteration. In DIPRE, there is no such 

evaluation. All tuples are considered valid. 

However, it does have some restrictions on the 

patterns to prevent them from being overly 

general. For each pattern, there are two factors 

that affect whether it will be kept. The first 

one is the specificity (denoted by s), which is 

calculated as the product of the lengths of the 

pattern’s four strings. The other is the number 

of seeds with occurrences supporting the 

pattern (denoted by n). DIPRE gives higher 

credits to patterns that are more specific and 

have more supporting seeds. So it requires that 

s×n > threshold and n > 1. As the threshold is 

greater than zero, the first requirement implies 

s > 0, i.e., no pattern with empty strings will 

be accepted. The second requirement excludes 

those one-seed-based patterns because they 

are not very reliable. Actually, this idea of 

considering the number of supporting seeds 

when evaluating patterns has been explored in 

our own experiment and I will discuss it in 

details in the following section. 

 

Besides the two major modifications discussed 

above, Snowball has also made use of some IE 

techniques to improve the performance. For 

example, DIPRE requires users to provide a 

set of regular expressions to find new tuple 

candidates. This is not very accurate and will 

add more noises into the system. So Snowball 

chooses to apply a named entity tagger and 

only considers the two types of entities that 

constitute the relation. Another usage of the 

named entity tagger in our own experiment is 

at the finding-patterns stage, though Snowball 

doesn’t use it this way. Consider the following 

example: 

1. … spokesman Jim Desler said in …  

2. … spokesman Tom Ryan said in … 

 

The only difference between the above two 

occurrences is the name of the spokesman. 

More generally, we do not expect to see the 

same person name in this context for different 

tuples. However, they should be viewed as the 

same pattern. So we replace those specific 

names with their entity type PERSON and 

thus collapse them together. 

As we can see from the discussion so far, one 

important feature of DIPRE is that it only 

generates very specific patterns in order to 

improve the precision of the collected relation 



pairs. So the contexts are represented with 

non-empty strings and patterns extracted from 

different websites are generally not merged. 

However, the large amount of data on the Web 

allows DIPRE to retrieve a large set of tuples 

even with those specific patterns. In one of the 

experiments, it starts with five samples of the 

<book, author> relation and finally obtains 

over 15,000 pairs. According to the evaluation, 

19 of 20 randomly picked pairs are valid. This 

is quite impressive, but it doesn’t work so well 

when we explore a similar approach for the 

<organization, headquarter> relation on the 16 

TREC collections. In our own experiments of 

DIPRE, we exclude urlprefix from patterns 

and keep the other four items. At first, we 

could barely find any pattern that satisfies the 

specificity requirements. The patterns with at 

least two supporting seeds usually have empty 

strings. Then we try to accept patterns that 

break at most one restriction, but result in 

many invalid tuples even in early iterations. 

Our experience shows that the success of 

DIPRE relies much on a huge amount of data 

and it works best in an environment like the 

Web.  

 

On the other hand, Snowball works much 

better than DIPRE on a fixed data source. It 

utilizes more general patterns that allow us to 

get satisfying results in spite of data shortage. 

However, there are still some difficulties when 

we apply Snowball to construct our answer 

models. The first problem is how to define the 

weighted vectors. Our initial attempt is to use 

the token frequency as its weight, but then we 

realize that this definition has a bias toward 

shorter patterns in terms of similarity. Take the 

following two cases as an example: 

 

Case 1: 

P1 = “<x, 0.5>, <y, 0.5>” 

P2 = “<x, 0.5>, <z, 0.5>”  

Sim(P1, P2) = 0.25 

Case 2: 

P1 = “<a, 0.2>, <b, 0.2>, <c, 0.2>, <d, 0.2>, <e, 0.2>” 

P2 = “<a, 0.2>, <b, 0.2>, <c, 0.2>, <d, 0.2>, <e, 0.2>” 

Sim(P1, P2) = 0.2 

 

Intuitively, the two patterns in Case 2 should 

have higher similarity score because they are 

identical and the ones in Case 1 are not. But 

here we get the opposite result. So we turn to 

another definition for the weighted vectors in 

order to solve this problem. Currently, we use 

the following formula to calculate a token’s 

weight: 

∈
=
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where C(t) is the number of occurrences of 

token t in string s. Given this definition, the 

above example becomes: 

 

Case 1: 

P1 = “<x, 0.707>, <y, 0.707>” 

P2 = “<x, 0.707>, <z, 0.707>”  

Sim(P1, P2) = 0.5 

Case 2: 

P1 = “<a, 0.447>, <b, 0.447>, <c, 0.447>, <d, 0.447>,  

<e, 0.447>” 

P2 = “<a, 0.447>, <b, 0.447>, <c, 0.447>, <d, 0.447>,  

<e, 0.447>” 

Sim(P1, P2) = 1 

 

Now we get the desirable result. Actually, this 

definition guarantees that if two patterns are 

identical, their similarity will always be 1 no 

matter what their lengths are.  

 

Another difficulty with Snowball involves the 

pattern evaluation method. As we know, the 

success of our approach relies on effectively 

recognizing valid and invalid tuples. But the 

literal comparison might cause trouble. For 

example, as <Intel, Santa Clara> is a seed, we 

treat <Intel, other location> as invalid tuples. 

However, among those other locations, some 

of them might be the variants of “Santa Clara”, 



such as “Santa Clara, CA”. The performance 

will be significantly affected if we are unable 

to tell that this is also a valid tuple. Currently 

we are using some simple heuristics to achieve 

this. For instance, we consider two locations 

the same if one of them is the prefix of the 

other. But they cannot deal with all situations. 

In the future, we will need more sophisticated 

methods to solve this problem. 

 

As I mentioned before, we have considered 

various options for scoring patterns, some of 

which involve the number of supporting seeds 

for the pattern. We define three belief metrics 

as follows: 

belief(p) = positive / (positive + negative) 

belief_1(p) = belief(p) × log2(positive) 

belief_2(p) = belief_1(p) × log2(# of supporters) 

 

As the first one focuses on the precision of the 

pattern, the other two also account for its 

coverage. However, introducing the number of 

positive matches increases the belief of many 

overly general patterns and thus depreciates 

the precision. So we choose the first metric to 

construct our answer models. 

 

Another factor that can affect the quality of 

the patterns is how to generate them from 

occurrences. Currently, we are using a greedy 

clustering algorithm, in which the merge of 

two similar clusters is permanent. As most 

greedy algorithms, the order of merges has a 

great impact on the final clustering result. 

However, we have not paid special attention to 

this issue and set it completely based on the 

order in which the occurrences are identified 

in the documents. So improvement might be 

achieved if we change the ordering to reflect 

our confidences of merges. For example, we 

could merge the two clusters that are most 

similar and repeat until the similarity is below 

a threshold.  

 

Finally, I want to discuss a little bit about how 

we combine the answer models with language 

models. Besides the linear combination, as 

described in Section 3, we have tried another 

approach, which is an integrated probabilistic 

model. The basic idea is as follows. For any 

given question Q with class C, we want to 

rank answer candidate A based on P(A|Q,C), 

which is proportional to 

)|(),|()|,( CAPCAQPCQAP =  

Assuming P(Q|A,C) = P(Q|A), the first factor 

is naturally captured in language models as the 

probability of generating the question by the 

answer candidate. So the remaining task is to 

use the answer models to calculate the prior 

P(A|C). This probability is independent from 

the particular question Q and only shows our 

belief for the candidate to be an answer to a 

class of questions. 

 

As we can see, the answer models are used in 

different ways in the two approaches we have 

explored. However, they both need to deal 

with the same problem, i.e., we cannot classify 

questions as specific as relations using our 

currently question classifier. For example, the 

“location” category involves three relations. 

While the two questions “Where was George 

Bush born?” and “Where is Microsoft?” are 

both “location” questions, they are interested 

in different relations and thus expect totally 

different answers. So we need to figure out 

which pattern set should be used. As for the 

linear combination method, we do not answer 

this question directly, but put together all 

relations pertaining to one class and treat them 

as one answer model. Obviously, this is very 

inaccurate. For instance, since the candidate 

“Microsoft is based on Redmond.” matches 

one pattern of the <organization, headquarter> 

relation very well, which is in the “location” 

answer model, it will get a high score for all 

“location” questions, including “Where was 



George Bush born?”. To address this problem, 

we furthermore require a pattern to affect our 

belief in a candidate only if it discovers a tuple 

whose first entity appears in the question. As 

for the above example, the tuple extracted by 

the pattern is <Microsoft, Redmond>, whose 

first entity “Microsoft” is not in the question. 

So this pattern will just be ignored. However, 

it will contribute to the question “Where is 

Microsoft?”. Actually, this method does not 

only reduce errors caused by selecting the 

wrong relation patterns, but also works well in 

the situation where the candidate matches the 

target relation but is not a valid answer. An 

example would be “Bill Clinton was born in 

Hope, Arkansas.” to the George Bush question. 

On the other hand, we are not supposed to 

touch the content of questions in order to 

calculate the prior P(A|C) in the integrated 

probabilistic model. Therefore we take another 

approach to select the pattern set based on the 

observation that different relations in one class 

usually have different types for their first 

entities. This is true for the “location” question, 

in which the three relations are asking about 

<organization, location>, <person, location> 

and <location, location> respectively. So we 

could guess the target relation of a question by 

recognizing the type of entities in the question. 

Apparently, this method works for the two 

example questions I mentioned before. In the 

case that there are multiple types of entities in 

the question, we calculate the expected prior 

as 

    =
iR ii RAPCRPCAP )|()|()|( ,  

where Ri enumerates all relations in class C 

and  
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T(Ri) refers to the type of the first entity in Ri. 

As we can see, the performance of this method 

depends much on the accuracy of the entity 

recognizer. Unfortunately, IdentiFinder does 

not work very well on our test data and thus 

depreciates the overall performance. Besides, 

this model could hardly be extended to classes 

that have relations sharing the same types of 

first entities. So we finally choose the linear 

combination method instead. But we are still 

interested to see how the probabilistic model 

works when we have a more specific question 

classifier that could classify questions into 

relations. 

 

So far, I have discussed several difficulties 

using relation patterns for answer extraction 

and possible solutions to them. Some of them 

are addressed in another approach proposed 

by Ravichandran and Hovy [23], which is 

very similar to our method and also shares 

some features with DIPRE. For each class of 

questions, this model searches the World Wide 

Web for occurrences of sample <question term, 

answer term> pairs and records all substrings 

containing both terms as patterns. Note that 

these seeds do not necessarily belong to the 

same relation set, which means we could use 

both <Microsoft, Redmond> and <George 

Bush, New Haven Connecticut> as seeds for 

the “location” patterns. So the pattern set that 

is collected for one class of questions might 

involve multiple relations. After patterns are 

generated, their precisions are calculated in a 

similar way as we evaluate our patterns. So 

they also have the canonicalization problem, 

i.e., the answer term might have variants and 

they need to be treated as the same term. 

While we try to match variants to the original 

term based on some simple rules at evaluation 

phase, their solution is to list all possibilities 

of writing an answer term in advance. Another 

difference is that when evaluating a pattern 

based on its precision in finding seed pairs, the 

one seed that actually obtains the pattern is 

excluded. This cross-checking method makes 

the evaluation more reliable. 

 



After patterns are evaluated, they are then 

used to extract answers, requiring that the first 

term in the resulting pair match the question 

term. This is quite similar to the way that our 

answer models are used in linear combination, 

but even more accurate if question terms can 

be well identified. However, its performance 

is decreased, as there is no restriction on the 

answer term. For example, while the question 

is asking for a “location” entity, the model 

might recommend a non-location phrase as the 

answer if it matches one of the good patterns. 

As in our system, we apply an entity tagger to 

all answer candidates in order to reduce this 

type of errors.  

 

From the above comparison and the earlier 

one with DIPRE, we could draw the following 

conclusions: 

 

1. The tremendous data available on the Web 

and its great variety makes it easier to collect a 

large set of specific answer patterns. So it is 

our future direction to explore the Web for 

pattern collection. However, as long as we 

need to find answers in a particular dataset, 

such as in the TREC evaluation case, we still 

believe weighted vectors are more appropriate 

representation than strings. This is because 

even when collecting patterns from the Web, it 

is not guaranteed that one of them exactly 

matches the way that the answer is expressed. 

So weighted vectors will offer extra flexibility 

to recognize the answer when it is similar to 

but not completely the same as the patterns. 

 

2. Pattern evaluation has played an important 

role to improve performance. To make it even 

more effective, we need a more sophisticated 

way to solve the canonicalization problem. 

Actually, it may not only be applied to the 

answer terms, but question terms as well. Our 

current evaluation metric of precision is just 

one of the various options, and we are going 

to work on some alternative methods too. For 

example, once we are able to obtain specific 

patterns from the Web, we might try again the 

two metrics I mentioned before, which take 

into account the coverage of patterns and the 

number of supporting seeds. Another issue 

associated with pattern evaluation is how to 

extend this approach to relations whose first 

entity does not serve as the key, i.e., different 

pairs could share the same first entity and they 

are all valid. 

 

3. When using the collected patterns to extract 

answers, a good restriction on the resulting 

pair should be that the first term matches the 

question term and the second term matches the 

target entity type. To achieve this, we need a 

better named entity tagger and a very accurate 

technique to identify question terms. 

 

6. Conclusion 

Question answering differs from information 

retrieval in that it needs to retrieve specific 

fact information rather than whole documents. 

So answer extraction, the process of scanning 

the relevant documents to find the accurate 

answer, is an important component of a QA 

system. In our previous researches, we have 

found that the class of question is helpful for 

judging answer candidates, and already made 

use of it in a heuristic way.  

 

This report has investigated a more principled 

framework that combines language modeling 

and answer models. Language modeling is a 

probabilistic approach that has been widely 

used for various IR tasks. As for the answer 

extraction problem, its role is to judge the 

relevance between answer candidates and the 

question by their contents. Without using the 

question class information, language modeling 

performs as well as the heuristic model. And 

we expect further improvement by combining 

the answer models. 



An answer model is a collection of patterns to 

express answers to one class of questions. By 

introducing such models, we want to capture 

the difference between answers to different 

classes of questions. In this report, we have 

examined a data-mining technique, Snowball, 

to build answer models. As the experiment for 

the “location” questions shows, the combined 

approach of language modeling and answer 

model significantly improves the performance 

over language modeling only.  

 

For the future researches, we will try to obtain 

patterns from the Web. Taking advantage of 

this tremendous data resource, we believe that 

our pattern collection process will be more 

efficient and effective. We are also interested 

in designing a solution to the canonicalization 

problem in order to improve pattern qualities. 

Another direction is to develop a technique for 

precise recognition of question terms, which 

could be used along with collected patterns for 

more accurate answer extraction. 
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