
COMBINATORIAL MARKOV RANDOM FIELDS
AND THEIR APPLICATIONS TO
INFORMATION ORGANIZATION

A Dissertation Presented

by

RON BEKKERMAN

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2008

Computer Science



c© Copyright by Ron Bekkerman 2008

All Rights Reserved



COMBINATORIAL MARKOV RANDOM FIELDS
AND THEIR APPLICATIONS TO
INFORMATION ORGANIZATION

A Dissertation Presented

by

RON BEKKERMAN

Approved as to style and content by:

James Allan, Chair

W. Bruce Croft, Member

Erik Learned-Miller, Member

Andrew Cohen, Member

Andrew Barto, Department Chair
Computer Science



To my grandmother, who is my soul,
to my mother, who is my mind,
to my wife, who is my heart,
and to my daughter, who is my life.



ACKNOWLEDGMENTS

This work was supported in part by the Center for Intelligent Information Re-

trieval, in part by SPAWARSYSCEN-SD grant number N66001-02-1-8903, in part by

the Defense Advanced Research Projects Agency (DARPA) under contract number

HR0011-06-C-0023, and in part by Google Inc. Any opinions, findings and conclu-

sions or recommendations expressed in this material are the author’s and do not

necessarily reflect those of the sponsor.

I would like to thank my advisor, Prof. James Allan, for his positive attitude

toward my work, for his patience and unfailing optimism in difficult situations, for his

brilliant ideas and inspiring vision of the research field. I am grateful to Prof. W. Bruce

Croft for being an honest, fair opponent in research topics and a valuable aid in

non-research issues. I thank Prof. Erik Learned-Miller for many hours of fruitful

discussions and collaborative work. I thank Prof. Andrew Cohen for useful feedback

and viewing my work from a different angle. I thank Prof. Andrew McCallum for

introducing me to the area of graphical models. I thank Prof. Mehran Sahami for

providing intellectual and financial support to my research. I am deeply thankful

to Prof. Shlomo Zilberstein for his generous help prior to and throughout my PhD

studies. I thank Prof. Sridhar Mahadevan and Prof. Micah Adler for being great

teachers. I am especially grateful to Prof. Ran El-Yaniv for introducing me to science,

teaching me research principles, guiding me throughout my academic career, being a

mentor and a friend.

I would like to thank people who helped me in my thesis work. First, I am thank-

ful to Dr. Victor Lavrenko, who put my preliminary ideas into perspective and made

v



an important contribution to my work in its initial stages. I thank Prof. Leslie Pack-

Kaelbling, Prof. Polina Golland, Prof. Chris Pal, Prof. Rina Dechter, and Dr. Uri

Lerner for interesting discussions and notational clarifications. I thank Prof. Yoram

Singer, Prof. Nir Friedman, and Dr. Noam Slonim for valuable suggestions for im-

proving my methods. I thank Dr. Melinda Gervasio for providing priceless data. I am

very grateful to my co-authors Dr. Koby Crammer, Dr. Hema Raghavan, Dr. Jeon

Jiwoon, Prof. Koji Eguchi, Aron Culotta, and Gary Huang for investing their time

and effort in our mutual projects. I thank fellow lab members Dr. Fernando Diaz, Ao

Feng, David Mimno, Dr. Vanessa Murdock, Mark Smucker, Dr. Trevor Strohman, and

Dr. Charles Sutton for their generous technical assistance. Finally, I thank the (cur-

rent and former) departmental staff Kate Moruzzi, Sharon Mallory, Leeanne Leclerc,

Pauline Hollister, and Andre Gauthier for their prompt responses to numerous in-

quiries from my side.

I would like to thank people who made my family’s and my stay in the Pioneer

Valley enjoyable and comfortable. First, I thank Dr. Vanessa Murdock and her family

for being our guides to the Valley, for making us feel at home far from our home. I

thank my colleagues Dr. Hema Raghavan, Dr. Jeon Jiwoon, Dr. Ramesh Nallapati,

Mark Smucker, and Ben Wellner for their precious friendship. I thank Lena Bloch

for bringing music to our life. I am sincerely grateful to our Israeli friends in the

Valley: Prof. Hava Siegelmann, the Katz family, the Shenhar family, the Ofir family,

the Avishay family, Susan Moser, Yariv Levy, Nati Lenchner, Yariv Hofstein, Dan

Mason, and especially Inbar Bluzer for their moral support and warmth.

I would like to thank our personal friends for always being around, even if they live

thousands of miles away from us. Their incomplete list includes: the Spirt family, the

Averbouch family, the Akselrod family, the Lederberg family, the Zarzhevsky family,

the Zacharias famaly, the Lezhak family, the Etinberg family, the Tsitrin family, the

Rubinov family, the Gabrilovich family, the Malik family, Yael Weisberger, Tali Stern,

vi



Yuval Scharf, Eyal Gordon, Evgeny Panman, Prof. Wendy Wang, Dmitri Shtilman,

and, of course, Dasha Olshanetskaya.

Finally, I would like to thank my family for their unconditional love and tremen-

dous support. I thank all the Bekkermans in Israel, Russia, and Canada for being my

real family. I thank my parents-in-law, Tatyana and Alexander Nikitin, for accepting

me as their own son. I thank my father, Vladimir, for always thinking about me. I

am deeply grateful to my daughter, Naomi, for bringing light to my life. I do not

find appropriate words to express my gratitude to my mother, Faina, who devoted

her entire life to me. Every word in the rest of this thesis is a word of appreciation

to my wife, Anna, my other self.

vii



ABSTRACT

COMBINATORIAL MARKOV RANDOM FIELDS
AND THEIR APPLICATIONS TO
INFORMATION ORGANIZATION

FEBRUARY 2008

RON BEKKERMAN

B.Sc., TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY

M.Sc., TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

We propose a new type of undirected graphical models called a Combinatorial

Markov Random Field (Comraf) and discuss its advantages over existing graphical

models. We develop an efficient inference methodology for Comrafs based on com-

binatorial optimization of information-theoretic objective functions; both global and

local optimization schema are discussed. We apply Comrafs to multi-modal cluster-

ing tasks: standard (unsupervised) clustering, semi-supervised clustering, interactive

clustering, and one-class clustering. For the one-class clustering task, we analytically

show that the proposed optimization method is optimal under certain simplifying

assumptions. We empirically demonstrate the power of Comraf models by comparing

them to other state-of-the-art machine learning techniques, both in text clustering

and image clustering domains. For unsupervised clustering, we show that Comrafs

consistently and significantly outperform three previous state-of-the-art clustering

viii



techniques on six real-world textual datasets. For semi-supervised clustering, we

show that the Comraf model is superior to a well-known constrained optimization

method. For interactive clustering, Comraf obtains higher accuracy than a Support

Vector Machine, trained on a large amount of labeled data. For one-class clustering,

Comrafs demonstrate superior performance over two previously proposed methods.

We summarize our thesis by giving a comprehensive recipe for machine learning mod-

eling with Comrafs.
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CHAPTER 1

INTRODUCTION

Graphical models have proven themselves to be a useful tool in machine learning,

showing excellent results in information retrieval [81], natural language processing

[93], computer vision [45], and a variety of other fields [57]. A striking benefit of

using graphical models is the availability of black-box inference algorithms; once a

model is designed, it is usually straightforward to apply an existing optimization

procedure to make inferences in the model. Nonetheless, existing graphical models

have certain limitations, both within supervised and unsupervised frameworks (that

is, when training data is available or unavailable, respectively).

Supervised learning problems are usually solved using either generative graphical

models (i.e. Bayesian networks [87]) or discriminative graphical models (such as con-

ditional random fields [66]). While the goal of inference in generative models is to

estimate model parameters represented jointly with the data, the goal of inference in

discriminative graphical models is to estimate model parameters given the data, in

a conditional manner. The major problem of the discriminative approach is that in

order to construct a useful model, a large amount of labeled data is required. If the

amount of available labeled data is not enough for training a model, it often over-

fits : i.e. it performs well on data similar to the training data, but shows significantly

worse results on “unexpected” data instances. Unfortunately, it is usually impossible

to decide whether the amount of available training data is enough for constructing an

effective model. Also, a supervised model can perform poorly if trained on low-quality,

noisy data.
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Unsupervised learning tasks are often performed using generative graphical models

(discriminative models are inapplicable to these tasks). The structure of a genera-

tive model describes a hypothetical procedure according to which the data was pre-

sumably generated. To design a generative model, practitioners traditionally make

assumptions about the model’s structure, based on domain knowledge, the need for

computational tractability, or both. Such assumptions may be inappropriate and

thus introduce undesired bias into the model. Another potentially problematic issue

is that modern generative models consist of thousands or even millions of nodes—

such models are difficult to fit, analyze and learn from data (model learning can easily

become infeasible if no significant restrictions on the class of models are made).

Since both generative and discriminative graphical models have significant draw-

backs, other types of graphical models are emerging, which now becomes an active

topic in machine learning. Recently, McCallum et al. [79] proposed a model that

combines generative and discriminative training. LeCun and Huang [69] proposed

energy-based models which allow optimization of non-normalized objective functions

factorized over a graphical model. However, both models are proposed only within

the framework of supervised learning.

In this thesis, we develop a new type of graphical model that has the following

characteristics:

• Unsupervised or semi-unsupervised flavor. The model is not overly de-

pendent on the quantity and quality of training data, but rather is applicable

to the cases when no or little labeled data is available. Even if the amount of

labeled data is sufficiently large, the model does not assume the data’s purity,

but takes advantage of this data by maximizing agreement of unlabeled and

labeled data in a semi-unsupervised setup.

• Minimal bias; minimal prior knowledge to be incorporated. The num-

ber of assumptions made on the model structure is as small as possible. In
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particular, no generative assumptions are made, which minimizes the risk of

making assumptions that are misleading or unnecessary.

• Compactness, ability for model learning and comprehensive analysis

of the model behavior. Graphical models with millions of nodes are difficult

to comprehend and analyze. We take into account the fact that learning the

model structure can be optimal only for small models [27].

To meet the criteria above, we construct a graphical model which is intrinsically

different from existing graphical models. The most important difference is that in

our model, a certain portion of the model complexity is transferred from its graph

topology into its nodes, such that a resulting model consists of a small number of

“rich” nodes. It turns out that such a model is straightforwardly applicable to multi-

modal learning problems.

Multi-modal learning is a learning framework in the environment where multiple

views (or modalities) of the data are available. For example, in the text domain,

a set of documents is one modality of the data, while a set of words within those

documents is another modality. In fact, most real-world datasets are multi-modal.

Multi-modality of the data can be observed in a variety of research fields, such as:

• Text processing: documents, words, authors, titles, part-of-speech tags;

• Image processing: images, colors, texture, blobs, interest points, caption

words;

• Video processing: video signal, audio signal, frames, subtitles, transcripts;

• Bioinformatics: patients, tissues, samples, genes, proteins, compounds;

• Web information retrieval: Web pages, words, hyperlinks, markup primi-

tives;

3



• Data mining: movies, actors, directors, production companies;

and many others.

Three decades ago McGurk and MacDonald published their pioneering work [80]

that revealed the multi-modal nature of speech perception: sound and moving lips

compose one system, so to better process audio signals, an audio/video interaction

should be modeled. Since then, machine learning researchers have widely exploited

data multi-modality, using a variety of approaches, such as multi-modal neural net-

works [32], multivariate information bottleneck [46], and multi-view expectation max-

imization [21].

We propose a graphical model for multi-modal learning, only one node of which is

assigned for each modality, while edges represent statistical interactions between the

modalities. Since such interactions are symmetric, the resulting model is undirected,

i.e. they adopt the Markov Random Field (MRF) formalism. All the applications that

we consider in this thesis will be of the multi-modal nature, however, in our future

work, we will explore other types of possible applications.

The model we propose has the desired characteristics listed above:

• Multi-modality discloses the high-level structure of data, being therefore a cheap

and easily available form of supervision. Indeed, while obtaining labeled exam-

ples is expensive, deciding which data views are relevant to a particular task

in hand is usually straightforward. Taking advantage of this additional, struc-

tural knowledge allows us to successfully solve unsupervised and semi-supervised

problems.

• The only domain knowledge incorporated into the model is availability / us-

ability of multiple modalities and their interaction patterns. No assumptions

about prior distributions, latent variables and data point-wise interactions are

made which minimizes the model’s bias.
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• Meaningful models can consist of just a handful of nodes, allowing easy analysis.

For example, the problem of choosing the most influential interactions between

nodes can be straightforwardly solved by testing a number of potentially good

combinations (or even all possible combinations, in case of models with only

few nodes).

In this thesis we explore a range of multi-modal clustering tasks, including one-

class clustering. We consider only discrete tasks over finite datasets, and we note that

those tasks have a combinatorial nature: given a dataset of n instances, the standard

(hard) clustering is the problem of partitioning these instances into k groups, whereas

one-class clustering is the problem of selecting k instances—both are well-known com-

binatorial problems. Therefore, we represent these learning tasks as combinatorial

optimization. In multi-modal cases, our goal is to simultaneously solve multiple com-

binatorial optimization problems, one for each data modality.

To summarize, the contributions of this thesis are as follows:

1. We propose a new type of graphical model called a Combinatorial Markov Ran-

dom Field (Comraf) that has beneficial properties (as discussed above): it mod-

els a high-level structure of the data, represented as a handful of “rich” nodes

(that correspond to data modalities) and interactions between them. The inner

structure of Comraf’s nodes is apparent and therefore does not require an ex-

plicit graphical representation in the model, which results in a light and elegant

layout.

2. We show that Comrafs are a natural modeling framework for multi-modal prob-

lems, able to obtain excellent results on real-world tasks. For each task, a par-

ticular objective function is designed that best fits the task. Therefore, Comrafs

are more flexible than most graphical models which are mainly limited to using

maximum likelihood (ML) or maximum a posteriori (MAP) objectives.
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3. We apply Comrafs to unsupervised, semi-supervised, interactive and one-class

clustering tasks. We represent each task as a combinatorial optimization prob-

lem of the multi-modal nature. To our knowledge, most of the proposed tasks

are novel: we are not aware of previous work on semi-supervised multi-modal

clustering, interactive multi-modal clustering, or one-class multi-modal cluster-

ing.

4. We design information-theoretic objective functions for our models. In the case

of one-class clustering, we show that optimizing our objective function leads to

an optimal solution, under some simplifying assumptions. Also, in the case of

multi-modal clustering, we show that incorporating our objective function into

the Comraf model nicely generalizes previous successful clustering models.

5. We propose combinatorial optimization methods for solving our learning prob-

lems, for each of which we design efficient combinatorial algorithms and analyze

their computational complexity

6. Overall, we present a formal framework for multi-modal learning that brings

together two research areas: graphical models and combinatorial optimization.

The rest of this thesis is organized as follows: in Chapter 2 we provide some

necessary background; in Chapter 3 we describe the Comraf model; after which we

discuss each Comraf application in turn: (unsupervised) clustering in Chapter 4,

semi-supervised and interactive clustering in Chapter 5, and one-class clustering in

Chapter 6. In Chapter 7, we summarize previous chapters by exploring a variety of

Comraf modeling possibilities on an example of image clustering. In Chapter 8, we

conclude and discuss advanced Comraf problems that are not described in depth in

this thesis, such as multi-modal ranking.
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CHAPTER 2

PRELIMINARIES

In this chapter, we first provide background information on graphical models,

and in particular on Markov Random Fields. We then present three major machine

learning paradigms: supervised, semi-supervised, and unsupervised learning. Finally,

we concentrate on data clustering—the most important application of unsupervised

learning—for which we give some necessary definitions and insights.

2.1 Markov Random Fields

A graphical model is a tuple (G,P ), where G is a graph whose nodes correspond to

random variables X = {X1, . . . , Xm} and whose edges E denote interactions between

these variables; P is a joint probability distribution defined over X. Let us use a

short notation P (x) = P (X1 = x1, . . . , Xn = xn), where each xi is a value from Xi’s

domain.

Definition 2.1.1 A graphical model (G,P ) is called a Markov Random Field (MRF)

if the following two conditions hold:

• (Positivity) ∀x : P (x) > 0

• (Markovianity) Let X1, X2 and X3 be three disjoint subsets of random variables

in X. We have that

P (X1,X2|X3) = P (X1|X3)P (X2|X3)
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(i.e. X1 and X2 are conditionally independent given X3) iff every path between

a node from X1 and a node from X2 contains a node from X3.

The Markov blanket of a node Xi is defined as the set of all the immediate neigh-

bors of Xi in G. The Markovianity can then be restated as having each variable Xi

conditionally independent of the rest of the model, given its Markov blanket. Note

symmetric dependencies between nodes in an MRF—those dependencies are repre-

sented in G by undirected edges. Consequently, an MRF is often referred to as an

undirected graphical model.

An important observation of an MRF is that the joint distribution P is given

but (in most cases) not fully observed. The goal of an inference procedure in an

MRF is then to answer questions about the distribution P , such as what is the most

likely assignment x∗ = {x∗
1, . . . , x

∗
m} to variables {X1, . . . , Xm} (this task is called

the Most Probable Explanation—MPE, see, e.g., [75]). Naturally, answering most

such questions is NP-hard since it potentially requires considering every possible

assignment. Thus, most inference techniques fall into the category of approximation

methods.

Definition 2.1.2 A distribution P is called a Gibbs distribution if it can be written

in the form

P (x) =
1

Z
exp

(
∑

C

fC(xC)

)

,

where

• C is a clique in the graph G;

• fC is a real-valued function defined over values of random variables from C;

• Z is a normalization factor.

We refer to functions fC as log-potential functions (this term reflects the fact that their

exponents are traditionally referred to as potential functions). The normalization

factor Z is called a partition function.
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Figure 2.1. An example of a Markov Random Field.

First proven by Julian Besag [19], the Hammersley-Clifford theorem states that

Theorem 2.1.3 The tuple (X , G) is an MRF if and only if P is a Gibbs distribution.

Note that log-potential functions can be defined on cliques of any size, however,

smaller cliques are usually preferred from the computational point of view. For exam-

ple, consider an MRF from Figure 2.1 where X1, X2, X3, X4 are multinomial random

variables, each with 10,000 possible values. We can consider two cliques of size 3,

i.e. X1 = {X1, X2, X3} and X2 = {X2, X3, X4} and then the joint distribution P (x)

can be factorized over those cliques as:

P (x) =
1

Zf

exp
∑

i

fi(x1) exp
∑

i

fi(x2),

such that each log-potential function fi will have to have 1012 values. Inference in a

model like that can be infeasible in practice. We can also consider five cliques of size 2

(i.e. the edges {X1, X2}, {X1, X3}, {X2, X3}, {X2, X4}, and {X3, X4}), and factorize

the joint distribution accordingly. In this case, the log-potentials fi will have to have

only 108 values which is, in many cases, feasible.

2.2 Three major learning paradigms

In this thesis, we employ MRFs for solving unsupervised and semi-supervised

learning problems. When possible, we compare our results with the ones of supervised
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learning methods, such as a Support Vector Machine (SVM) [109]. The most widely

studied type of supervised learning problems is classification: a model is trained on

(a large number of) data instances, each of which was a priori associated with one

or more target classes (we say that it was labeled). The model is then applied to

associate other, unlabeled data instances with the target classes. Obviously, it is

burdensome to collect and label the training data.

In contrast, in unsupervised learning, the model is built to fit the data as it is,

where no labeled instances are necessary. Data clustering is the main example of

unsupervised learning problems. There are two versions of data clustering: hard and

soft. In hard clustering, we partition the set of data instances into groups (clusters)

such that these groups are as homogeneous as possible (according to a given criterion).

Soft clustering is applied when data instances can belong to more than one cluster:

each data instance is associated with all the clusters according to a certain probability

distribution. In this thesis, we will consider only the hard clustering task, leaving the

soft clustering case for future work.

Unsupervised learning problems are usually solved in graphical models using the

maximum likelihood (ML) framework (see, e.g., [22]), where model parameters that

best explain the data are estimated. Most ML methods deal with approximating Zf ,

which is generally a hard task, because Zf depends on the particular choice of fi’s

and is a sum over all the possible configurations. In this thesis, we will apply the

MPE framework instead, for the reasons that will be clear later.

Semi-supervised learning is usually viewed from two difference perspectives: (a) as

training a supervised model while taking advantage of available unlabeled instances;

(b) as building an unsupervised model that takes advantage of some labeled data,

whose amount is not enough to train a supervised model. In this thesis, we focus on

the latter type, which is often called semi-supervised clustering [116].
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2.3 Clustering

Most existing data clustering algorithms belong to one of two categories: hierar-

chical (top-down or bottom-up) and flat. A flat algorithm starts with data instances

distributed over k clusters (where k is the desired number of clusters) and reorga-

nizes / updates the clusters until convergence. A top-down hierarchical algorithm

is initialized with one cluster containing all data instances, which is then iteratively

split into portions until the desired number of clusters k is achieved. A bottom-up

hierarchical algorithm starts with singleton clusters (one data instance per cluster)

and merges clusters iteratively until, again, k is reached. An obvious drawback of

flat algorithms as compared to hierarchical ones is in the fact that flat procedures are

often heavily dependent on their initialization: most of them perform poorly when

initialized at random. Many heuristics have been proposed that come up with mean-

ingful initial clusters (see, e.g., [40]), however, most of these heuristics are domain

specific. Therefore, in this thesis we concentrate on hierarchical clustering schema,

although we occasionally mention flat methods as well (see e.g. Section 4.4).
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CHAPTER 3

COMBINATORIAL MARKOV RANDOM FIELDS

In this chapter, we first introduce the notion of a combinatorial random vari-

able, then propose Combinatorial Markov Random Fields (Comrafs), and develop an

inference technique for Comrafs based on combinatorial optimization.

3.1 Combinatorial random variables

Definition 3.1.1 A combinatorial random variable (or combinatorial r.v.) Xc is a

discrete random variable defined over a combinatorial set.

A combinatorial set in mathematical parlance means a set of all subsets, parti-

tionings, permutations etc. of a given finite set. To capture this intuition, we define

a finite set A as combinatorial if its size is exponential with respect to another finite

set B, i.e. log |A| = O(|B|). As an example, a combinatorial r.v. Xc can be defined

over all the outcomes of lotto 6 of 49, in which 6 balls are selected from 49 enumer-

ated balls to produce an outcome of the lottery. In this case, set B consists of 49

balls, while set A consists of
(
49
6

)
possible choices of 6 balls from B. In a fair lottery,

the distribution of Xc is uniform: each outcome is drawn with probability 1/
(
49
6

)
.

However, in an unfair lottery, some outcomes are more probable than others.

It is easy to come up with other examples of combinatorial r.v.’s: over all the

possible translations of a sentence, over all the possible orderings in a ranked list

of retrieved documents, etc. In Chapter 4 we consider combinatorial r.v.’s over all

partitionings of a given set; in Chapter 6 we consider combinatorial r.v.’s over all

subsets of a given set.
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From the theoretical perspective, a combinatorial r.v. behaves exactly as an or-

dinary discrete random variable with a finite domain. However, from the practical

point of view, a combinatorial r.v. is different: in most real-world cases, the event

space of Xc is so large that the distribution P (Xc) cannot be explicitly specified.

Moreover, the Most Probable Explanation (MPE) task (see Chapter 2) for combina-

torial r.v.’s can be computationally hard. Considering an unfair lottery example, in

which the distribution of Xc is flat (close to uniform), say, the probability of value

{7, 23, 29, 35, 48, 49} is 0 and the probability of value {4, 18, 28, 37, 39, 43} is 2/
(
49
6

)
,

while the rest of the values still have the probability 1/
(
49
6

)
. An exponentially long

sampling process is required to detect the most probable value.

3.2 Combinatorial Markov Random Fields

Definition 3.2.1 A combinatorial Markov random field (Comraf) is a Markov Ran-

dom Field, at least one node of which is a combinatorial random variable.

In this thesis, we will consider only Comraf models, every node of which is a

combinatorial r.v. As in any other MRF, random variables in Comraf models can be

in either a hidden or observed state. A combinatorial r.v. is hidden if it can take any

value from its event space. A combinatorial r.v. is observed if its value is preset and

fixed. Chapter 4 presents Comraf models with only hidden variables. In Chapters 5

and 7 we introduce observed random variables to Comraf models.

An edge eij = (Xc
i , X

c
j ) in a Comraf graph corresponds to a statistical interaction

between combinatorial r.v.’s Xc
i and Xc

j . A presence or an absence of edge eij artic-

ulates whether Xc
i and Xc

j stay in a tight statistical interaction or not. For example,

consider three nodes in a Comraf graph for an email collection, one of which (M c)

corresponds to the modality of email messages, another (Ac) to the authors of the

messages, and the third one (Sc) to the subject lines. Obviously, email messages stay

in statistical interactions both with their authors and their subjects. However, it is
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not straightforward whether the authors’ modality interacts with the subject lines.

Indeed, the subject line in the first message of an email thread was given by its sender,

while all the other messages in this thread are often “forced” to use the same subject

line, possibly given by another sender. Therefore, it might be natural to have edges

(M c, Ac) and (M c, Sc) in the Comraf graph, and to drop the (Ac, Sc) edge.

One might argue that, while the (Ac, Sc) interaction is not clearly present, it

might still exist in the data. As in any graphical model, there is a tradeoff between

the Comraf’s adequacy and the computational complexity of its inference procedure.

The larger the Comraf model is, the more difficult the inference would be. Thus, it

is the practitioner’s responsibility to decide which edges will be present in the model

and which will be absent. Let us emphasize this again: since Comraf models are

usually compact, a model learning procedure can be used to automatically infer the

optimal set of model’s edges. Keeping in mind the model learning option, we leave it

for our future research. Also note that, as in any other MRF, the lack of statistical

interaction between variables Xc
i and Xc

j (and therefore the absence of edge eij in a

Comraf graph) implies conditional independence of Xc
i and Xc

j given the rest of the

model.

As discussed above in Section 3.1, even simple inference tasks (trivially performed

on ordinary random variables) are computationally hard for combinatorial random

variables. Since every combinatorial r.v. carry a large portion of a Comraf complex-

ity, even small Comraf models (of just a few nodes) remain non-trivial. Inference in

Comrafs is thus viewed from a different perspective than inference in other graphical

models. Usually, an inference procedure is composed from traversing the graph G

and performing computations at the graph’s nodes. In most graphical models, where

nodes are ordinary random variables, the computation step is simple, while traversing

the (large) graph is a resource-demanding process. In these cases, it is very important

to keep track of numerous intermediate computations. Simplicity and homogeneity
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of such process play a crucial role in those models. For example, it is impractical to

optimize different objective functions in different regions of the graph G. These con-

siderations dramatically restrict practitioners in their choice of an objective function

for their models. Most graphical models optimize the maximum likelihood objec-

tive (see Chapter 2). However, the situation is different for Comrafs. In Comrafs,

computations performed in each node are the most intensive part of the inference

process. Traversing the graph however is relatively inexpensive as the number of

nodes is small in comparison to other models. Thus, practically unrestricted variety

of objective functions can be considered, both probabilistic and non-probabilistic,

homogenous and heterogenous in various regions of G.

Let us now show that optimizing an arbitrary objective function over G can be

represented in terms of an MPE inference in a Comraf. As discussed in Chapter 2,

the joint distribution of random variables in an MRF is factored over the graph G as:

P (x) =
1

Zf

exp
∑

i

fi(x),

where log-potential functions fi are arbitrary functions defined over cliques in G.

If we fix the log-potentials fi for each clique, the partition function Zf becomes a

constant. Thus, in the MPE inference, we directly optimize a non-normalized linear

combination of the log-potential functions:

x∗ = arg max
x

P (x) = arg max
x

exp
∑

i

fi(x) = arg max
x

∑

i

fi(x), (3.1)

which now solely depends on the choice of the log-potentials.

3.3 Algorithmic aspects of inference in Comrafs

As we have mentioned in Section 3.1, in most cases it is infeasible to explicitly

specify the distribution P (Xc), i.e. to represent it as a probability table in which
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each value is assigned a certain probability mass. In such situations, estimating the

joint distribution of all the Comraf nodes becomes even less possible. A somewhat

traditional approach to dealing with the problem of combinatorial explosion is to

transfer the probabilistic setup to the continuous space. However, it is well known

(see, e.g., [86]) that such a transformation may potentially cause significant approxi-

mation errors. Another alternative is to apply a local search in the event space L of

Xc. Yet another possibility is to apply more sophisticated combinatorial optimization

methods, such as Branch and Bound [67].1 In this thesis, we choose the local search

approach. Let us proceed with definitions.

Definition 3.3.1 A transaction is an elementary operation in traversing the event

space L of a combinatorial r.v. Xc.

In the other words, a transaction is a jump operation between neighboring points

in the event space L (i.e., closest values of Xc). For each particular learning task,

the event space of a combinatorial r.v. will be defined differently, and so will be a

transaction. For now, let us assume that we know how to move from one value of Xc

to another.

Definition 3.3.2 A path in L is a sequence of transactions. A path is called advan-

tageous if it leads to a more likely value of Xc, otherwise it is disadvantageous.

In a Comraf model with more than one combinatorial r.v., the most straightfor-

ward version of an inference algorithm would be a variation of the Iterative Condi-

tional Modes (ICM) method [20]. ICM optimizes the objective (3.1) for each node of

an MRF iteratively (in a round-robin fashion), given its Markov blanket. A possible

drawback of this approach can be evidenced when the linear combination (3.1) is

1Branch and Bound has been used for (uni-modal) clustering by Koontz et al. [62], however it is
questionably applicable to multi-modal learning due to its high computational complexity.
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Input:
G – Comraf graph of nodes {Xc

1 , . . . , Xc
m} and edges E

P (Xi, . . . , Xm) – joint probability distribution of data, factorized over G

l – number of optimization iterations
Output:
Most likely xc

1,l, . . . , x
c
m,l

Initialization:
For i = 1, . . . , m do

Select a point in Li to be an initial value xc
i,0 of Xc

i

Compute the initial joint P (xc
1,0, . . . , x

c
m,0), factorized over G

Main loop:
For j = 1, . . . , l do

Select variable Xc
i′ for optimization

Construct advantageous path
(
xc

i′,j−1 → xc
i′,j

)
in Li′

For all i 6= i′ do xc
i,j = xc

i,j−1

Algorithm 1: A template of an MPE procedure in Comrafs.

taken over log-potential functions fi, which are intrinsically different in their mag-

nitude and/or semantics (such that explicitly taking their linear combination might

not be beneficial). For these situations, we propose another version of an inference

algorithm, called clique-wise optimization (CWO), which is a variation of a local op-

timization method in an MRF. Similarly to ICM, the CWO algorithm iterates over

nodes in the MRF. For each node, a clique that contains this node is chosen and the

objective (3.1) is optimized with respect to the chosen clique only, i.e. independently

of the rest of the model. Sutton and McCallum [102] apply a similar method (called

piecewise training) in a supervised setting. Bouvrie [23] proposes to approach the

multi-modal clustering problem by iteratively applying a bi-modal clustering algo-

rithm. To some extend, Bouvrie’s method can be considered as a special case of

CWO.

A template pseudo-code for the MPE approximation in a Comraf is given in

Algorithm 1. For each combinatorial r.v. Xc
i in the Comraf, we first select and fix

its initial value as a point in the event space Li. We then round-robin over each Xc
i ,

for which we search for an advantageous path in Li. When this path is constructed,

we fix its destination point to be a new value of Xc
i and move to another node. We

17



repeat this procedure l times. To transform this template into an actual algorithm,

we need to make the following choices:

• How to select initial values for each combinatorial r.v. in the Comraf.

• How to determine an ordering for variables in the optimization procedure (and

an ordering of cliques in CWO). One obvious approach is a plain or weighted

round-robin, but more sophisticated choices can also be made.

• How to construct an advantageous path in L.

We will address these points in the following chapters of this thesis.

3.4 Summary

While technically being graphical models, Comrafs are very different from existing

graphical models: all Comraf models we propose in this thesis are small models with

‘rich’ nodes, while existing graphical models are usually large models with ‘simple’

nodes. No existing inference techniques are applicable to Comrafs (as they cannot

deal with nodes as complex as combinatorial r,v,’s), so we have developed a new

inference framework for Comrafs.

The major advantage of Comrafs over existing graphical models is that Comrafs

provide a more flexible modeling environment: existing models are able to model

data only in terms of the graph G, while their objective function and their infer-

ence algorithm are generic rather than task-specific. Usually, this property is not

considered to be a drawback of the graphical model framework: once the graph G is

designed for a certain task, it is straightforward to apply an existing inference method

to this graph. However, existing inference methods are approximations to the NP-

hard inference problem, and thus make various assumptions that can potentially be

inappropriate for the particular task being solved. The main disadvantage of generic
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inference methods is that they make the same assumptions for every task. A practi-

tioner can choose one of a handful of existing inference methods (such as mean-field,

variational approximation, belief propagation, Gibbs sampling etc. [58]) for her task,

some of which can work better for this task while some can work worse, but none is

specific for the task.

Comrafs, in contrast, have three degrees of freedom: designing the graph G, the

objective and the inference algorithm, all specific for the task in hand. And as we will

show below, this flexibility leads to constructing models that demonstrate excellent

performance on various unsupervised and semi-supervised learning tasks.
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CHAPTER 4

COMRAFS FOR MULTI-MODAL CLUSTERING

Multi-modal (hard) clustering is a problem of simultaneously constructing m par-

titionings of m data modalities, e.g. of documents, their words, authors, titles etc.

When clustering modalities simultaneously, one can overcome the statistical sparse-

ness of the data representation, leading to a dense, smoothed joint distribution of

the modalities that would result in (hypothetically) more accurate clusterings than

the ones obtained when each modality is clustered separately. Based on our previous

work [10, 12], we will empirically justify this hypothesis. In this chapter, we pro-

pose a Comraf model for multi-modal clustering (for motivation and discussion, see

Chapter 1). Let us first introduce the notation.

Let s1, s2, ..., sN be a dataset of N i.i.d. samples drawn from some discrete distri-

bution. Let X = {x1, x2, ..., xn} be the set of n unique values comprising the event

space from which samples si are drawn. We now define a random variable X such

that P (X = xi) is given by the empirical frequencies of samples with value xi in the

dataset (i.e., X has a multinomial distribution estimated using maximum likelihood).

Define a hard clustering xc to be a partitioning of X . Let X c = {xc
1, x

c
2, ..., x

c
K} be

the combinatorial set of all K partitionings of X , where K is exponential in the size

of X . We will refer to the subsets of the j-th partitioning xc
j as {x̃j,1, x̃j,2, ..., x̃j,kj

}.

That is, the first subscript in x̃j,i is the index of a particular partitioning, and the

second subscript is the index of a subset (a cluster) within that partitioning.

Define X̃j to be a random variable over the subsets (clusters) in a partitioning

xc
j, with the probability of selecting a cluster defined as the probability of selecting
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any one of its members: P (X̃ = x̃j,i) =
∑

x∈x̃j,i
P (x). Finally, define Xc to be

a combinatorial r.v. with the event space X c. In this thesis, we shall use parallel

notation for different modalities of data, replacing the “x’s” in the above notation

with variables appropriate for the data source. For example, wi would represent a

specific word in a dataset, w̃ would be a cluster, wc would be a partitioning of words,

and so on.

4.1 Choosing an objective function

As discussed in Section 3.2, interactions between combinatorial r.v.’s are repre-

sented by edges in a Comraf graph. To use the objective from Equation (3.1), we

should choose relevant cliques in the Comraf graph and define log-potential functions

over these cliques. To make the inference feasible, we consider only the smallest

cliques, i.e. adjacent pairs. Since our inference objective allows us to use complicated

log-potential functions (see, again, Section 3.2), we use the mutual information (MI)

between r.v.’s defined over values of adjacent nodes. Let xc
i and xc

j be such values

(particular partitionings of two modalities). A log-potential is then defined:

f(xc
i , x

c
j) = I(X̃i; X̃j) =

∑

i′,j′

P (x̃i,i′ , x̃j,j′) log
P (x̃i,i′ , x̃j,j′)

P (x̃i,i′)P (x̃j,j′)
. (4.1)

Our motivation for choosing MI as a log-potential function is as follows: a linear

combination of MI terms has traditionally been used as a clustering criterion, both

in uni-modal clustering methods, such as Information Bottleneck (IB) [106], and in

bi-modal methods [35]. Slonim et al. [97] generalize the IB clustering criterion to a

multivariate case: in place of mutual information, they use Multi-Information1

I(X̃1; . . . ; X̃m) =
∑

i′1,...,i′m

P (x̃i1,i′1
, . . . , x̃im,i′m) log

P (x̃i1,i′1
, . . . , x̃im,i′m)

P (x̃i1,i′1
) . . . P (x̃im,i′m)

, (4.2)

1For alternative definitions and discussions on Multi-Information, see [114, 54].

21



which naturally factorizes over a directed graphical model. With little effort, we

can show that Multi-Information also factorizes over a tree-structured undirected

graphical model, reducing to a sum of pairwise MI terms defined over edges of the

tree. However, in the case of an arbitrary Comraf graph, Multi-Information cannot

be fully factorized. In general, objective functions based on high order statistics

(including Multi-Information) are problematic for loopy Comraf graphs. From a

statistical viewpoint, it is not clear whether we can extract reliable estimates for the

full joint distribution P (X̃1, . . . , X̃m). Still, we can approximate Multi-Information

by a sum of pairwise MI terms. Estimating the quality of such an approximation

remains an open question.

Thus, substituting log-potentials (4.1) into the MPE inference model (3.1), our

objective function for multi-modal clustering with Comrafs is then:

xc∗ = arg max
xc

P (xc) = arg max
xc

∑

(Xc
i ,Xc

i′
)∈E

I(X̃i; X̃i′). (4.3)

This maximization is performed subject to constraints on the cardinalities ki = |X̃i|,

i = 1, . . . , m (i.e., the number of clusters is fixed). Without these constraints, the

maximization would lead to a degenerative case of all singleton clusters. Note that

these constraints do not necessarily imply the use of a flat clustering scheme (see

Chapter 2). In a particular clustering algorithm, clusters can be split or merged,

after which the number of clusters is fixed and the optimization of the objective

function (4.3) is performed.

We apply the ICM scheme (see Section 3.3) to multi-modal clustering: we iterate

over combinatorial r.v.’s in the Comraf graph, and at each iteration (over node Xc
i )

we construct the most likely clustering xc∗
i by optimizing the objective function (4.3).

It is important to note that in the general case the objective (4.3) has O(|X|2) terms.

However, at each ICM iteration only one node is optimized, therefore the objective
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Figure 4.1. A Comraf graphs for: (a) hard version of Information Bottleneck; (b)
information-theoretic co-clustering; (c) one of the possible 4-modal Comrafs.

is reduced to:

xc∗
i = arg max

xc
i

∑

i′: (Xc
i ,Xc

i′
)∈E

I(X̃i; X̃i′) (4.4)

that sums over only O(|X|) neighbors of Xc
i (i.e. its Markov blanket).

The resulting model has two important special cases:

• A hard version of Information Bottleneck [106]. In Information Bot-

tleneck, given two modalities X and Y , a clustering xc∗ is constructed that

maximizes information about Y (and minimizes information about X):

xc∗ = arg max
xc

j

(

I(X̃j; Y ) − βI(X̃j; X)
)

, (4.5)

where β is a Lagrange multiplier. The compression constraint I(X̃j; X) can

be omitted if the number of clusters is fixed: |X̃j| = k. Consider graph G in

Figure 4.1(a), where a shaded Y c represents an observed variable.2 Over the

only clique in G, we define one log-potential which is the mutual information

I(X̃j; Y ). The MPE optimization objective for such Comraf is then:

xc∗ = arg max
xc

j

P (xc
j, y

c) = arg max
xc

j

I(X̃j; Y ),

2For discussion on observed variables see Chapters 5 and 7.
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subject to |X̃j| = k, which is clearly equivalent to the Information Bottleneck

objective (4.5).

• Information-theoretic co-clustering [35] is a task of simultaneously cluster-

ing two modalities X and Y , while minimizing the information loss I(X; Y ) −

I(X̃j, Ỹj) under the constraint |xc
j| = k1 and |yc

j | = k2. Note that I(X; Y )

is a constant for a given dataset. This scheme is a special case of a Comraf

as well: given graph G in Figure 4.1(b), in analogy to the Comraf model of

Information Bottleneck, we define the only log-potential I(X̃j; Ỹj). Then the

information-theoretic co-clustering can be represented as an MPE inference in

this Comraf:

(xc∗, yc∗) = arg max
xc

j ,yc
j

P (xc
j, y

c
j) = arg max

xc
j ,yc

j

I(X̃j; Ỹj).

4.2 Clustering as combinatorial optimization

Given a variable X with n values clustered into k clusters, the combinatorial

r.v. Xc has kn values, all of which can be represented as points in an n-dimensional

lattice L: a point xc = (i1, i2, . . . , in) corresponds to the fact that value x1 of X

belongs to the i1-th cluster, value x2 belongs to the i2-th cluster, . . ., value xn belongs

to the in-th cluster.3 In the lattice L there is a (possibly non-unique) point xc∗ =

(i∗1, i
∗
2, . . . , i

∗
n) which is most likely. Since the lattice consists of an exponential number

of points, the task of finding the most likely point can be computationally hard.

In lattice L, a transaction (see Definition 3.3.1) is interpreted as an operation of

transferring a value xj from cluster x̃i to cluster x̃i′ , i.e. (. . . , ij, . . .) → (. . . , i′j, . . .),

where ij 6= i′j.

3Recall that we consider only hard clustering: P (x̃ij
|xj) = 1, that is, a value xj is assigned only

to the ij-th cluster.
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Note that we can view both splits and mergers of clusters as transactions. A split

of a cluster ij′ is a transaction (. . . , ij′ , . . .) → (. . . , i′j′ , . . .), where ∃j 6= j′ : ij′ = ij

and ∀j 6= j′ : i′j′ 6= ij. That is, cluster ij′ contained at least two elements (xj

and xj′), one of which (xj′) has been transferred into a newly created cluster i′j′ .

A merger of clusters ij′ and i′j′ is a transaction (. . . , ij′ , . . .) → (. . . , i′j′ , . . .), where

∃j 6= j′ : i′j′ = ij and ∀j 6= j′ : ij′ 6= ij, i.e. cluster ij′ contained only one element

that has been added to the existing cluster i′j′ so that the cluster ij′ does not exist

anymore. These operations will help us to represent both agglomerative (bottom-up)

and divisive (top-down) clustering schema as inference in Comrafs.

By applying splits, mergers and other transactions, we construct a path in the

lattice L. Our goal is to make this path as advantageous as possible, such that a

clustering at the end of this path will be the most probable clustering that could be

found. Thus, we view the process of clustering a set X as an MPE approximation of

a combinatorial r.v. Xc, where the MPE is approximated using a local search in the

lattice L. To perform the local search, we apply the simplest, greedy combinatorial

optimization method—hill climbing : at each ICM iteration, we attempt to construct

the most advantageous path in L, given the available computational resources.

Let us discuss particular algorithms in more detail in the next section.

4.3 Multi-way Distributional Clustering (MDC)

In this section we describe our scheme for clustering m modalities that aims at

maximizing our objective function (4.3). This scheme is called Multi-way Distribu-

tional Clustering (MDC) [10]. Let G be a Comraf graph over combinatorial random

variables Xc
i , i = 1, . . . ,m. For each edge eii′ in graph G we are given a contingency

table Tii′ that provides the corresponding co-occurrence counts of the modalities Xi

and Xi′ . The input to the algorithm is the graph G, the tables Tii′ , as well as m

desired cardinalities k1, . . . , km of the final partitionings, and a clustering schedule
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(the sequence of variables for optimization in the ICM loop, see below for details).

The output of the algorithm is m partitionings X̃i, i = 1, . . . , m, each of cardinality

ki = |X̃i|.

The desired cardinalities k1, . . . , km are essential parameters of MDC, as our

method cannot infer them. We believe that the problem of inducing the optimal

number of clusters is generally ill-defined: imagine a dataset that is situated on a

plane in a triangle, each corner of which consists of three triangles of data instances

(27 instances overall). It is hard to decide what the best number of clusters would be

in this case: three or nine. Admittedly, not all machine learning researchers would

agree with this argument. Some existing clustering methods attempt to solve the

problem of optimal number of clusters (such as, e.g., the Chinese Restaurant Pro-

cess [30]). Still and Bialek [101] come up with the optimal number of clusters in an

Information Bottleneck setting. While their method is well justified theoretically, it

could not induce a meaningful number of clusters in our experiments.

To compute the objective function (4.3) we will need the following definitions

and identities, where for the current discussion we re-notate X = Xi, Y = Xj and

T = Tii′ :

NXY =
∑

x∈X; y∈Y

T (x, y);

p(x̃, ỹ) =
1

NXY

∑

x∈x̃; y∈ỹ

T (x, y);

I(X̃; Ỹ ) =
∑

x̃∈X̃;ỹ∈Ỹ

p(x̃, ỹ) log
p(x̃, ỹ)

p(x̃)p(ỹ)
, (4.6)

where p(x̃) =
∑

ỹ∈Ỹ p(x̃, ỹ), and p(ỹ) =
∑

x̃∈X̃ p(x̃, ỹ).

Pseudo-code for the multi-way distributional clustering (MDC) algorithm is given

in Algorithm 2. For simplicity, the pseudo-code abstracts away several details that
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Input:
G – Comraf graph of nodes {Xc

1 , . . . , Xc
m} and edges E

Tii′ – contingency tables for each eii′ ∈ E
Sup, Sdown - bottom-up/top-down partition of {1, . . . ,m}
Sl = i1, i2, . . . , il – clustering schedule, where each ij ∈ {1, . . . , m}

Output:
Most likely clusterings xc

1,l, . . . , x
c
m,l

Initialization:
For each i = 1, . . . , m do

If i ∈ Sdown then
Place all values of Xi in one cluster

Else If i ∈ Sup then
Place each value of Xi in a singleton cluster

Main loop:
For each ij from Sl do

Split/merge phase:
If ij ∈ Sdown then

Split each cluster in xc
i,j uniformly at random to two halves

Else If ij ∈ Sup then
Merge each cluster in xc

i,j with its closest peer
Optimization phase:
For each values x of Xij

do
Pull x out of its current cluster
Place x into a cluster, s.t. objective function (4.4) is maximized

Algorithm 2: Multi-Way Distributional Clustering (MDC).

are not essential for understanding the general idea but can be important for actual

applications. We now discuss the algorithm and then provide the necessary details.4

The main loop of the algorithm is controlled by two parameters:

• Partition (Sup, Sdown) of the set of variable indices. If i ∈ Sup, then the variable

Xi is clustered using a bottom-up procedure. Otherwise (i.e. i ∈ Sdown), Xi is

clustered via the top-down procedure.

• Clustering schedule Sl = i1, . . . , il, which is a sequence of variable indices. The

schedule Sl determines the order of processing the variables. While this mecha-

nism allows for great flexibility, we always apply it in a straightforward manner

where the sequence Sl specifies a (weighted) round-robin schedule. For exam-

ple, in the case of bi-modal clustering (with two variables X1 and X2), we

4An efficient C++ implementation of MDC that was used in our experimental study can be
downloaded from http://sourceforge.net/projects/comraf.

27



3210

Figure 4.2. A schematic view of bi-modal MDC with a simple, non-weighted round-
robin schedule. At each iteration black clusters are split and then white clusters are
merged.

take (ignoring, for the moment, the desired cluster cardinalities) Sdown = {1},

Sup = {2} and Sl = 1, 2, 1, 2, . . . , 1, 2. A schematic view of MDC (for this

bi-modal instance) is given in Figure 4.2.

We propose two versions of the optimization phase of our algorithm: sequential

and shuffled :

• In the sequential version, we iterate over all values xi of Xi, in a random order

(determined via a permutation selected uniformly at random). We assign xi

into its “best” cluster, i.e. such cluster that the objective from Equation (4.4)

is maximized. Note that this optimization routine is similar to and inspired by

the sequential Information Bottleneck (sIB) clustering algorithm [96]. We then

iterate over all the values of Xi once again, in order to further optimize the

objective, i.e. two optimization passes are performed overall.

• In the shuffled version, we repeat the following step a predefined number of

times:5 we uniformly at random select a data point xi and a cluster x̃j, and

assign xi into x̃j if this transaction increases the value of our objective. The

5We set it equal (for fair comparison) to the number of iterations in the sequential version.
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shuffled approach opens the door to improving scalability of MDC (the number

of iterations is constant and can be chosen arbitrarily small, at the cost of

decreasing performance) and to parallelization.

Note that both sequential and shuffled procedures can never decrease the objective

function. However, cluster mergers usually decrease it, so the optimization is non-

convex in the general case.

The choice of index partition (Sup, Sdown) is based on the following two cru-

cial observations. First, for practical applications it is computationally infeasible

to apply bottom-up procedures for all the variables. Second, applying only top-

down procedures is likely to be useless, in terms of the clustering quality. This

is easy to see when considering bi-modal applications, with respect to two vari-

ables X and Y . The objective function reduces to I(X̃; Ỹ ) and we start with

xc and yc each being a single cluster containing all points. Clearly, in this case

I(X̃; Ỹ ) = 0. We now split X̃ to get X̃ = {x̃1, x̃2}. For any (x̃1, x̃2)-partition

we have H(Ỹ |X̃) = −
∑

i p(x̃i, Ỹ ) log p(Ỹ |x̃i) = 0, since p(Ỹ |x̃i) = 1. Therefore,

I(X̃; Ỹ ) = H(Ỹ ) − H(Ỹ |X̃) = H(Ỹ ) = 0, and the corrective step of the algorithm is

useless here. The subsequent split of Ỹ strictly optimizes the objective function, but

the resulting clustering is optimized to correlate with the initial random split of the

X variable. This way, all the subsequent partitions are optimized with respect to a

meaningless, random partition. A similar argument applies to the general MDC and

implies that at least one of the clustering procedures must not be computed top-down.

A natural choice for clustering this variable would be a bottom-up method because

its initialization phase (singleton clusters) does not require any prior knowledge to be

incorporated (for a discussion, see Chapter 2).

As mentioned above, in all our applications we construct (weighted) round robin

schedules Sl = i1, . . . , il. In order to accommodate the required cardinalities k1, . . . , km

of clusterings xc
1, . . . , x

c
m, the MDC algorithm performs the following number of iter-
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ations: li = ⌈log ki⌉ for i ∈ Sdown, and li = ⌈log(|Xi|/ki)⌉ for i ∈ Sup. Thus, each

index i appears li times in the sequence Sl, in a (weighted) round-robin fashion.

4.3.1 Computational complexity of MDC

We now analyze the time complexity of the sequential version of MDC6 for a non-

weighted round-robin schedule. The complexity issue should be taken into account

when forming the partition (Sup, Sdown), because the time complexity of the algorithm

depends on u = |Sup|, i.e. on the number of modalities clustered bottom-up. Let

|X| = max(|X1|, . . . , |Xm|), the size of the largest support of variables X1, . . . , Xm.

At each iteration, (sequential) MDC performs three nested loops:

1. Pass over each value of Xi: O(|X|) times;

2. For each value of Xi, pass over each cluster in X̃i: |X̃i| = O(|X|) times;

3. For each cluster in X̃i, pass over clusters in all the other clusterings (excluding

X̃i itself): O(m|X|) = O(|X|) times (the number of clustered variables, m, is a

constant in our case).

Since the number of iterations is n = O(log |X|), in the worst case (when u > 1)

the time complexity is O(n|X|3) = O(|X|3 log |X|). This complexity can be burden-

some in some real-world applications. Note, however, that for each variable Xi, which

is clustered top-down, at each iteration j the number of clusters is |Xij | = O(ki) =

O(1). Thus, when u = 1, either loop 2 or loop 3 is performed O(1) times, and the

overall running time is O(|X|2 log |X|), which is affordable for many applications.

In the bi-modal case, at each iteration the size of one clustering is doubled, and

at the next iteration the size of the other clustering is halved. Therefore, at each

6The complexity of our implementation of the shuffled version is the same as the one of the
sequential version, because we choose to fix the number of iterations in the shuffled version equal to
the number of iterations in the sequential version.
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iteration |X̃1| · |X̃2| ≤ 2|X|, i.e. the constant under the ‘big-O’ is only 2. The (non-

hierarchical) co-clustering algorithm of [35] has the same complexity O(|X|2 log |X|),

but with a larger constant under the ‘big-O’.

Based on this analysis, in all our experiments we fix u = 1, i.e., only one variable is

clustered bottom-up. Finally, note that if variable Xi has a small support, |Xi| ≪ |X|,

then the decision whether i ∈ Sup or i ∈ Sdown can be made independently of time

complexity considerations.

4.4 Clique-wise MDC

As we discussed in Section 3.3, global optimization of the objective function (3.1)

is not always beneficial. As an alternative, we proposed a clique-wise optimization

(CWO) procedure. In this section, we propose a clique-wise version of the MDC

algorithm, which is inspired by Bouvrie’s algorithm [23]. Its pseudocode is given

in Algorithm 3. To keep the procedure as simple as possible, we consider only the

smallest cliques, i.e. edges in the Comraf graph G. In contrast to the original MDC

that iterates over nodes in G, the CWO version iterates over edges, in a round-robin

fashion. For every edge eii′ , the algorithm performs the MPE optimization of a

portion of G that consists of only one edge eii′ and its vertices Xc
i and Xc

i′ . This

optimization is performed independently of the rest of the model. The best values of

Xc
i and Xc

i′ found during this optimization step are then used as initial values for the

next optimization steps.

In this setup, an application of hierarchical clustering appears unnatural: after

the j-th optimization iteration over one clique, the constructed clusterings xc
i,j and

xc
i′,j are supposed to have the desired number of clusters (ki and ki′ respectively).

Using these clusterings as initial values of further optimization steps leaves no room

for exploring the clustering hierarchy. For this reason, and also for simplicity, at each

optimization step we apply a flat clustering method, similar to the sequential Infor-
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Input:
G – Comraf graph of nodes {Xc

1 , . . . , Xc
m} and edges E

Tii′ – contingency tables for each eii′ ∈ E
k1, . . . , km – the desired number of clusters for each node
S′

l = (i1i
′
1), . . . , (ili

′
l) – clustering schedule, where each pair ii′ corresponds to edge eii′

Output:
Most likely clusterings xc

1,l, . . . , x
c
m,l

Initialization:
For each i = 1, . . . , m do

Distribute all values of Xi uniformly at random over ki clusters
Main loop:
For each (iji

′
j) from S′

l do
For each value x of Xij

do
Pull x out of its current cluster
Place x into a cluster, s.t. I(X̃ij

; X̃i′
j
) is maximized

For each value x of Xi′
j
do

Pull x out of its current cluster
Place x into a cluster, s.t. I(X̃ij

; X̃i′
j
) is maximized

Algorithm 3: Clique-wise MDC.

mation Bottleneck [96]. Quite surprisingly, the results of this flat clustering procedure

are comparable to the ones of the original (more complex) MDC (see Section 4.6.5).

The computational complexity of each sequential optimization step is O(k2|X|),

where |X| is the size of the largest support among the variables in X, and k is the

largest final number of clusters. The number of iterations is O(m2), as the number of

edges in graph G is in the worst case quadratic in the number of combinatorial random

variables. The resulting complexity is then O(m2k2|X|), which is asymptotically

linear in the size of the data. However, the constants can be very large. Still, in

practical cases, Comraf models are very compact such that the m2 constant is not

restrictive, and the clique-wise MDC is substantially faster than its original ICM-

based version.

4.5 Related work

The study of distributional clustering based on co-occurrence data using informa-

tion theoretic objective functions was initiated by Pereira et al. [88]. Much of the

subsequent related work is inspired by that paper and the Information Bottleneck
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(IB) ideas of Tishby et al. [106]. In this context, the first work considering two-way

clustering of both words and documents is by Slonim and Tishby [99], which is subse-

quently improved by El-Yaniv and Souroujon [39], and then more thoroughly studied

by Dhillon et al. [35].

The more general Multivariate Information Bottleneck (mIB) framework [97] also

considers simultaneous clusterings based on interaction between variables, as we pro-

pose here. For two variables (bi-modal clustering) the algorithm proposed here can

be viewed as a particular implementation of the “hard case” of mIB. However, for

more than two variables, the framework we propose here is not a special case of the

mIB framework since the interactions between variables in mIB are described via

a directed Bayesian network, in which cycles cannot be factorized to pairwise de-

pendencies (see Section 4.1). Our scheme employs undirected graphs that represent

pairwise interactions, and therefore do not preclude loops. It is important to note

that our clustering algorithm (MDC) is inspired by the sequential IB method [96].

Finally, we note that the idea of multi-modal clustering also appears in Bouvrie [23],

where multiple clusterings are constructed by an iterative application of a bi-modal

clustering algorithm, and the resulting system is applied to computer vision tasks.

4.6 Experimentation: email clustering

In this section, we present our experimental results on the document clustering

task. Two particular tasks we consider are similar to each other: (a) automatic

categorization of email into folders; (b) automatic routing of newsgroup messages

into appropriate newsgroups.

Email foldering is a rich and multi-faceted problem, with many difficulties that

make it different from traditional topic-based categorization. Email users create new

folders, and let other folders fall out of use. Email folders do not necessarily corre-

spond to simple semantic topics—sometimes they correspond to unfinished todo tasks,
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project groups, certain recipients, or loose agglomerations of topics. It is important

to note that email content and foldering habits differ drastically from one email user

to another—so while automated methods may perform well for one user, they may

fail horribly for another. In this thesis, however, we test the Comraf’s performance

on email clustering under a simplifying assumption that folders roughly correspond

to semantic topics. In our future work, we will adapt our clustering system to specific

needs of particular users.

Despite the fact that clustering is rarely used as a stand-alone application—it

is usually a part of another, more global task—we choose to focus on evaluating

the quality of the clustering results per se, i.e. not with respect to the global task.

This way, our evaluation is not skewed by various aspects of a particular real-world

problem.

4.6.1 Evaluation measure

Following [96, 35] and many other works, we use micro-averaged accuracy for

evaluation of our clustering methods. Let xc be a clustering of the data X . Let T be

the set of ground truth categories. We fix the number of clusters to match the number

of categories |xc| = |T | = k. For each cluster x̃j, let γT (x̃j) be the maximal number

of x̃j’s elements that belong to one category. Then, accuracy Acc(x̃j, T ) of a cluster

x̃j with respect to C is defined as Acc(x̃j, T ) = γT (x̃j)/|x̃j|. The micro-averaged

accuracy of the clustering xc is:

Accm(xc, T ) =

∑k
j=1 γT (x̃j)

∑k
j=1 |x̃j|

=

∑k
j=1 γT (x̃j)

|X |
. (4.7)

In Section 4.6.5 also present macro-averaged accuracy results, where the macro-

averaged accuracy is defined as:

AccM(xc, T ) =

∑k
j=1 Acc(x̃j, T )

k
. (4.8)
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Figure 4.3. Comraf graphs for 2-modal, 3-modal and 4-modal Comrafs used in our
experiments. We consider interactions between combinatorial random variables that
correspond to documents Dc, words W c, email correspondents Cc and email Subject
lines Sc. Note that we use only tree-structured models, as they are simpler than
loopy models and on the email foldering task they show comparable results to those
obtained with loopy models (see Section 4.6.6 for a discussion). In Section 4.8 we
present a result when a loopy model is significantly superior to a tree-structured one.

4.6.2 Datasets

We evaluate the Comraf models on six text datasets. In addition to the standard

benchmark 20 Newsgroups dataset (20NG) we use five real-world email directories.

Three of them belong to participants in the CALO project7 and the other two belong

to former Enron employees.8

On the 20NG dataset we apply a bi-modal Comraf where the modalities are mes-

sages (documents) and words. CALO and Enron datasets are particularly useful for

evaluating 3-modal and 4-modal Comrafs. Here we take as variables (1) messages;

(2) words; (3) people names associated with messages—we consider the entire list of

correspondents (both senders and recipients); and (4) email Subject lines, represented

by their bags of words. Comraf graphs for the three setups are given in Figure 4.3.

Table 4.1 provides basic statistics of the six datasets. For details on collecting the

CALO and Enron data, see [14]. Below we briefly describe the data and preprocessing

steps undertaken.

7http://www.ai.sri.com/project/CALO

8The Web page of the original Enron Email Dataset is http://www.cs.cmu.edu/~enron. Our
preprocessed Enron email directories can be obtained from http://www.cs.umass.edu/~ronb/

enron_dataset.html.
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Dataset Size Min/max Number of Number of Number of
class size distinct words correspondents classes

CALO:acheyer 664 3/72 2863 67 38
CALO:mgervasio 777 6/116 3207 61 15
CALO:mgondek 297 3/94 1287 50 14
Enron:kitchen-l 4015 5/715 15579 2278 47
Enron:sanders-r 1188 4/420 5966 933 30
20NG 19997 997/1000 39764 N/A 20

Table 4.1. Statistics of email datasets. Number of distinct words and number
of correspondents are after preprocessing.

4.6.2.1 20 Newsgroups

The 20 Newsgroups (20NG) corpus contains 19997 messages taken from the Usenet

newsgroups collection.9 Each message is assigned into one or more semantic categories

and the total number of categories is 20, all of which are of about the same size. Most

of the documents have only one semantic label, however it turns out that about 4.5%

of documents have two or more labels. Those documents are simply duplicated in the

dataset (one copy per category). In this thesis, for easier replicability of our results,

we decided to refrain from taking steps of any kind to resolve the duplication issue.

We preprocess the 20NG dataset as described in [11]. First, we remove message

headers and markup (such that only the subject lines and actual text remained).

Next, we filter out lines that seem to be part of binary files sent as attachments

or pseudo-graphical text delimiters. A line is considered to be a “binary” (or a

delimiter) if it is longer than 50 symbols and contains no white spaces. Overall, we

remove 23057 such lines (most of them appeared in a handful of articles). Finally,

we represent documents as their Bags-Of-Words, lower the case of letters and remove

stopwords as well as low-frequency words.

9http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
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4.6.2.2 Enron Email Dataset

The archived email from many of the senior management of Enron Corporation

was subpoenaed, and is now in the public record. The data consists of over 500,000

email messages from the email accounts of 150 people. The dataset is provided by

SRI after major clean-up and removal of attachments. The dataset version we use

was released on February 3, 2004.

Although the size of the dataset is large, many users’ folders are sparsely popu-

lated. We use the email directories of two former Enron employees: kitchen-l and

sanders-r. Those directories are among the largest ones in the dataset.

We remove standard non-topical folders “all documents”, “calendar”, “contacts”,

“deleted items”, “discussion threads”, “inbox”, “notes inbox”, “sent”, “sent items”

and “ sent mail”. We then flatten all the folder hierarchies and remove all the

folders that contain fewer than three messages. We also remove the X-folder field in

the message headers that actually contains the class label. As for 20NG, we finally

represent documents as their Bags-Of-Words, lower the case of letters and remove

stopwords and low-frequency words.

4.6.2.3 CALO Email Dataset

A smaller but also significant corpus of real-world, foldered email has been created

as part of the CALO DARPA/SRI research project. This corpus consists of snapshots

of the email folders of 196 users, containing approximately 22,000 messages. From

the February 2, 2004 snapshot of CALO directories, we select three users with large

number of messages: acheyer, mgervasio, and mgondek. As in the preprocessing

step of the Enron datasets, we first remove standard non-topical folders (“Inbox”,

“Drafts”, “Sent” and “Trash”). Then the folder hierarchy is flattened, and folders

that contain fewer than three messages are removed. Finally, as for all the other
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datasets, we represent documents as BOW, lowercase the text and filter out stopwords

and low-frequency words.

4.6.3 Baseline algorithms

We compare the performance of Comraf clustering algorithms with the following

five well known benchmark clustering algorithms:

1. K-means. We use the SimpleKMeans implementation of WEKA [112];

2. Agglomerative Information Bottleneck (aIB). A simple, deterministic

uni-modal Information Bottleneck clustering algorithm [98];

3. Sequential Information Bottleneck (sIB). A randomized uni-modal Infor-

mation Bottleneck clustering algorithm [96], which exhibited striking perfor-

mance in the text domain;

4. Information-theoretic co-clustering (ITCC). A bi-modal clustering algo-

rithm [35] (see Section 4.1);

5. Latent Dirichlet Allocation (LDA). A popular generative model for repre-

senting document collections, proposed by Blei et al. [22]. Each document is

represented as a distribution of topics, and parameters of those distributions are

learned from the data. Documents are then clustered based on their posterior

distributions (given the topics). We use Xuerui Wang’s LDA implementation

[78] that applies Gibbs sampling with 10000 sampling iterations.10

Note that the latter three algorithms are widely considered to be state-of-the-art in

unsupervised text categorization.

10We also tried David Blei’s LDA-C [22] that implements variational approximation and obtained
significantly inferior accuracy.
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To gain some perspective on the performance of the unsupervised methods we

tested, we also report on the results of a trivial “random clustering”, which simply

places each document in a random cluster. At the other extreme, we report on

the categorization accuracy of a supervised application of a support vector machine

(SVM), applied with linear kernel and with cross-validated parameter tuning (using

the same setup as described in Bekkerman et al. [11]). We stress that the supervised

categorization accuracy cannot be directly compared with the clustering accuracy,

however, it provides some perspective on on datasets’ “complexities”.

4.6.4 Implementation details

The following technical details are important for replicating our experimental

results:

1. Unless stated otherwise, we use the bottom-up scheme for documents and the

top-down scheme for all the other clusterings.

2. As discussed in Section 4.3, we merge each document cluster with its closest

peer. Following Slonim & Tishby [98], we choose the Jensen-Shannon divergence

between clusters as the underlying “metric”.

3. At the MDC’s last iteration (at which the required number of document clus-

ters is obtained), we apply the optimization routine after merging each pair of

clusters.

4. We perform 10 random restarts at each iteration of MDC. For a fair comparison,

we perform the same number of random restarts in our implementations of both

sIB and ITCC algorithms.

5. We use the same clustering schedule Sl for every dataset. The schedule starts

with splits of top-down clusters—as discussed in Section 4.3, it cannot start with

a merger of document clusters otherwise the objective function (4.3) would be
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0. Also, we notice that it is not beneficial to start merging document clusters

before a significant number of word clusters is obtained, otherwise the objec-

tive function is still too close to 0. Thus, before doing the first iteration over

documents, we perform four iterations over words, and continue with a plain

(non-weighted) round-robin then.

4.6.5 Comparative results

Micro-averaged accuracy (averaged over ten independent runs,11 whenever appli-

cable) for the six datasets is reported in Table 4.2. It is evident that the results of our

bi-modal Comraf clustering (with the underlying MDC algorithm) are significantly

superior to those obtained by other methods. The only statistically insignificant im-

provement is recorded for MDC over sequential IB on the CALO:acheyer dataset;

all the other gaps are statistically significant. Of particular importance is the striking

69.5% micro-averaged accuracy achieved by the bi-modal MDC on 20NG.12 This im-

pressive result is 12% higher than the best previously reported result on this dataset.

Specifically, a micro-averaged accuracy of 57.5% on 20NG is reported for sIB in [96].

This result is obtained with only 2,000 “most discriminating” words. Also, in that

work, duplicated and small documents are removed, leaving only 17,446 documents.

In our implementation of sIB, our use of almost 40,000 words leads to 61% accuracy

on the entire dataset of 19,997 documents. More than 5% absolute improvement is

also obtained on Enron:kitchen-l and CALO:mgondek datasets.

11Randomized algorithms, such as MDC, may obtain different results each time they are applied
to the same dataset. We perform ten independent runs of each randomized algorithm on the same
data, and compute the mean of the obtained results, as well as the standard error of the mean.

12In [10] we reported on a slightly better result of MDC on 20NG. This better performance was
obtained using a cluster balancing heuristic that reduced the probability of small clusters to be
further split and of large clusters to be further merged. Later we discovered that this heuristic is
not uniformly effective across datasets and we therefore abandoned it.
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Method CALO: CALO: CALO: Enron: Enron: 20NG
acheyer mgervasio mgondek kitchen-l sanders-r

Random 17.8 ± 0.5 18.3 ± 0.3 32.4 ± 0.1 17.9 ± 0.1 35.4 ± 0.1 6.3 ± 0.1
K-means 24.7 24.1 37.0 29.6 45.5 OOM
Agglom. IB 36.4 30.9 43.3 31.0 48.8 26.5
Sequent. IB 47.0 ± 0.5 35.1 ± 0.6 68.2 ± 1.2 34.6 ± 0.5 63.1 ± 0.6 61.0 ± 0.7
ITCC 46.1 ± 0.3 34.2 ± 0.5 63.4 ± 1.1 31.8 ± 0.2 60.2 ± 0.4 57.7 ± 0.2
LDA 44.3 ± 0.4 38.5 ± 0.4 68.0 ± 0.8 36.7 ± 0.3 63.8 ± 0.4 56.7 ± 0.6
2-modal Comraf 47.8 ± 0.4 42.4 ± 0.4 75.9 ± 0.6 42.4 ± 0.6 67.4 ± 0.3 69.5 ± 0.7
(sequential)
2-modal Comraf 47.1 ± 0.4 44.0 ± 1.0 75.5 ± 0.5 41.6 ± 0.8 67.6 ± 0.3 67.2 ± 0.8
(shuffled)

SVM 65.8 ± 2.9 77.6 ± 1.0 92.6 ± 0.8 73.1 ± 1.2 87.6 ± 1.0 91.3 ± 0.3
(supervised)

Table 4.2. Micro-averaged accuracy (± standard error of the mean, when appli-
cable) on the six datasets. The SVM supervised classification accuracies are obtained
with 4-fold cross validation. “OOM” means “out of memory”: WEKA was unable to
cluster 20NG, on a 4GB RAM machine. Bold numbers are the best results over all.

Surprisingly, on CALO and Enron datasets, the sequential version of MDC and

its shuffled version obtain almost identical results (the difference is statistically in-

significant). Note that in both versions we perform the same number of optimization

steps. However, on 20NG, sequential MDC is significantly superior. This can be

explained by the fact that sequential MDC is guaranteed to iterate over all the data

instances, while shuffled MDC is not. On smaller datasets (CALO and Enron), the

number of optimization steps is large enough to make the shuffled version iterate over

(almost) every data instance. On a larger dataset (20NG), however, shuffled MDC

is less likely to iterate over every data instance, and therefore is sub-optimal.

Table 4.3 shows macro-averaged accuracy results on CALO and Enron datasets.

Compared with micro-averaged accuracy, macro-averaged accuracy favors smaller

clusters over larger clusters. We can see in the table that Comraf’s sequential MDC

method is still significantly better than the baselines (here we show the results of

only three most prominent baselines: sIB, ITCC and LDA). The only exception

is an insignificant improvement MDC achieves over sIB on the Enron:kitchen-l
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Method CALO: CALO: CALO: Enron: Enron:
acheyer mgervasio mgondek kitchen-l sanders-r

Sequent. IB 57.4 ± 0.7 53.1 ± 0.7 65.9 ± 0.6 46.7 ± 0.4 69.2 ± 0.7
ITCC 57.3 ± 0.4 50.0 ± 1.2 67.0 ± 0.8 43.3 ± 0.4 65.6 ± 0.4
LDA 53.0 ± 0.6 52.2 ± 0.8 63.6 ± 0.7 39.1 ± 0.2 66.7 ± 0.2
2-modal Comraf 59.9 ± 0.5 58.5 ± 0.7 76.9 ± 0.8 47.0 ± 0.7 74.6 ± 1.1
(sequential)

Table 4.3. Macro-averaged accuracy (± standard error of the mean) on CALO
and Enron datasets. Each number is an average over ten independent runs. Bold
numbers are the best results over all.

dataset. Note that the macro-averaged accuracies shown in Table 4.3 are in most

cases higher than micro-averaged accuracies (Table 4.2). This implies that small

clusters constructed by the discussed clustering methods are generally cleaner than

large clusters.

As shown in Table 4.4, our tri-modal Comraf (documents/words/correspondents)

consistently improves the bi-modal Comraf performance on the CALO email datasets.

On mgervasio, the addition of correspondents’ modality leads to an impressive ab-

solute improvement of 10%. On Enron email, however, tri-modal Comraf shows

mixed results: a significant improvement on sanders-r and a drop on kitchen-

l. A closer inspection reveals that the email correspondent input stream in Enron

datasets is extremely noisy. That is, the information on the same person can be

represented in dozens of different formats, delimiters between separate records are

sometimes non-existent, and many email messages have very long lists of recipients

(which would probably imply that email data not always strongly correlate with the

recipient data).

When comparing the ICM and CWO optimization methods for Comrafs (see Sec-

tion 3.3), we can see that ICM usually outperforms CWO. However, CWO is a some-

what simpler and significantly faster method (for a discussion, see Section 4.4).

Our experimentation with 4-modal Comraf (documents/words/correspondents/

subject lines) on the CALO datasets shows further (insignificant) improvement over
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Method CALO: CALO: CALO: Enron: Enron:
acheyer mgervasio mgondek kitchen-l sanders-r

2-modal Comraf—ICM 47.8 ± 0.4 42.4 ± 0.4 75.9 ± 0.6 42.4 ± 0.6 67.4 ± 0.3
3-modal Comraf—ICM 49.1 ± 0.4 52.4 ± 0.7 80.1 ± 0.7 40.2 ± 0.3 69.0 ± 0.4
3-modal Comraf—CWO 47.2 ± 0.3 48.4 ± 0.5 76.1 ± 1.2 39.5 ± 0.5 63.9 ± 0.2
4-modal Comraf—ICM 50.2 ± 0.6 54.1 ± 0.5 80.9 ± 0.5 34.2 ± 0.2 63.1 ± 0.4
4-modal Comraf—CWO 47.6 ± 0.2 48.6 ± 0.6 78.7 ± 1.1 38.7 ± 0.4 63.4 ± 0.4

Table 4.4. Micro-averaged accuracy (± standard error of the mean) on CALO
and Enron datasets. Each number is an average over ten independent runs. Comrafs
models are 2-modal, 3-modal and 4-modal, with the sequential optimization applied
at each node. Bold numbers are the best results over all.

the tri-modal Comraf performance. On Enron, in contrast, a significant drop can be

observed. An important observation is that the subject line modality is substantially

sparser than other modalities in the Enron datasets. It is evident that the addition of

a sparse modality appears to be non-beneficial for multi-modal clustering. A formal

method for learning a Comraf model structure is emerging, which we leave for our

future work (for a discussion, see Section 4.6.6 below).

4.6.5.1 Experimentation with clustering schedule

On CALO data, we test another algorithmic setup of the bi-modal MDC, in which

both words and documents are clustered bottom-up. The results are very similar to

our original bi-modal MDC accuracies. However, this setting is not applicable to

larger datasets: taking constants into account, on the 20NG dataset the bottom-up

version of MDC would be 300 times slower than the original (top-down / bottom-up)

MDC.

In addition, we test a reverse clustering schedule, where we apply bottom-up

clustering to words and top-down clustering to documents. On the 20NG dataset,

we perform five splitting iterations over documents (obtaining 32 clusters) and then

apply the last exhaustive clustering iteration as explained in Section 4.6.4, reduc-

ing the number of clusters to 20. The micro-averaged clustering accuracy obtained

by the reverse schedule is 69.3 ± 0.4%, which is statistically indistinguishable from
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Figure 4.4. Clustering accuracies as a function of the length of local search in
sequential MDC: ‘0.5’ on the x-axis means that the MDC’s optimization routine was
executed over one half of the data points (chosen uniformly at random), while ‘3’
means that the optimization routine was executed over every data point 3 times. All
our results are averaged over 10 independent runs.

the the original MDC’s performance. Note that the reverse scheme is significantly

faster than the original MDC (8 clustering iterations vs. 21 iterations on 20NG). On

email datasets, similar results are obtained in three of the five cases, whereas in two

others the reverse schedule shows significantly poorer performance (3% decrease on

CALO:mgervasio and 7% decrease on Enron:kitchen-l).

4.6.5.2 Experimentation with the length of local search

Figure 4.4 presents the micro-averaged clustering accuracy of sequential MDC

(in a bi-modal Comraf) as a function of the length of local search performed in the

lattices of all possible word and document clusterings. Recall that in Algorithm 2
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we perform a local search (i.e. an optimization phase), in which every data point is

sequentially pulled out of its cluster and assigned into a cluster such that the objective

function is maximized. In their sequential IB algorithm, Slonim et al. [96] propose

to execute such an optimization routine a number of times, up to the convergence

of the objective function to its local maximum. Their approach has a drawback

of a potentially unlimited execution time: while it is guaranteed that the objective

function occasionally converges, it is uncertain how long this can take.

In our MDC’s implementation, we perform the optimization routine twice (see

Section 4.3), in order to approach the local maximum, while not setting our stopping

criterion at achieving the full convergence. In this section, we ask the question whether

or not the length of the local search is a crucial parameter of our system. Our

experiment is conducted as follows: in a bi-modal Comraf, we set the length of

the optimization routine to be a function of the number of data points (words or

documents). We start with the case where we explore only one quarter of the data

(chosen uniformly at random), then we try one half, and then we perform from 1 to 4

full passes (over all the data points). We perform this experiment on 4 email datasets

(excluding the large kitchen-l and 20NG collections).

As can be seen on Figure 4.4, the correlation of local search length and the cluster-

ing accuracy is quite weak, as soon as at least one pass over all the data is performed.

In some cases, shorter searches are quite effective (such that the one on mgondek),

while in the others (sanders-r) a significant drop is recorded. Searches longer than

two data sizes are generally not beneficial: while a (rather insignificant) improvement

can usually be seen, the run time increase trades off against this improvement.

Finally, let us emphasize that we approximate a local maximum of our objective

function. Following Slonim [95], we note that obtaining a global maximum is very

unlikely in our non-convex combinatorial optimization environment, where (in the

worst case) all possible configurations should be tested in order to achieve a global
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Figure 4.5. Experimenting with various Comraf graphs on mgervasio.

optimum. Since the number of possible configurations is astronomical even in the

smallest real-world setups, approximating a global maximum is practically impossible.

4.6.6 Model analysis

As shown in Section 4.6, multi-modal clustering based on more than two entities

may or may not improve performance relative to the bi-modal clustering. Given a

Comraf graph (and the corresponding pairwise data), an interesting question is which

of the pairwise interactions can contribute useful information to clustering the target

variable.

We investigate this problem with respect to the mgervasio dataset. Specifically,

we test all possible Comraf graphs and measure their effectiveness in accurately clus-

tering the target variable. Figure 4.5 summarizes our findings (for better visibility,

we present only the most interesting cases). As can be seen at the figure, the choice
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of a Comraf graph can dramatically affect the clustering performance (within a 15%

accuracy range). Also, this experiment illustrates the fact that model learning is

feasible in Comrafs (which usually contain a small number of nodes).

Some variables can be crucial for obtaining good clustering results, while some

others can be unnecessary or even harmful. For example, when substituting the

words variable with email subjects, a decrease in the results can always be seen (nat-

urally, email bodies provide more information than email subjects). In contrast, the

correspondents variable plays a positive role in foldering email of mgervasio. Some-

what surprisingly, the bi-modal documents/correspondents clustering setup leads to

a 6% absolute improvement over the ordinary documents/words setup. A possible

explanation is that most of the folders in this dataset are created according to people

groups in the email owner’s social network.

Some interactions are more important than others. For example, in the docu-

ments/correspondents/titles triangle, a missing documents/correspondents interac-

tion can cause a 10% drop in the accuracy. However, when crucial interactions are

selected, adding other interactions would not significantly affect the performance,

but rather will add a certain computational burden. Therefore, a desirable goal

would be to select only crucial interactions, which are the ones presented in Fig-

ure 4.3. When using the CWO inference method, however, constructing the full

Comraf graph is sometimes beneficial. For example, in a tri-modal setting, the ad-

dition of the correspondents/words interaction leads to a significant improvement

in the (micro-averaged) document clustering accuracy on three of the five datasets:

51.1±0.4% vs. 48.4±0.5% on mgervasio, 42.2±0.4% vs. 39.5±0.5% on kitchen-l,

and 68.8 ± 0.2% vs. 63.9 ± 0.2% on sanders-r.
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4.6.7 Multi-modal clustering for social network analysis

The goal of multi-modal clustering presented in this chapter can be not only to

document clustering, but also word clustering or clustering of people for the purposes

of social network analysis. We apply our tri-modal Comraf to simultaneously clus-

ter email messages, their words and correspondents, and evaluate the quality of the

constructed clusters of email correspondents. To obtain the ground truth data, we

asked Dr. Melinda Gervasio, the creator of the CALO:mgervasio email directory,

to classify her 61 correspondents to semantic groups. She created four categories:

SRI management, SRI CALO collaborators, non-SRI CALO participants and other

SRI people not involved in the CALO project.

We evaluate two clusterings—one constrained to produce four clusters, the other

to produce eight. Both produced results are highly correlated with Melinda Gervasio’s

labelings. In our four-cluster setup, the category of SRI management is united with

the category of non-SRI people, while the category of SRI CALO collaborators (the

largest one) is split to two clusters. The forth category (other SRI people) forms a

single clean cluster, and the borders between the categories are successfully identified,

leading to 62.3 ± 1.4% accuracy averaged over four independent runs.

In the eight-cluster result, categories of SRI management and non-SRI people are

almost perfectly split to two different clusters, while other SRI employees still form

one cluster, and the category of SRI CALO participants is now distributed over five

clusters, one of which contains only one person who is Melinda Gervasio herself. The

overall precision of the eight-cluster system is as high as 76.6 ± 2.8%.

4.7 Experimentation: Web appearance disambiguation

In this section, we illustrate the application of Comraf clustering to a real-world

task. In [13] we introduced Web appearance disambiguation (WAD) as the problem

of inferring a model M that provides a binary function f(d, h,K) answering whether
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or not a Web page d refers to a particular person h, given the background knowledge

K. For simplicity, we consider only the case when h’s name is explicitly mentioned

in the page d. The problem might be easy when h’s name is unique, but becomes

difficult when h has a common name, such as “Tom Mitchell”. Moreover, we do not

know a priori whether a given person h has a unique name or not.

Note that the WAD problem is similar to, but not a special case of the problem

of person name disambiguation. In person name disambiguation, given a collection

of documents all of which mention a person name, the goal is to distinguish between

documents that mention different people who have this name. In WAD, in contrast,

the goal is to find a subset of the document collection in which the person of interest

is mentioned, while filtering out documents that mention unrelated namesakes. To

our opinion, the WAD setup is more realistic than person name disambiguation in the

context of Web search, where one is usually interested in finding information about

a particular person, rather than about all people with the same name.

As perfect background knowledge K is in most cases unavailable, the disambigua-

tion decision must be made using some limited available information. Note that given

no background knowledge at all, the WAD problem becomes ill-defined: in order to

automatically perform the task, the person h must have an electronic representation,

which cannot be constructed without any prior knowledge about the person. If K

includes training data—pages that are related or unrelated to the person—the WAD

problem is reduced to a binary classification task. In this thesis, however, we consider

an unsupervised scenario.

We notice that as soon as we are given not just one, but at least two names of

people who are known to belong to one social network, the WAD problem becomes

well-defined and solvable. An example can be “Tom Mitchell” and “William Cohen”.

Since William Cohen’s name appear in conjunction with Tom Mitchell’s, it is appar-

ent that we refer to William Cohen the CMU Professor, and not to the former US
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Secretary of Defense. It is a rare case that two people in one social network have two

namesakes in another. However, the probability of having a collision like that is not

zero. We can minimize this probability by considering N > 2 names. To summarize,

our background knowledge K is a list of names of people who are believed to belong

to h’s social network.

In a recent followup paper [113], Yang et al. claim that obtaining a few names

of people who belong to the same social network is very hard. However, it is usu-

ally not the case. In many real-world cases a person name appears in a context of

other people’s names. These can be co-authors of a scientific paper, recipients of the

same email message, attendants of a meeting or a conference etc. It is important to

note that two people can belong to the same social network without even knowing

each other. For instance, given two randomly chosen names of machine learning re-

searchers h1 and h2, who may or may not be acquaintances, the disambiguation task

is nevertheless likely to be solved, as Web pages referring to h1 and h2 are likely to

be close in content, or close in the Web graph (the graph of hyperlinks).

In this section, we address the WAD problem as a clustering task in a Comraf.

For each person h (out of a list of N people from one social network), we retrieve

nh documents that mention h’s name. The resulting collection of N · nh documents

is clustered using the MDC method in a Comraf. For this task, our Comraf model

is very simple (see Figure 4.3 left): we simultaneously cluster documents are their

words.

Out of the k document clusters constructed, we choose one cluster to be the

subset of documents that mention people of interest, and we delete all the other

clusters that potentially mention unrelated namesakes. Our criterion for choosing

the “relevant” cluster is the level of interconnectedness of documents in the cluster:

for each document di we construct a set Li of its hyperlinks (see Section 4.7.4 for

the precise definition of Li); for each document cluster cj we construct a set CLj =
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⋃

(di,di′ )∈cj
(Li ∩ Li′), i.e. the union of pairwise intersections of hyperlink sets; finally

we cluster c with the largest set CL. In Section 6.6.1 we propose another, possibly

more adequate solution to the WAD problem.

4.7.1 Related work

Prior to our paper [13] where the WAD framework was introduced, only a handful

of papers addressed the problem of person name disambiguation. Some work was

done on person name disambiguation in a collection of scientific papers [51]. In the

Web domain, we are aware of three related works [4, 74, 43], within the general frame-

work of entity coreference (see, e.g. [83, 49]). Agglomerative clustering is applied in

all three. Bagga and Baldwin [4] use agglomerative clustering over traditional vector

space models of text windows around a personal name mention. Mann and Yarowsky

[74] propose a richer document representation involving automatically extracted fea-

tures. Their clustering technique however can be basically used only for separating

two people with the same name. Fleischman and Hovy [43] construct a MaxEnt clas-

sifier to learn distances between documents that are then clustered. This method

needs to be provided with a large training set. Since 2005, many followup papers

have been published, see [76, 111, 113] and about 30 others.

4.7.2 Evaluation criterion

To define our evaluation criterion, let c be the constructed cluster of documents

that we believe refer to people of our interest, and let cr be its portion consisting of

documents that actually refer to people of our interest. Let Dr be a portion of the

dataset D, that consists of documents referring to people of our interest. Precision

of the cluster c is then defined as Prec = |cr|/|c|, recall as Rec = |cr|/|Dr|, and

F-measure, standardly, as (2 Prec Rec)/(Prec+Rec).
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4.7.3 WAD dataset

For evaluation of our methods, we gathered and labeled a dataset of 1085 Web

pages. In this section we describe the dataset and provide some interesting insights

into its structure.

From the Feb 2, 2004 snapshot of the CALO email data (see Section 4.6.2), we

selected one folder from Dr. Melinda Gervasio’s email directory and extracted 12

person names that appeared in headers of messages found in this folder. The names

are primarily of SRI employees and CS professors from various universities. All of

the individuals are likely to be present on the Web.

In May 2004, these 12 names (in quotation marks, i.e. treated as phrases) were

issued as queries to Google and for each query the first 100 pages were retrieved. We

manually filtered the pages, removing pages in non-textual formats, HTTPD error

pages and empty pages. We labeled the remaining pages by the occupation of the

individuals whose name appeared in the query. In 10 out of 12 cases, the names were

heavily ambiguous, thus pages representing 187 different people were retrieved given

the 12 names of people in Melinda Gervasio’s social network. In some cases, it was

difficult to decide to which of the namesakes the page referred. To determine this, we

often performed manual Web investigations. Table 4.5 shows some statistics of the

dataset.

Finally, all the pages were cleaned of their HTML markup and scripts. All the

URLs mentioned in the pages were extracted and placed at the end of each page,

together with the URL of the page itself. The dataset is publicly available at http:

//www.cs.umass.edu/~ronb/name_disambiguation.html.

The most ambiguous personal name among the twelve is Tom Mitchell. Although

the CMU Professor’s pages are prevalent over all the others, 37 different Tom Mitchells

can be distinguished in the 100 first Google hits, including professors in different fields,

musicians, executive managers, an astrologist, a hacker and a rabbi. Two personal
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Person name Position Number of Number of Number of
pages categories relevant pages

Adam Cheyer SRI Manager 97 2 96
William Cohen CMU Professor 88 10 6
Steve Hardt SRI Engineer 81 6 64
David Israel SRI Manager 92 19 20
Leslie Pack Kaelbling MIT Professor 89 2 88
Bill Mark SRI Manager 94 8 11
Andrew McCallum UMass Professor 94 16 54
Tom Mitchell CMU Professor 92 37 15
David Mulford Stanford Undergrad 94 13 1
Andrew Ng Stanford Professor 87 29 32
Fernando Pereira UPenn Professor 88 19 32
Lynn Voss SRI Engineer 89 26 1

OVERALL: 1085 187 420

Table 4.5. Statistics of the WAD dataset. Categories are different namesakes
or other in case if the page does not refer to any of the namesakes. The last column
shows the number of pages that actually mention the person of our interest.

names out of the 12, Adam Cheyer and Leslie Pack Kaelbling, seem to be unique

in the Internet. However, for either of them, one page was retrieved that did not

contain any part of their names. These two pages were put into respective categories

other. Two other people, David Mulford and Lynn Voss, seem to have very little

Web presence. Only one page out of the 100 was related to any of the two. William

Cohen’s and David Mulford’s namesakes are well known politicians: the former US

Secretary of Defense William S. Cohen and the current US Ambassador to India

David C. Mulford. Naturally, the distributions of Cohen’s and Mulford’s pages are

heavily biased toward the politicians who are well represented on the Web.

An interesting phenomenon is observed for the names David Israel and Bill Mark.

Many of pages that responded to these queries only accidently contain the two words

adjacent to each other: Bill Mark’s pages often refer to mark-ups of certain bills, or

just list people’s first names (e.g. “Thanks Bill, Mark!”), while some of David Israel’s

pages discuss Israeli history and King David. None of these pages were removed from

the dataset, despite the fact that they are clearly unrelated to a particular living

person.
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A major challenge for the WAD system is the pages of Bill Mark and Fernando

Pereira. Both researchers have namesakes who are also researchers in Computer

Science: another Bill Mark is a UTexas Professor, while another Fernando Pereira is

a Professor at Instituto Superior Técnico in Portugal. We term these pairs “doubles”.

To separate them is an especially difficult task. The opposite problem occurs with

Steve Hardt: he appears on the Web not only as an SRI engineer, but also as a creator

of an online game. We ourselves are actually unsure whether this is one person or

two different people, but most likely this is one person.

4.7.4 Baseline: link structure model

As our baseline, we propose a one-class clustering method based on link structure

analysis of Web pages (see [13] for some additional details).13 Let graph GLS =

(D,HL) be the Link Structure Graph over a set of Web pages D, where HL is a set

of hyperlink connections between Web pages in D. We say that two Web pages di

and di′ have a hyperlink connection, if the sets of their hyperlinks, Li and Li′ , have

a non-empty intersection: Li ∩ Li′ 6= ∅. Let us now define the set of hyperlinks.

For a Web page d, we define a function URL(d) to be the domain of d’s URL with

its first directory in case if this directory exists. For example. given page d1 with URL

http://www.cs.umass.edu/~ronb/timeline.html the function URL(d1) will return

www.cs.umass.edu/~ronb. Given page d2 with URL http://www.cs.umass.edu/

the function URL(d2) will return www.cs.umass.edu. By this, we capture the intu-

ition that full URLs can be too specific, while URLs’ domains can be too general.

Define a set POP to be a set of URLs with extremely popular domains, such as

www.amazon.com. The popularity of a domain is determined using operator :link

of Google’s command line. For a Web page d, define a set HOP (d) as a set of Web

pages that can be reached from d while following d’s hyperlinks.

13In [18] we proposed another link analysis method, based on a heuristic search in the Web graph.
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Figure 4.6. Relevant and irrelevant Web pages according to the Link Structure
model. Relevant pages are within the δ-radius from the Core Connected Component.
White, gray and black colors indicate that the pages are retrieved by three different
queries.

Definition 4.7.1 A set of hyperlinks Li of a Web page di is defined as

Li = (URL(di) ∪ URL(HOP (di))) \ POP.

That is, Li is di’s URL and URLs that appear in di, after a generalization (using the

function URL) and removal of URLs with too popular domains.

The graph GLS consists of a number of connected components. Our task is to

find a Core Connected Component (CCC) of Web pages that mention people of our

interest. We naturally expect Web pages from CCC to interconnect much more than

non-CCC Web pages would interconnect. Of special importance is that CCC pages

referring to different people are likely to interconnect, while non-CCC pages referring

to different people would probably not connect to each other. We could have decided

that the Maximal Connected Component (MCC) of graph GLS would be the core

connected component. However, there can be a case where the MCC consists only of

Web pages retrieved in response to a single query—this can happen when pages of

one person h are heavily interconnected. If this person h appears to be an irrelevant

namesake, such MCC will be totally irrelevant. Therefore, we come up with the

following definition:
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Definition 4.7.2 Denote Core Connected Component (CCC) c0 as the largest con-

nected component in GLS that consists of pages retrieved by more than one query.

Definition 4.7.3 The Link Structure Model MLS is a pair (CC, δ), where CC is the

set of all connected components of the graph GLS (note that c0 ∈ CC), and δ is a

distance threshold.

Our intuition is that the pages of the CCC and of a few connected components that

are close to the CCC refer to people of our interest, while the others do not. Figure 4.6

illustrates this intuition. To find the connected components that are close to CCC,

we apply the popular cosine similarity measure, while introducing a novel variation

of the tfidf term weighting function, that we call Google tfidf :

Google tfidf(w) =
tf(w)

log Google df(w)
, (4.9)

where Google df(w) is the estimated total results count of the term w if provided as

a query to Google. This document frequency count appears to be the most adequate

measurement of the commonness of the term w. The estimated total results counts

of words in our dataset were obtained using Google API.14

We do not explicitly set the distance threshold δ. Instead, given that in our dataset

(see Section 4.7.3) roughly one third of all Web pages refer to people of our interest,

we set δ such that one third of the pages in the dataset are within the threshold.15

4.7.5 Comparative results

Along with our baseline method from Section 4.7.4, we implemented greedy ag-

glomerative clustering (as applied in the related work [4, 74, 43]), based on the cosine

14http://www.google.com/apis/

15As in any unsupervised learning problem, the choice of the desired number of clusters or, dually,
of the cluster sizes, is a problematic issue. We do not attempt to address this issue here; instead,
we fix the size of the desired cluster based on our domain knowledge.
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Method Precision Recall F-measure

Agglomerative 61.7 53.3 57.2
Link Structure 84.2 71.8 77.5
2-modal Comraf 87.3 ± 1.7 71.3 ± 2.5 78.4 ± 0.9

Table 4.6. Web appearance disambiguation results. Bi-modal Comraf results
are averaged over 4 independent runs, with the standard error of the mean reported
after the ± sign.

similarity measure between clusters and the augmented tfidf weighting function from

Equation (4.9). We did not measure interconnectedness of the clusters, we simply

chose the cluster whose F-measure was the highest among all the clusters. The moti-

vation for this choice was that we would like to show that our methods overcome the

best possible results of agglomerative clustering.

The summary of the results is in Table 4.2. As it can be seen from the table, both

link structure and MDC methods significantly outperform agglomerative clustering,

while MDC shows slightly better performance than the link structure method. A

relatively high deviation in precision and recall of the MDC algorithm is caused by

the fact that it never ends up with clusters of exactly the same size. Interestingly,

this deviation almost does not affect the F-measure: the precision trades off quite

well against the recall.

Analyzing the results by person, we can see that for quite a few people both

precision and recall are amazingly high, e.g. for David Israel, Leslie Pack Kaelbling,

Andrew McCallum, and Andrew Ng. It is also notable that the only relevant page of

David Mulford (the Stanford student) is found. As could be anticipated, the worst

precision is for Bill Mark and and Fernando Pereira, because both of them have

“doubles”. However, only 9 of 23 pages that refer to Bill Mark the UTexas Professor

appear in the category of relevant pages. The worst recall is for Steve Hardt and

Adam Cheyer. This can be easily explained for Steve: most of his pages refer to an

online game he created—relevance of these pages would be too difficult to determine.
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Figure 4.7. Precision/recall curve of the MDC algorithm. Points correspond to
consequent iterations of the algorithm (merges of Web page clusters).

As for Adam, the low result is a bit surprising, but it still makes sense: Adam’s name

often appears in an industrial context, while the language of most correctly-found

pages is purely academic—many of Adam’s pages fall too far from the central cluster.

Unfortunately, the single relevant page about Lynn Voss was not found, probably for

the same reason: it uses an industrial vocabulary.

The problem of disambiguating the “doubles”—the two Bill Marks and two Fer-

nando Pereiras who all work in Computer Science—can in fact be handled within

the Comraf framework. At some intermediate stages during the course of the MDC

algorithm the most interconnected cluster is relatively small but extremely clean.

Figure 4.7 shows the precision/recall curve for one run of the MDC algorithm. It can

be seen in the graph that when the recall of the relevant cluster is around 45% (there

are five clusters overall), the precision is very high (above 98%).16 This cluster con-

tains two pages of Bill Mark the SRI Manager and none of the pages of Bill Mark the

UTexas Professor; it also contains 15 pages of Fernando Pereira the UPenn Professor

and only one page of Fernando Pereira the Professor of Instituto Superior Técnico.

16Notably, when the recall is around 15% (17 clusters overall), we obtain 100% precision.
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4.8 Experimentation: clustering scientific papers

In this section, we test the Comraf model on another type of data: a collection of

scientific papers. The goal of this experiment is as follows. From the model analysis

in Section 4.6.6 we can infer that in many cases tree-structured models perform com-

parably to loopy models. The question that we ask in this section is whether there

exists a case where a loopy model performs significantly better than a corresponding

tree-structured one. In Section 4.6.6 we provided an evidence for the advantage of

loopy models, where the underlying inference method is CWO. In this section, we

show the advantage of loopy models when the underlying algorithm is MDC.

The evidence given in this section has an important implication: as discussed in

Section 4.1, if a Comraf graph is tree-structured, then our objective function (4.3)

is a factorized version of Multi-Information (4.2). That is, Comraf models of a tree

structure are equivalent in their modeling power to the hard version of multivariate

Information Bottleneck (mIB) [97] where the Multi-Information is used. Loopy Com-

raf models, however, are not equivalent to mIB. As we show below, in some cases

loopy Comraf models obtain higher results than corresponding tree-structure ones,

which means that in those cases the Comraf framework is preferable over mIB.

Our dataset was created by David Mimno from a repository of scientific papers

collected for the REXA project.17 The dataset consists of 4887 conference papers,

published at ten venues: ACL, ICCV, ICRA, IJCAI, KDD, NIPS, SIGIR, SIGMOD,

STOC, and WWW. In our data, a significant number of papers belong to each of

the ten venues: between 224 and 933 papers. From the paper titles, we extracted

1436 words, each of which appeared in at least 2 titles. We also extracted 9841 words

from paper abstracts, each of which appeared in at least 2 abstracts. Citations in the

papers were automatically co-referenced using the REXA software system. Again, as

17http://rexa.info/
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38.8 ± 0.5% 40.7 ± 0.7% 55.0 ± 0.7% 61.4 ± 0.6% 63.9 ± 0.7%

Table 4.7. Clustering scientific papers. Comraf models for clustering: (a) doc-
uments and title words; (b) documents and citations; (c) documents, title words
and citations in a tree-structured model; (d) documents, title words and citations in
a loopy model; (e) documents and abstract words. The bottom line is the micro-
averaged clustering accuracy obtained by those models.

in the case of words, we removed citations that appeared in only one paper, resulting

in 11,143 distinct citations.

Our goal is to cluster documents by their venues. We consider five Comraf models

presented in Table 4.7. First, we test two bi-modal Comrafs, where documents D are

clustered with their title words WT and with their citations C. Second, we experi-

ment with two tri-modal Comrafs (tree-structured and loopy), where D, WT and C

are clustered simultaneously. Finally, we present a bi-modal Comraf for clustering

documents D and abstract words WA.

Our underlying clustering method is a sequential MDC (see Section 4.3). We

cluster words and citations top-down, while clustering documents bottom-up. Our

clustering schedule is a plain round-robin. The algorithm stops when the desired

number of document clusters (i.e. 10, which equals the number of venues) is reached.

The micro-averaged clustering accuracy results are presented in the bottom line of

Table 4.7. As can be seen, neither title words nor citations are good document repre-

sentations. Only about 40% accuracy is obtained in a bi-modal Comraf using either

title words or citations. However, the result of a tree-structured tri-modal Comraf

(where documents are clustered simultaneously with title words and citations) is no-
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tably 15% higher. Of particular importance is that adding the title words/citations

interaction improves this result by another 6% accuracy (on the absolute scale). Since

a loopy Comraf model like this is not equivalent to any model in the multivariate IB

framework, this result demonstrates the superiority of the Comraf modeling frame-

work over multivariate IB.18

The Comraf model that achieves the best performance on the scientific paper

clustering task is the one where papers are represented over words in their abstracts

(see the last column in Table 4.7). Adding another modality to this setup (such as

citations) causes a significant drop in the clustering accuracy. This result implies that

the abstract words’ modality is dense enough and much less noisy than title words or

citations. Whenever the abstracts’ data is available, using it would be preferable over

using the other modalities. However, if the abstracts’ data is unavailable, we show

that using a combination of two noisy modalities such as title words and citations

leads to almost the same result.

4.9 Experimentation: clustering documents by genre

So far, we have considered clustering documents by their topic. Topics, however,

are not the only way in which someone might want to select groups of documents.

Aspects such as genre, opinion, authorship, style, author’s mood, and so on are

interesting dimensions along which clustering results might break. In this section,

we focus on techniques appropriate for such non-topical clustering, with a particular

emphasis on genre. Although the field of non-topical (supervised) classification is

well explored in the literature (a lot of work was done on classification by genre

18Note that this is not the only advantage of Comrafs over multivariate IB models. The Comraf
framework is substantially simpler and more intuitive (e.g. the multivariate IB introduces in-space
and out-space concepts which are unnecessary in Comrafs). In contrast, Comraf inference algorithms
are more complex and effective than those proposed for the multivariate IB (see Section 4.6.5 for a
discussion).
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[59, 60, 42, 71, 92], by text authorship [77, 3], by writer’s gender [63], tone [107, 85]

and mood [82], as well as by familiarity with the topic of the discussion [64]), we

believe that the problem of genre clustering had not been comprehensively studied

before we approached it in [9, 15].

To apply the Comraf framework to the task of clustering by genre, we first have to

decide about modalities that would best match the task. Documents are labeled with

genres on the basis of external criteria such as intended audience, purpose and activity

type [70]. The notion of genre can be described in terms of the syntax/semantics

duality of text: documents of different genres use different syntactic constructions

and/or different vocabulary. It is not obvious whether syntactic or semantic features

play a major role in clustering documents by genre. We propose to take advantage

of both. Besides the document modality, we consider two other modalities: words

(that correspond to documents’ vocabularies) and Part-Of-Speech (POS) n-grams

(that correspond to the syntactic structure of text). POS n-grams are extracted from

sentences in an incremental manner: the first n-gram starts with the POS tag of the

first word in the sentence, the second one starts with the tag of the second word etc.

For example, out of the sentence

<PNP>It <VBZ>’s <AT0>a <AJ0>real <NN1>holiday <PUN>.

we extract four trigrams:

PNP_VBZ_AT0, VBZ_AT0_AJ0, AT0_AJ0_NN1, AJ0_NN1_PUN.

Given a document collection, let D be a random variable over its documents, W be

a random variable over its words, and S be a random variable over the POS n-grams

of its words. We apply a multi-modal Comraf model (Section 3) for constructing a

clustering dc∗ of documents, a clustering wc∗ of words and/or a clustering sc∗ of POS

n-grams, by maximizing the objective derived from Equation (4.3). In this section,

we consider four Comraf models for clustering by genre:
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Figure 4.8. Comraf graphs for: (a) 1-way document clustering with POS unigrams
as an observed r.v. (shaded node); (b) 2-way clustering of documents and POS
bigrams (same as for POS 3-grams or 4-grams); (c) 2-way clustering with BOW; (d)
3-way clustering with POS bigrams and BOW.

1. POS unigrams: Since the number of POS tags in any tagging system is

relatively small, it makes no sense to cluster POS unigrams. Therefore, we

apply a 1-way model for clustering documents using the Comraf graph shown

in Figure 4.8(a). The objective function from Equation (4.3) in this simple case

has the form of I(D̃; S).

2. POS n-grams, where n > 1. The number of unique POS n-grams of order

higher than 1 is exponential in n, so clustering them would be necessary. We

perform a 2-way clustering with the Comraf graph from Figure 4.8(b) and the

objective I(D̃; S̃).

3. Bag-Of-Words: The number of unique words in our dataset is comparable

with the number of POS trigrams, so in analogy to the previous model, we

perform a 2-way clustering with the Comraf graph of Figure 4.8(c) and the

objective I(D̃; W̃ ).

4. BOW+POS hybrid: We combine contextual information of BOW and stylis-

tic information of POS n-grams into a 3-way clustering model, where we simul-

taneously cluster documents, words and bigrams of POS tags. Over the Comraf

graph of Figure 4.8(d), we maximize the sum I(D̃; S̃) + I(D̃; W̃ ).
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Doc representation k-means LDA Comraf

Bag-Of-Words 9.1% 55.4 ± 0.1% 55.7 ± 0.2%
POS bigrams 23.2% 44.7 ± 0.2% 51.0 ± 0.2%
BOW + POS bigr n/a n/a 58.5 ± 0.6%

Table 4.8. Clustering by genre. Micro-averaged clustering accuracy on the BNC
corpus, averaged over four independent runs. Standard error of the mean is shown
after the ± sign. Comraf results with other POS tuples, besides bigrams, are in
Figure 4.9(left). The BOW+POS hybrid setup is only applicable in Comrafs.

4.9.1 Dataset

We evaluate our models on the British National Corpus (BNC) [24]. We employ

David Lee’s ontology of BNC genres [70] with 46 genres covering most aspects of mod-

ern literature such as fiction prose, biography, technical report, news script and others.

To perform fair evaluation using micro-averaged clustering accuracy (Section 4.6.1),

we choose 21 largest categories, for each of which we uniformly at random choose 32

documents, so our resulting dataset consists of 672 documents. The BNC texts are

formatted using the SGML markup language. We remove all markup, lowercase the

text, and delete stopwords and low-frequency words. All words in the BNC corpus

are semi-manually tagged using 91 POS tags, four of which refer to punctuation. The

resulting dataset has 63,634 unique words; and 5864 POS bigrams. Since the overall

number of unique POS trigrams and fourgrams is prohibitively large, we apply more

aggressive term filtering: we consider trigrams that appear in at least 10 documents

(44,499 trigrams overall) and fourgrams that appear in between 10 and 99 documents

(114,476 fourgrams).

4.9.2 Comparative results

We compare the results of Comraf models (with the MDC optimization algorithm)

with the results of k-means (Weka implementation), as well as of Latent Dirichlet

Allocation (LDA). As in Section 4.6, we use Xuerui Wang’s LDA implementation [78]
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that performs Gibbs sampling with 10000 sampling iterations. Table 4.8 summarizes

our results.

As we can see from Table 4.8, MDC achieves more than 50% accuracy with both

BOW and POS bigram document representations. Note that a random assignment

of documents into clusters would lead to about 5% accuracy on our dataset, so above

50% accuracy is an impressive result for a purely unsupervised method on a large,

well-balanced dataset. The LDA+BOW system obtains exactly the same accuracy as

MDC+BOW does. However, LDA demonstrates strictly inferior performance (lower

than MDC by 6% absolute) on the POS bigram representation. We can also see that

MDC+BOW significantly outperforms MDC+POS (by more than 4% absolute). This

observation may imply that contextual features (such as words) play a more important

role for genre classification than stylistic features (such as POS n-grams).

To give some insight on the differences in MDC performance on BOW and POS

bigrams, we present Table 4.9 that shows the distribution of documents of each genre

over the generated clusters. For each genre we show a list of sizes (in number of

documents) of this genre’s representation in various clusters. We sort this list by

the size of the representation from the largest to the smallest. An asterisk after the

number of documents means that this genre is dominant in the corresponding cluster.

A heavy tailed distribution (such as the one of W non ac soc science) implies that

the genre is spread over many clusters which is clearly a failure. In contrast, a peaked

distribution (e.g., of W non ac tech engin) with an asterisk on its largest component

means that the genre was successfully identified.

As we can see from the table, MDC performs similarly on BOW and POS bigrams.

However, some significant differences can be found. For example, genres W biography,

W commerce and W institut doc are successfully identified by MDC+BOW but not

by MDC+POS, while MDC+POS better recognizes W newsp brdsht nat social and
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Genre MDC with POS MDC with BOW LDA with BOW MDC with BOW
bigrams and POS bigrams

W ac humanities arts 9* 6* 6 4 2 2 1 1 1 9* 6* 5 5 3 2 1 1 7 6 5 5 4 4 1 9 6* 5 5 4 1 1 1
W ac nat science 23* 4 2 2 1 24* 6 1 1 12* 11* 9 27* 4 1
W ac polit law edu 14* 8 5 2 1 1 1 20* 5 2 2 1 1 1 19* 7 4 2 17 6 4 2 1 1 1
W ac soc science 11* 9* 6 5 1 12* 10* 7 1 1 1 12* 9* 8* 1 1 1 16* 7 6 3
W advert 14* 11 3 2 2 18* 3 3 2 2 1 1 1 1 22* 2 2 2 1 1 1 1 23* 2 1 1 1 1 1 1 1
W biography 15* 8 6 1 1 1 12 7 6 3 2 1 1 16* 6 4 2 2 1 1 16* 6 6* 2 1 1
W commerce 10* 5 5 4 2 2 1 1 1 1 13 10 6 1 1 1 16 5 4 2 2 1 1 1 9* 9 4 3 3 2 1 1
W fict prose 22* 7 3 25* 6 1 30* 2 24* 6 2
W institut doc 15* 6 5 5 1 18 6 4 1 1 1 1 17* 7 4 2 2 14 11* 3 1 1 1 1
W newsp brdsht nat 25* 5 1 1 28* 1 1 1 1 30* 2 27* 2 2 1
arts

W newsp brdsht nat 26* 2 1 1 1 1 32* 28* 2 1 1 31* 1
commerce

W newsp brdsht nat 32* 32* 30* 2 32*
report

W newsp brdsht nat 9 7 4 4 2 2 1 1 1 1 11* 6 4 3 2 2 1 1 1 1 10 7 6 3 2 1 1 1 1 14 6 3 2 2 2 1 1 1
social

W news script 32* 32* 31* 1 32*
W non ac humanities 11* 8 3 2 2 2 1 1 1 1 9* 6 5 3 3 2 2 2 10* 7 5 3 2 2 2 1 14* 5 3 3 2 1 1 1 1 1
arts

W non ac nat science 14* 5* 3 2 2 2 1 1 1 1 18* 11 2 1 11* 9 7 2 2 1 29* 1 1 1
W non ac polit law edu 11* 4 4 3 3 2 2 1 1 1 11 10* 5 3 2 1 10* 10* 3 3 2 2 1 1 10* 6 5 5 2 2 1 1
W non ac soc science 5 5 4 3 3 2 2 2 2 1 1 1 1 7 5 4 4 3 2 2 2 2 1 7 6 5 5 3 2 1 1 1 1 5 5 4 3 3 3 2 2 2 1 1 1
W non ac tech engin 32* 32* 32* 32*
W pop lore 11 6 6 5 4 10* 9* 4 4 2 2 1 12 8 6 3 2 1 16* 8 3 2 2 1
W religion 11* 5 4 4 2 2 1 1 1 1 18* 6 2 1 1 1 1 1 1 20* 6* 2 1 1 1 1 18* 6* 3 1 1 1 1 1

Table 4.9. Performance of various methods per genre. For each genre we
show a list of sizes (in number of documents) of this genre’s representation in vari-
ous clusters. We sort this list by the size of the representation from the largest to
the smallest. An asterisk after the number of documents means that this genre is
dominant in the corresponding cluster.

W pop lore. A 3-way MDC with both BOW and POS that would take advantage of

the both approaches may have a good chance to show even better results.

Indeed, we obtain a strong result with the 3-way MDC: 58.5% accuracy. The

last column of Table 4.9 presents the analysis of this result by genre. For many

genres (such as W non ac nat science) we enlarge their dominant representations.

We also manage to identify four of the five genres that were in disagreement be-

tween BOW and POS models (as discussed above). However, we no longer recognize

W ac polit law edu, which indicates that the results might potentially be improved

even more.

One could argue that the direct comparison of results obtained by the BOW and

POS bigram models is actually unfair because the number of BOW features is one
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order greater than the number of POS bigrams, so that the BOW model naturally

outperforms the POS bigram model because it just contains more information. How-

ever, this argument cannot be empirically proved. We test MDC with POS trigrams

and fourgrams, as well as with POS unigrams, and show that while the MDC perfor-

mance with unigrams is significantly lower than with bigrams, trigrams and fourgrams

do not significantly improve the results of bigrams. In Figure 4.9(a) we can see that

when moving from bigrams to trigrams and fourgrams, the graph has a slightly pos-

itive slope, however the results become noisier (the standard error becomes higher)

which diminishes statistical significance of the improvement. A conclusion that can

be made from this experiment is that the Bag-Of-POS-bigrams model appears to be

rich enough to capture genres of documents.

A common belief is that stopwords and other high frequency words can be good

features for discrimination of documents by genre (see, e.g. [100]). It is interesting to

see whether we can support this hypothesis with empirical evidence. To show this, we

conduct the following experiment. We put various thresholds on the low frequency

words in the BOW representation of the documents. We consider four such thresholds:

our initial setup, when we filter out words that appear in less than 3 documents, as

well as three new ones: 10, 20 and 50 documents. Note that the new thresholds and

especially the most restrictive one (50) leave us with highly frequent words only: since

our dataset consists of 672 documents, filtering out words that appear in less than

50 documents causes removal of over 93% of unique words from the dataset. We run

MDC on the four representations. Figure 4.9(b) shows results of this experiment. We

can see that although the graph has a negative slope, the decrease in the results is

insignificant. With 7% of words from the original dataset the MDC system obtains

only 2.5% lower accuracy than with 38% of words (where the rest appear in only one

or two documents and can be removed with high confidence). This result confirms

that high frequency words are important for genre classification.
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Figure 4.9. Clustering by genre. Micro-averaged clustering accuracy of Comraf
models as a function of: (left) size of POS n-gram (1-grams, 2-grams, 3-grams and
4-grams); (right) threshold on low frequency words—a point i on the X axis means
that in this experiment words that appear in less than i documents are removed.

4.10 Summary

In this chapter, we have proposed the objective function for Comraf clustering and

presented two inference methods in Comrafs: a global optimization method (MDC)

and a local optimization method (CWO). Comraf models have been successfully ap-

plied to document clustering. We have tested Comrafs on a variety of clustering

tasks:

• On email clustering (see Section 4.6), a bi-modal Comraf is compared with three

state-of-the-art clustering methods. It outperforms a (uni-modal) sequential IB

method because it benefits from the multi-modal nature of the data. The ad-

vantage of the bi-modal Comraf over the bi-modal (flat) ITCC method suggests

that the power of our inference algorithm stems from a better exploitation of

the clustering hierarchy. The Comraf model demonstrates superior performance

in comparison to LDA—a generative graphical model—because Comrafs pro-

vide a more flexible modeling environment (see Section 3.4). Also, we provide

evidence that extending a bi-modal Comraf to 3-modal and 4-modal setups can

further improve document clustering results.

68



• In Section 4.7 we apply a Comraf model to the real-world task of Web ap-

pearance disambiguation (WAD) of people names. We show that it slightly

outperforms a strong baseline method that employs link structure analysis of

Web pages. In [13] we show that the best results are achieved when using a

hybrid of the Comraf clustering and link structure analysis. In Section 6.6.1

we will show a better method for WAD that is based on one-class clustering of

documents.

• In Section 4.8 we address the question of whether Comrafs have more modeling

power than the previously proposed multivariate IB framework [97]. We provide

an example for strict superiority of Comraf models.

• Finally, in Section 4.9 we apply Comrafs to a non-topical document clustering

task. We focus on clustering by genre where a lexical modality (e.g. words) are

used in conjunction with a stylistic modality (POS n-grams). Similar Comraf

models can be applied to document clustering according to other non-topical

criteria, such as readability. In Section 5.3 we will extend the non-topical clus-

tering model to a semi-supervised case and test it on clustering by author’s

sentiment.

Being a valid graphical model, a Comraf takes advantage of modeling abilities of

existing graphical models. For example, we can introduce an observed state through

which some prior knowledge can be represented. The next chapter describes a result-

ing model.
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CHAPTER 5

COMRAFS FOR SEMI-SUPERVISED LEARNING

The Comraf model is a convenient framework for performing semi-supervised clus-

tering [16, 17] (see Section 5.1), transfer learning [17] (see Section 5.2), and interactive

clustering [15] (see Section 5.3). Prior to presenting details of particular Comrafs, let

us define the concepts of hidden and observed states in the Comraf model. A combi-

natorial r.v. is hidden if it can take any value from its event space. A combinatorial

r.v. is observed if its value is preset and fixed.

5.1 Semi-supervised clustering with Comrafs

Semi-supervised clustering is a clustering task that takes advantage of labeled

examples. Usually, semi-supervised clustering is performed when the number of

available labeled examples is not sufficient to construct a good classifier (e.g., the

constructed classifier would overfit), or when the the labeled data is noisy or skewed

to a few classes. Assuming that most of the labeled data is accurate, our goal is to

incorporate it into the (unsupervised) Comraf model.

In this thesis, we consider only a uni-labeled case where each labeled data point

xi|
n
i=1 belongs to one ground truth category tj|

k
j=1. We propose an intrinsic Com-

raf approach for incorporating labeled data into clustering (by introducing observed

nodes to a Comraf graph), and compare it with existing seeding [7] and constrained

optimization [110] schema.

Intrinsic approach. Comrafs offer an elegant method for incorporating labeled

data, which does not require any significant changes in the clustering model proposed
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in Chapter 4. First, note that labels define a natural partitioning of the labeled data:

for each label tj let x̃0j be a subset of X labeled with tj, i.e. x̃0j = {xi|ti = tj}. We

now define a r.v. X̃0 over the partitioning xc
0 = {x̃0j|j = 1, . . . , k}, and we also define

a combinatorial r.v. Xc
0 over all the possible partitionings of the set X . Since the

partitioning x̃c
0 is given to us, the variable Xc

0 is observed, with xc
0 being its fixed

value. Observed combinatorial random variables appear shaded on a Comraf graph.

The objective function from Equation (4.4) and the MPE inference procedure remain

unchanged (with the only difference being that there is no need for optimizing the

observed nodes): at each ICM iteration the current node is optimized with respect to

the fixed values of its neighbors, whereas the values of the observed nodes are fixed

by definition.

Constrained optimization. Wagstaff and Cardie [110] perform semi-supervised

clustering with two types of boolean constraints. The must-link constraint ml equals

1 if two equally labeled data points are assigned into different clusters; the cannot-link

constraint cl equals 1 if two differently labeled data points are assigned into the same

cluster. A clustering objective function incorporates the constraints, e.g. in Comrafs

(Equation (4.4)) for each combinatorial r.v. Xc
i it is:

xc∗
i = arg max

xc
i

∑

i′: (Xc
i ,Xc

i′
)∈E

I(X̃i; X̃i′) −
∑

i′

wi,i′ mli,i′ −
∑

i′

wi,i′ cli,i′ ,

where the weights wi,i′ are set at +∞, which means that all constraints must be sat-

isfied. Note that in the general case we are free to choose any non-negative weights.

In order to fairly compare two semi-supervised methods, for both of them we must

use the same underlying clustering algorithm. We use the MDC algorithm (see Sec-

tion 4.3) in both cases.

Seeding [7] is a method of constructing the initial clustering of both labeled

and unlabeled data points, for which the must-link and cannot-link constraints are
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Figure 5.1. Comraf graphs for: (left) semi-supervised clustering; (right) clustering
with transfer learning.

satisfied. This method is applied to Comraf clustering by adapting the initialization

step of the MDC algorithm (see Algorithm 2): for each node Xc
i we select an initial

point in lattice Li that satisfies the seeding constraints. Note that, in contrast to the

constrained optimization scheme described above, in the seeding scheme the cluster-

ing objective function remains unchanged, such that the seeding constraints may no

longer be satisfied during the course of the MDC algorithm.

5.1.1 Experimentation

Figure 5.1(left) shows a Comraf graph for the intrinsic scheme of semi-supervised

clustering. Together with a combinatorial r.v. Dc over document clusterings and

a combinatorial r.v. W c over word clusterings, we introduce an observed node Dc
0,

whose value dc
0 is a given partitioning of labeled documents. With a random variable

D̃0 defined over the clusters in dc
0, our objective derived from Equation (4.3) is:

(dc∗, wc∗) = arg max
dc,wc

I(D̃; W̃ ) + I(D̃; D̃0) + I(W̃ ; D̃0).

As mentioned above, the ICM optimization procedure remains unchanged and iterates

over nodes Dc and W c only (the observed node Dc
0 shall not be optimized).

It is interesting to note that the seeding approach to the semi-supervised clustering

appears to be useless when applied to Comrafs. Despite the sophisticated initializa-

tion, the optimization procedure leads to the same local maxima of the objective, as
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in the case of trivial initialization. When applied to document clustering, the MDC

algorithm with seeding and without seeding demonstrates the same performance. Be-

low we compare our intrinsic Comraf scheme with the constrained optimization only,

which is naturally robust to the choice of a particular optimization method.

On the CALO and Enron datasets described in Section 4.6.2, we conduct the

following experiment: for each dataset, we uniformly at random select 10%, 20%,

or 30% of the data and refer to it as labeled examples while the rest of the data

is considered unlabeled. We apply both intrinsic and constrained methods on these

three setups and plot the micro-averaged accuracy (calculated on unlabeled data only)

vs. the percentage of labeled data used. The results (in terms of clustering accuracy

as defined in Section 4.6.1) are shown in Figure 5.2. As we can see from the figure,

both methods unsurprisingly improve the unsupervised results, while the intrinsic

Comraf method usually outperforms the constrained method.

On the 20NG dataset, we select 10% of data to be labeled. The constrained

method obtains 74.8 ± 0.6% accuracy, while the intrinsic method obtains 78.9 ±

0.8% accuracy (over 5% and 9% absolute improvement to the unsupervised result,

respectively).

The intrinsic scheme is resistant to noise. To show this, we conduct the following

experiment: on CALO datasets with the 20%/80% labeled/unlabeled split, we arbi-

trarily corrupt labels of 10%, 20% and 30% of the labeled data. Figure 5.2(f) shows

that clustering accuracy remains almost unchanged for all three datasets.

5.2 Transfer learning with Comrafs

Transfer learning is the problem of applying the knowledge learned in one task

to effectively solve another learning task. In this section, we represent the acquired

knowledge as a partitioning ỹc
0 pre-built for data Y that can be used for constructing

a partitioning x̃c of data X . We note that the intrinsic scheme for semi-supervised
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Figure 5.2. Plots (a)-(e): comparing accuracies of the semi-supervised Comraf and
the constrained optimization method on five email datasets. Plot (f): the semi-
supervised Comraf’s resistance to noise in labeled data.

clustering presented in Section 5.1 above allows us to directly use labeled data not only

from X but also from another collection Y . Thus, in analogy to the semi-supervised

case, we introduce an observed combinatorial r.v. Ỹ c
0 with a fixed value ỹc

0. During

the inference process, we construct x̃c∗ that maximizes agreement (in terms of mutual

information) with the labeled data ỹc
0, while applying the same objective function as

in Equation (4.3) and the same ICM optimization procedure.

We set up a transfer learning experiment as follows. We notice that in two of

the CALO datasets (acheyer and mgervasio) similar topics are discussed. Our

hypothesis is that known categories of one dataset can improve the clustering results

on another dataset. To test this hypothesis, we first consider one dataset to be

labeled, while the other one is unlabeled, and then vice versa. However, since the

two datasets do not consist of the same documents, we decide to use word clusters of

the labeled dataset. We first cluster words distributed over categories of the labeled
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dataset, as described in [11]. Then we introduce the constructed word clustering

as an observed node W c
0 into the Comraf graph (see Figure 5.1 right) and perform

the ICM inference. Using this scheme we improve the micro-averaged clustering

accuracy on mgervasio by 3% absolute over unsupervised clustering, but we do

not see any change in accuracy on the acheyer dataset. This preliminary result

demonstrates the usability of Comrafs for transfer learning; other types of Comraf

models for transfer learning are emerging.

5.3 Interactive clustering with Comrafs

In interactive clustering of text collections, the user is actively involved in the

process of clustering documents, their features, or both (see, e.g., [53]). Being thus

provided with some level of supervision, the interactive clustering scheme can be

viewed as an instance of semi-supervised learning. In Sections 5.1 and 5.2 above,

we have shown how to incorporate prior knowledge into the Comraf graph G, while

using the same objective or inference algorithm as in unsupervised clustering. Here,

we incorporate prior knowledge into our inference algorithm, preserving the Comraf

graph and the objective (4.3) of the unsupervised case.

In [15], we proposed interactive clustering as a unified framework for clustering

document collections according to nearly any criterion of the users choice: docu-

ments’ style, readability, credibility; authors’ age, mood, sentiment, familiarity with

the topic etc. (for the beginning of the discussion and an example of clustering by

genre, see Section 4.9). The user is first asked to choose modalities (or types of fea-

tures) suitable for clustering by the desired criterion. In clustering by genres, for

example, documents may be represented over sequences of Part-Of-Speech (POS)

tags, punctuation marks, stopwords, as well as over general words as captured in the

standard BOW representation. The user is next asked to provide a few examples of

features (seed features) of the chosen types, if such examples are intuitive and can
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be obtained without much effort—e.g., when clustering by authors mood, words like

‘angry’, ‘happy’, ‘upset’ might be easily suggested.

The clustering system then represents documents based on the users choice and

applies a Comraf clustering method. When seed features are provided, the system

iteratively clusters documents represented over the chosen features and then enriches

feature sets with other useful features. The user can choose to intervene (or not) after

each iteration, in order to fix possible mistakes made by the system on the feature

level (no document labeling is required).

In this section, we illustrate the effectiveness of our approach on clustering by

author’s sentiment [107]. In clustering by sentiment, data categories correspond to

different levels of the authors’ attitude to the discussed topic (e.g. liked/disliked, sat-

isfied/unsatisfied etc.) The categories can be finer grained (strongly liked / somewhat

liked etc.)—as long as it is possible to distinguish between two adjacent categories.

We perform interactive clustering within a bi-modal Comraf framework, where doc-

uments and words are clustered simultaneously. The user is involved in the process

of clustering words (it is easier for the user to be involved in clustering words than in

clustering documents [90]).

5.3.1 Related work

There has been work on interactive topical clustering where the user corrects clus-

tering errors on a document basis [8], but that effort is more time consuming than

feedback on features [90]. Other recent work has had the user select important key-

words for (supervised) categorization, thereby leveraging the user’s prior knowledge

[31, 90]—approaches that are more like that of our framework. Raghavan et al. [90]

further support this direction in the finding that users can identify useful features

with reasonable accuracy as compared to an oracle. Liu et al. [72] experiment with

labeling words instead of documents for text classification, providing the user with a
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list of candidate words from which to select potentially good seed words, based on

which a training set is constructed from a set of unlabeled documents. A classifier

is then constructed given this training set. Liu et al.’s document representation is

the standard BOW, which has strong topical flavor, and therefore cannot be used for

clustering by arbitrary criteria (for example, our preliminary experiments show that

BOW is not appropriate for clustering by author’s mood). In addition, Liu et al.’s

method involves the user only at the initial step (selecting seed words), limiting the

user’s control of the classification process.

Although the supervised task of classification by sentiment has been widely ad-

dressed in the literature (see, e.g. [84] and references therein), clustering by sentiment

has been very sparsely covered. Turney [107] performs a binary clustering of product

reviews by authors’ sentiment, where only two clusters of documents are constructed:

positive reviews and negative reviews. We are not aware of previous work on cluster-

ing by sentiment that goes beyond the binary approach. In this section, however, we

cluster reviews into four groups, corresponding to the categories of strongly positive,

somewhat positive, somewhat negative and strongly negative reviews.

5.3.2 Interactive clustering scenario

Here we provide a step-by-step recipe for clustering documents by a particular

criterion that the user has in mind:

1. Specify the number of clusters: Learning the natural number of clusters

still remains an open problem. We do not attempt to solve it in this thesis,

instead the user is asked to specify the desired number of clusters.

2. Specify feature types: A list of various feature types is provided to the user.

Examples of such types are: bag of words or word n-grams, POS tags or POS tag

n-grams, punctuation, parse subtrees and other types of syntactic and semantic

patterns that can be extracted from text. Such a list can hypothetically include
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a large variety of feature types that would respond to everyone’s needs. From

this list the user is asked to choose one or more types that best serve the

particular clustering criterion.

3. Give examples of features: For each feature type chosen, the user should at-

tempt to construct (small) sets of seed features that correspond to each category

of documents. Sometimes this task is easy: e.g., if the clustering criterion is

authors’ sentiments, then words such as ‘excellent’, ‘brilliant’ etc. would corre-

spond to the category of positive documents, while ‘terrible’, ‘awful’ etc. would

correspond to the negative category. However, when such sets cannot be easily

constructed (e.g. it is non-trivial to come up with good feature examples for

clustering by genre—see Section 4.9), the user can skip this step.

4. Default clustering: If m feature types are chosen, but no seed features are

provided by the user, the standard (unsupervised) clustering scheme is applied

(see Chapter 4).

5. Interactive Clustering: For the cases when the user has provided seed fea-

tures for some of the feature types, we propose a new model for Comraf clus-

tering, which combines regular clustering of non-seeded variables with an incre-

mental, bootstrapping procedure for seeded variables:

(a) Represent documents as distributions over the sets of seed features. Ig-

nore documents with zero probability given the seed features. Cluster the

remaining documents using a Comraf clustering method.

(b) Stop if most documents have been clustered (for details, see Section 5.3.3

below).

(c) Represent all features of the clustered documents as distributions over the

document clusters. Ignore features that have zero probability given the
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clustered documents. Cluster the remaining features using the distribu-

tional clustering method.

(d) Select feature clusters that contain the original seed words. Let the user

revise the selected clusters: noisy features can be deleted; misplaced fea-

tures can be relocated; new features can be added. The revised clusters of

features are the new sets of seed features. Go to 5(a).

5.3.3 Clustering by sentiment

Following the procedure described in Section 5.3.2 above, after choosing the num-

ber of clusters and particular feature types, the user is asked to select a few seed

features for each category. For clustering by sentiment, as well as for somewhat sim-

ilar tasks of clustering by authors’ mood or by familiarity with the topic, relevant

feature types may be words or word n-grams (i.e. semantic features). However, for

other quite close tasks, e.g. clustering by authors’ age, not only semantics but also

syntax can matter: children, for instance, use certain words more often than adults

do; children also tend to use primitive (and sometimes erroneous) syntactic construc-

tions (“me going bye-bye” etc.). In this section, for simplicity, we experiment with

word features only.

The task of selecting “sentimental” seed words has two issues. First, it is easier to

come up with words that correspond to extreme sentimental categories (‘spectacular’,

‘horrible’), but it is difficult to choose seed words for intermediate, mild categories.

Nevertheless, as we will see in Section 5.3.6 users usually succeed in accomplishing

this task. Second, in our early experiments, users consistently tended to choose

words that were out of the vocabulary of a given dataset. Inspired by Liu et al. [72],

we decided to provide the users with a word list, to narrow her search only to the

dataset vocabulary. Unlike Liu et al. [72], whose task is topical clustering, we cannot

automatically predict which words would be relevant. Instead, we employ Zipf’s law
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and provide the user with a list of words from the interior of the frequency spectrum.

We anticipate such a list to contain the most relevant seed words.

We then perform an iterative process of clustering that allows user’s involvement

in between clustering iterations. We apply a bi-modal Comraf model: we first cluster

documents that contain the selected seed words and then we cluster all words of these

documents. In the latter step, our seed word groups are enriched with new words that

have been clustered together with the original seed words. The user is then asked

to edit the new seed word groups, in order to correct possible mistakes made by

the system (word removal, relocation and addition is allowed). By this, a clustering

iteration is completed and the next iteration can be executed.

Since the seed word groups have been enlarged, we can expect that a set of doc-

uments that contain these seed words is now larger as well, so that the clustering

process will cover more and more documents from iteration to iteration. The process

stops when no more documents are added to the pool. Documents that have never

been covered (the ones that contain no seed words from the largest seed word groups)

are considered to be clustered incorrectly. An alternative approach to guarantee the

algorithm’s convergence would be to require enlargement of seed word groups such

that at least one document is added to the clustering at each iteration. The algorithm

would then stop when the entire dataset is covered. We choose the former approach

because (a) we do not want to put additional constraints either on the user or on

the Comraf clustering model; (b) in each real-world dataset there can be documents

whose sentimental flavor is hard to identify—it would not be beneficial to force such

documents into any of the sentimental clusters.

5.3.4 Dataset

We evaluate our interactive clustering system on a dataset of movie reviews. Our

dataset consists of 1613 reviews written on “Harry Potter and the Goblet of Fire
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(2005)” that we downloaded from IMDB.com in May 2006.1 The data was preprocessed

exactly as the BNC corpus (Section 4.9.1). We ignore reviews that do not have rating

scores assigned by the user. The IMDB’s scoring system is from 1 (the worst) to

10 (the best). Based on our extensive experience with IMDB.com, we translate these

scores into four categories as follows: scores 1 to 4 are translated into the category

strongly disliked (292 documents), scores 5 to 7 are translated into somewhat disliked

(454 documents), scores 8 and 9 into somewhat liked (447 documents), and score 10

is translated into the category strongly liked (420 documents). We do not introduce

a neutral category because there are very few neutral reviews on IMDB.com.

5.3.5 Experimental setup

On the task of clustering by sentiment, we compare our method’s performance

with that of k-means and LDA (Section 4.6.3), as well as with the performance of

an SVM classifier trained on 22,476 movie reviews. The training data for the SVM

consisted of reviews of 46 popular Hollywood movies released in 2005, of the same

genre as Harry Potter. The reviews and genre labels of movies are obtained from

IMDB.com. Again, we ignore reviews without user-assigned rating.

To compare our Comraf clustering with other clustering methods, we again use

the micro-averaged clustering accuracy, as described in Section 4.6.1. It is not obvious

however how to compare Comraf clustering results with SVM classification results.

In [16], we show that the clustering accuracy can be directly compared with the

(standard) classification accuracy if a constructed clustering is well-balanced, meaning

1Bo Pang [84] maintains a popular dataset of movie reviews that, unfortunately, does not fully
correspond to our task because (a) we want to differentiate the problem of clustering by sentiment
from the topical clustering—for this reason our dataset contains reviews written on one movie only,
so that the topic of all the reviews is potentially the same; (b) movie ratings in Bo Pang’s dataset
are extracted from the reviews’ text, which is an error-prone procedure, whereas in our dataset the
ratings are assigned by the reviewers using an HTML form which leaves no room for errors.
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Doc repres. k-means LDA Comraf SVM

BOW 28.2 37.0 ± 0.2 40.3 ± 0.8 39.1 ± 0.3
Sentim. list 29.0 40.2 ± 0.5 43.0 ± 0.9 41.3 ± 0.6
Interactive clustering (Oracle) 47.1 ± 0.2 n/a
Simulated classification (Oracle) 46.3 ± 0.1

Table 5.1. Clustering by sentiment. Clustering accuracy of Comraf models (both
interactive and non-interactive) is compared with clustering accuracy of k-means and
LDA, as well as with classification accuracy of SVM. All results are averaged over
four independent runs. Standard error of the mean is shown after the ± sign.

that each category prevails exactly in one cluster. It appears that all our clusterings

obtained using the Comraf model are well-balanced.

The system is evaluated on five users who are familiar with the task of document

clustering. The users were explained the idea behind interactive clustering and pro-

vided a brief description of the dataset. They were given a list of 563 words that

appeared in 50 ≤ n < 500 documents in our dataset. The users proceeded as de-

scribed in Section 5.3.2. Also, we construct an oracle as follows: for each category t

we select 25 most frequent words that belong to a given list of sentimental words2 and

their distribution over the categories has a peak at t. Unlike human users, the oracle

does not provide feedback between clustering iterations. To some extent, the oracle’s

performance can be considered as an upper bound to results obtained in practice,

when a human user is involved.

We perform a simulated classification (SC) experiment analogous to the one of Liu

et al. [72] (see a description in Section 5.3.1), where the seed words are provided by

our oracle. We replace an ad-hoc kNN-like clustering in Liu et al.’s implementation

by our effective Comraf clustering, and a Naive Bayes classifier by an SVM.

2Our list of 4295 sentimental words was obtained as described in [38].
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Figure 5.3. Interactive clustering by sentiment. Micro-averaged clustering accuracy
over various users: (left) over interactive learning iterations (with original seed words
only, after one correction step and after two correction steps). The horizontal line is
SVM performance (after feature extraction using a given list of sentimental words,
and after training on over 20K documents); (right) over categories of the dataset after
two correction steps.

5.3.6 Comparative results

Table 5.1 summarizes our observations. Surprisingly, with BOW features, our

Comraf clustering method performs as well as an SVM trained on a large amount

of data (Row 1). The good performance of our unsupervised method (with BOW)

indicates that the constructed topical clustering sheds some light on reviewers’ sen-

timents, which can occur when the reviewers have a consensus on certain aspects of

the movie, e.g. liked the actors but disliked the plot etc.

After feature selection according to our list of sentimental words, the Comraf

achieves a significant boost in accuracy surpassing the SVM (Row 2). Using an

oracle in our interactive clustering setup (Row 3) improves the performance even

further, while the SC result (Row 4) is only slightly (but significantly) inferior. These

two results are close because the training set of SC is identical to the clustering

constructed at the first iteration of the Comraf algorithm. Since its size appears to

be over 3/4 of the entire dataset, there is almost no room for the actual diversity in

performance of the two methods.
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Figure 5.3 (left) shows the micro-averaged clustering accuracy for each user and

each iteration. For three of the five users, selection of the initial seed words is suf-

ficient to obtain significantly higher accuracy than the best result of the SVM. User

2 has significantly lower accuracy than the baseline to begin with, but over the two

correction steps is able to provide the necessary feedback so as to obtain an improve-

ment in accuracy, equaling the baseline. We found that User 2 was fairly conservative

in her assessment of terms in the beginning marking only 26 terms, while User 1

(the one with the best average performance) marked 58 terms, 23 of which were in

common with User 2. User 4 reported that she aggressively removed words at the

first correction step, which caused a noticeable drop in the performance.

Figure 5.3 (right) shows the accuracy per class, per user at the end of 3 itera-

tions. User 1 and User 2 have near identical accuracies on the two extreme categories

(strongly liked and strongly disliked), but User 1 has higher accuracies on the inter-

mediate categories, resulting in higher micro-averaged accuracy. It is apparent from

this figure that users are able to come up with good features for the two extreme cat-

egories, but have difficulties with the intermediate categories. The figure also shows

the performance of SVM (with sentiment features). It is interesting to note that the

SVM’s pattern of behavior is almost identical to the interactive Comraf’s.

5.4 Summary

In this chapter, we have shown that Comrafs can be straightforwardly applied

to semi-supervised learning, while either adjusting the Comraf graph or the Comraf

inference algorithm. As the semi-supervised setup can be viewed as an instance of a

supervised setup, we can make a statement that Comrafs are applicable to the entire

spectrum of machine learning tasks.

On the task of semi-supervised clustering, we showed that Comraf models out-

perform a popular constrained optimization method. We also showed that Comraf
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models are very robust to the noise in data labels. Our preliminary results demon-

strate applicability of the Comraf framework to transfer learning, which has a variety

of interesting applications.

We also applied the Comraf framework to non-topical clustering of documents, by

introducing the interactive clustering model. We showed that interactive clustering,

which is a semi-supervised version of an unsupervised clustering scheme, can poten-

tially outperform one of the best supervised learning methods (SVM), trained on a

large amount of labeled data. This result raises an important question that has not

been widely addressed in the machine learning literature: for a particular unlabeled

dataset, would it be more beneficial to train a supervised model on similar, yet differ-

ent, data (such as, train a classifier on reviews of movie A and apply it to reviews of

movie B), or it would be better to construct a clustering model that takes advantage

of some limited knowledge on the unlabeled data, as provided by the user? It appears

that the former approach is quite popular. In this chapter we provided evidence that

the latter approach can be more effective.
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CHAPTER 6

COMRAFS FOR ONE-CLASS CLUSTERING

As we discussed in Section 3.4, each Comraf model is a trinity of a Comraf graph

G, an objective function that is factored over G, and an inference procedure for op-

timizing this objective function. So far, we have experimented with various Comraf

graphs (with or without observed nodes) for multi-modal clustering, where the objec-

tive is a sum of pairwise Mutual Information terms (3.1), and the inference procedure

is a variant of MDC (see Section 4.3). Exploring the variety of Comraf graphs led

us to proposing models for email clustering (Section 4.6), clustering scientific papers

(Section 4.8), document clustering by genre (Section 4.9), semi-supervised cluster-

ing (Section 5.1), and clustering with transfer learning (Section 5.2). In Section 5.3,

however, we went beyond this scope and proposed an enhancement to the MDC infer-

ence procedure that led to an interactive clustering model. Note that the interactive

clustering model exploits the same Comraf graph and objective function as other

multi-modal clustering methods we proposed. This chapter goes further in inves-

tigating the role of the objective function in Comrafs. Specifically, we focus on the

problem of constructing an objective function that best suits a particular application.

We address this problem on a representative task of one-class clustering, which

is the task of identifying the most coherent subset of documents (the core) from a

given pool of documents. This pool can be generated by a search engine (as a set

of documents retrieved on a given query); also, this pool can be an email Inbox, a

repository of scientific papers etc. One-class clustering is a technically simpler task

than the general (multi-class) clustering: on a given dataset, a binary (as opposed
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to a k-ary) predicate is constructed that answers the question of whether or not a

data instance belongs to the core. This simplicity allows for a theoretical analysis of

optimality of the one-class clustering method proposed.

Similar to many other unsupervised learning problems, the problem of one-class

clustering is generally ill-posed as one can argue that the shortest document in a col-

lection satisfies the criterion of being the most coherent subset. We resolve that issue

by introducing a parameter k, which is the number of documents in the core subset.

This parameter is analogous to the number of clusters in (multi-class) clustering, the

number of outliers [105] or the radius of Bregmanian ball [28] in other formulations

of one-class problems.

Note that formally the problem of one-class clustering is a special case of the

general, multi-class clustering: one-class clustering is a problem of constructing n −

k + 1 clusters of n data instances, where one cluster is of size k and all the others

are singletons. However, since explicit modeling of singleton clusters appears to be

useless, from the practical point of view the two problems become different: methods

applicable for one-class clustering are generally unapplicable to multi-class clustering

and vice versa. Also note that the problem of one-class clustering is a compliment to

an unsupervised formulation of the outlier detection problem [1, 105]: once the core

cluster is constructed, all the non-core data instances are considered outliers.

Speaking in terms of Comraf models, for one-class clustering we define combi-

natorial random variables over all the possible subsets of a modality (or, in other

words, over its powerset). Recall that for multi-class clustering we defined combina-

torial random variables over all the possible partitionings of a modality. Although

the Comraf graph’s layout appears to be the same for both tasks, the one-class clus-

tering objective function is different from that of multi-class clustering, and so is the

inference procedure. In this chapter, we construct step-by-step the objective function
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and inference procedure, starting from an artificially simplified case and ending with

the real-world application.

Our working assumption throughout this chapter is that the core documents share

a (relatively) small lexicon, while the remaining documents (the noise) do not have

much in common (i.e. they are randomly drawn from the pool of all existing documents

written in the English language). Our methods, however, will work equally well in

situations when the noise has some structure, meaning that some non-core documents

share their topics.

We describe the simplest Comraf model with only two modalities: documents

and words. Despite its simplicity, this setup allows for three different approaches to

one-class clustering of documents:

• Identify the shared lexicon (the subset of relevant words), i.e. solve the one-

class clustering problem for words. A document will then be considered a part

of the core if it contains enough relevant words. We describe this setup in

Section 6.2. The fundamental question we answer in that section is whether or

not the subset of relevant words can be identified in document collections of

feasible size. We show analytically that, under some simplifying assumptions,

the subset of relevant words can be optimally identified in document collections

of log-linear size (in the size of the vocabulary).

• Directly identify the core documents, based on their distributions over words.

This setup is in the focus of Section 6.3. In that section, we propose our

information-theoretic objective function. We derive a simple uni-modal algo-

rithm for optimizing this objective. We show that the proposed algorithm is

optimal under the assumptions imposed in Section 6.2. We then relax these

assumptions and adjust our objective function to the real-world case.
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• Perform one-class co-clustering (OCCC), while simultaneously identifying the

subset of relevant words and the subset of core documents (see Section 6.4). We

generalize the algorithm proposed in Section 6.3 to the bi-modal setup. The

resulting OCCC algorithm significantly outperforms the uni-modal one.

In Section 6.5, we propose another, probabilistic objective function for our task: the

likelihood that a document belongs to the core. Inspired by Huang and Mitchell [53],

we apply an EM inference algorithm to the resulting model.

We evaluate our information-theoretic and probabilistic models on two applica-

tions: (a) Web appearance disambiguation (see Section 4.7)—our methods outper-

form the algorithm proposed in [13]; and (b) re-ranking information retrieval re-

sults [65, 36]—we significantly improve the accuracy of original Google’s ranked lists,

as well as of one-class (unsupervised) SVM and one-class Information Bottleneck [28].

Note that our models can also be applied to other real-world tasks, e.g. to spam de-

tection, news filtering, image retrieval, and basically to any task where a common

subset of features can be identified in a subset of data instances.

6.1 Related work

Many previously proposed one-class clustering methods (see [105, 28, 50], and

references therein) are vector-space methods, where the goal is to find a convex body

of small volume that contains as many data instances as possible. Despite that binary

vector-space methods have proven themselves to be very effective in the text domain,

one-class vector-space methods are problematic. In binary methods, the decision

boundary is linear (with or without applying the kernel trick [29]). In (vector-space)

one-class methods, however, the boundaries are essentially elliptic, which is unnatural

in the highly multidimensional text domain: core documents tend to lie on a lower-

dimensional manifold (see [68]), while elliptic boundaries tend to capture too much

space around it.
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An alternative solution suggested in [13] (and discussed in Section 4.7) is to sim-

ulate one-class clustering in text by first applying traditional multi-class clustering,

after which one of the clusters in chosen. Intuitively, this approach makes a wrong de-

sign choice: structure is artificially forced on the space of non-core documents, which

may not have any underlying structure. The models described in this chapter, in

contrast, achieve the main goal of one-class clustering—to identify the most coherent

subset of objects—without imposing structural or topological constraints.

Our one-class clustering models have interesting cross-links with models applied to

other Information Retrieval tasks. For example, a model similar to our information-

theoretic one-class clustering, is proposed by Zhou and Croft [115] for query per-

formance prediction. Tao and Zhai [104] describe a pseudo-relevance feedback model,

which is similar to our probabilistic one-class clustering (see discussion in Section 6.6.2).

These types of cross-links are common when the models are general enough and rel-

atively simple. In this work we pay particular attention to the simplicity of our

models, such that they are feasible for theoretical analysis as well as for efficient

implementation.

6.2 One-class clustering of words

We are given a dataset D of n documents, each of which is represented as a vector

of words, with no importance to their order (i.e., bag-of-words). We assume that

D has a core Dk of k documents written on one topic, while the rest of the (n − k)

documents are noise. Let R be the lexicon of relevant words and G ⊃ R be the general

lexicon of D (i.e. all distinct words of D). Let us denote m = |G| and mr = |R| the

sizes of the two lexicons, where mr ≪ m. Assuming that the core is not too small

( k
n
≫ 0), our intuition is that a word belongs to R if it is more frequently used in D

than it would be used in general English. For example, many occurrences of the words

“reinforcement”, “regression”, “classifier” in D indicate that they are relevant, as the
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Figure 6.1. (left) The simplest generative model; (right) Latent Topic/Background
model (Section 6.5).

probability of observing the same frequency of these words in non-core documents is

very low. Our first task is to determine which words belong to R.

We attempt to solve this problem by introducing a simple generative model of

documents (see the left panel of Figure 6.1). Given a dataset D of size n, for each

word token in every document, we first decide if it is drawn from a distribution Pr(W )

over the the set R of relevant words, or from a distribution Pg(W ) over the set G of

all words in D, and then we choose the word w accordingly. Both Pr(W ) and Pg(W )

are multinomial, where the former has a much smaller support. Note that in our

model, for each word token w, the decision whether it is drawn from Pr(W ) or from

Pg(W ) is made independently of the rest of the model, and thus we can think of the

dataset D as a single document of length N = n|d| (here and in the next section, we

assume that all the documents are of the same length |d|).

To make the following theoretical analysis easier, let us assume (quite unrealisti-

cally) that distributions Pr(W ) and Pg(W ) are uniform rather than multinomial. In

Section 6.3.1 we relax this assumption by flattening multinomials using a correction

term. Under the uniformity assumption, an algorithm for identifying relevant words

is straightforward: obtain a sample of size N and choose words with counts above

a certain threshold to be in R (see an illustration in Figure 6.2 left). The major

drawback of this algorithm is that we should know the exact value of the threshold
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Figure 6.2. An illustration of possible distributions of word counts in one-class
clustering: (left) uniform case; (right) multinomial case. Words whose counts are
above the threshold are considered relevant. Note that in the multinomial case counts
of some relevant words can be lower than counts of non-relevant words.

(an estimation is not enough here). An alternative algorithm would be: obtain a

sample of size N , sort words in decreasing order of their counts and choose the first

mr words to be in R. Clearly, the two algorithms are asymptotically equivalent (they

identify the same set R if the sample size N is large enough).

An important question is how large should be the sample size N so that the

sets of relevant and non-relevant words will be separable. For instance, if N = O(m2)

samples are required, the algorithm described above will be infeasible in any real-world

case. In the following theorem, we prove that a log-linear sample size is enough. Let

us first introduce some notation. For a document di and a word token wij, let π be the

probability of drawing wij from the pool of relevant words R, that is: P (Zij = 1) = π.

Let pw = mr

m
= |R|

|G|
be a fraction of relevant words in the dataset’s vocabulary.

Theorem 6.2.1 To determine the set R with probability 1 − δ, we need at most

N = 16
m

π
ln

m

δ
(6.1)

samples, under a (weak) constraint of pw < 2π.

The proof of this theorem is relatively straightforward—it involves an application

of the Chernoff bound and the union bound. We prove this theorem in Appendix A.

Now, under the uniformity assumption and conditions imposed in Theorem 6.2.1,

we can identify the set R of relevant words with arbitrarily high probability. The
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Figure 6.3. The accuracy (as defined in Section 6.6, averaged over 100 independent
runs) of identifying R in a simulation of the generative process, over various values
of the constant from Equation (6.1) for the sampling size N . In Equation (6.1), the
value of this constant is set to 16. Here we show that the value of 2 is enough in
practice.

relevance of a document is then determined by the cumulative relevance of words

occurring in the document. Consequently, the core Dk will consist of k documents,

each of which contains more words from R than any document from D \ Dk.

We simulated the generative process for various values of π and pw. We saw that

in practice many fewer sampling iterations were required for identifying the set R

with 100% accuracy. In Equation (6.1), the constant in calculating N is set to 16.

We tuned the value of this constant, and showed that the value of 2 is generally

enough to perfectly identify R. Figure 6.3 outlines some results on synthetic data

that has similar characteristics to our WAD dataset (see Section 4.7.3): we choose

m = 12000, π = pw = 0.2, and δ = 0.01. For N = 330, 000, which is the size of the

WAD dataset, we obtain 98.5% accuracy. This implies that if words in text datasets

were indeed distributed uniformly, the one-class clustering problem would be easy.

6.3 Min-Entropy algorithm for one-class clustering in text

Obviously, the trivial one-class clustering algorithm from Section 6.2 above is ap-

plicable only under the restrictive uniformity assumption. Sticking to the uniformity

assumption for now, we propose an alternative formal criterion, which in Section 6.3.1

will be adjusted to the practical case. Based on this criterion, we design an algorithm

that directly identifies the core, and show that this algorithm is optimal under the
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uniformity assumption. Let us define a word entropy of the dataset D as:

H(W ) = HP (P (W )) = −
∑

w∈G

P (w) log P (w) = −
∑

d∈D,w∈G

P (d, w) log P (w), (6.2)

where P is an empirical distribution of words in D: given that a word w occurs Nw∈d

times in a document d, and Nw times in the entire dataset, we let P (d, w) = Nw∈d

N

and P (w) =
∑

d P (d, w) = Nw

N
. Define a document-word entropy of a document d as:

Hd(W ) = −
∑

w∈G

P (d, w) log P (w) = −
∑

w∈d

P (d, w) log P (w). (6.3)

Note that the word entropy (6.2) is additive: H(W ) =
∑

d∈D Hd(W ). The document-

word entropy Hd(W ) captures our intuition of a core document: documents that

mainly use frequent words have low Hd(W ). To see this, we factorize the joint

P (d, w) = P (d)P (w|d), and assume that all documents have a uniform prior P (d) =

1
n
. Thus, Hd(W ) is the expectation of − log P (w) according to the word frequency

P (w|d) in d, which is small if d uses a lot of frequent words.

Based on this observation, for each subset Dk of size k, we define our objective as

Dk’s contribution to the word entropy (6.2):

Hk(W ) =
∑

d∈Dk

Hd(W ) = −
∑

d∈Dk,w∈G

P (d, w) log P (w). (6.4)

We argue that the most coherent subset Dk is the one that minimizes this objective.

To find the most coherent Dk, we use the following simple, greedy Min-Entropy

algorithm:

1. Sort documents according to their word entropy portion (6.3), in increasing

order.

2. Select the first k documents. Eliminate all the rest.
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Since our objective (6.4) is additive in documents, its global minimum is found by the

above algorithm.

We now show that this algorithm is optimal under the uniformity assumption.

Indeed, if the dataset D is large enough, then according to Theorem 6.2.1 (with high

probability) any relevant word w has a lower word-score − log P (w) than any non-

relevant word, because relevant words are more frequent in D. Since we assume that

all documents are of the same length (|d| is constant), the Min-Entropy algorithm

chooses documents that contain more relevant words than any other document in

the dataset. But this is exactly the main property of the core, as discussed in Sec-

tion 6.2. Therefore, the Min-Entropy algorithm identifies the core. We summarize

this observation in the following theorem:

Theorem 6.3.1 If the dataset D is large enough, then with high probability over

datasets, the Min-Entropy algorithm is optimal for the one-class clustering problem

under the uniformity assumption.

6.3.1 Relaxation of the uniformity assumption

In practice, distributions Pr(W ) and Pg(W ) are multinomial rather than uniform

(see illustration in Figure 6.2 right). We modify the theory presented above to this

case by exploiting the fact that entropy of a distribution can be viewed as Kullback-

Leibler (KL) divergence between this distribution and a uniform one. In place of the

entropy from Equation (6.2), we propose to use KL divergence:

KL(P ||Q) =
∑

w∈G

P (w) log
P (w)

Q(w)
=

∑

d∈D,w∈G

P (d, w) log
P (w)

Q(w)
, (6.5)

where Q(w) is an estimation of the true probability of a word occurrence in the English

language. This modification can be thought of as an adjustment of the empirical word
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distribution in D to the uniform one. An algorithm analogous to Min-Entropy aims

at finding a subset Dk that maximizes its portion in (6.5):

KLk(P ||Q) =
∑

d∈Dk,w∈G

P (d, w) log
P (w)

Q(w)
, (6.6)

Thus, we identify the core Dk as a subset of documents containing many words that

occur in D more frequently than in general English. Following [94, 13], we exploit

Web counts of words: we estimate Q(w) as a normalized count of w in the Web. The

Web counts are obtained using Google API.

6.4 One-class co-clustering (OCCC)

As discussed in Section 4.1, co-clustering is a special case of multi-modal clus-

tering, where only two interacting modalities are considered. In the text domain,

co-clustering usually implies clustering documents D and words W , either sequen-

tially [99], or iteratively [39].

In the one-class clustering case, the co-clustering framework is interpreted as con-

structing one cluster of core documents, together with one cluster of relevant words.

The co-clustering idea has special importance for one-class clustering, as we want to

diminish the influence of non-relevant words on the process of selecting core docu-

ments. In many real-world cases, where |R| ≪ |G|, the mass of non-relevant words

in the mixture p(W ) is dominant, while only relevant words are responsible for a

document to be relevant. Reducing this mass is the goal of one-class co-clustering.

By examining Equation (6.6), it is natural to define a score of word relevance as:

s(w) = log
P (w)

Q(w)
. (6.7)

such that our objective function (6.6) is the weighted average of these scores. For

co-clustering we propose to replace the objective (6.6) with the following:
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KLk(P ||Q) =
∑

d∈Dk,w∈R

P ′(d, w) log
P (w)

Q(w)
, (6.8)

where P ′(d, w) = P (d, w)/(
∑

w∈R P (d, w)) is a joint distribution of documents and

(only) relevant words. Because of the re-normalization introduced, it is not obvious

how to find the global optimum of the objective (6.8). We thus propose to approx-

imate it using a simple, sequential One-Class Co-Clustering (OCCC) algorithm: we

first build a cluster of relevant words based on which we build a cluster of core doc-

uments,1 as follows:

1. Sort words according to their scores from Equation (6.7), in decreasing order.

2. Select a subset R of first mr words.

3. Represent documents as bags-of-words over R (delete counts of all words from

G \ R).

4. For each document d, calculate its portion in Equation (6.8):

KLd(P ||Q) =
∑

w∈R

P ′(d, w) log
P (w)

Q(w)
=

∑

w∈R∩d

P ′(d, w) log
P (w)

Q(w)
, (6.9)

5. Sort documents according to their scores from Equation (6.9), in decreasing

order.

6. Select a subset Dk of the first k documents.

Despite its simplicity, the OCCC algorithm shows excellent results on real-world data

(see Section 6.6). The algorithm’s complexity is particularly appealing: O(N), where

N is the number of word tokens in D.

1In this simplest algorithm, word clustering is analogous to feature selection, in which selected
features correspond to only one class of the data. In more complex algorithms though, this analogy
will be less obvious.
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6.4.1 Heuristic for choosing the size of word cluster

The choice of mr can be crucial. While not proposing a comprehensive method

for choosing mr, we propose a useful heuristic. The distribution of scores s(w) for

relevant words can be modeled by a normal distribution with mean µr ≫ 0 and

variance σ2
r . Analogously, the distribution of word scores for non-relevant words is

modeled by a normal distribution with mean µnr = 0 and variance σ2
nr. We assume

that all the words with negative scores are non-relevant. Since the normal distribution

is symmetric, we further assume that the number of non-relevant words with negative

scores equals the number of non-relevant words with positive scores. Therefore, our

estimate of total non-relevant words is twice the number of words with negative

scores, and the number of relevant words can thus be estimated as mr = m − 2 ·

#{words with negative scores}.

6.5 The Latent Topic/Background (LTB) model

Here we revise our generative model from Section 6.2 and propose another one-

class clustering algorithm based on probabilistic inference. Our new generative model

is shown in the right panel of Figure 6.1. For each document di, Yi is a Bernoulli

random variable where Yi = 1 corresponds to di being relevant. For each word token

wij, Zij is a Bernoulli random variable where Zij = 1 means that wij is sampled from

the multinomial distribution Pr(W ) over relevant words, otherwise it is sampled from

the general multinomial distribution Pg(W ) over all words in D.

Following [53], we admit that not all words in a relevant document should be

relevant. In our model, if a document belongs to the core (Yi = 1), for each its

word we make a decision (based on Zij) whether it is sampled from Pr(W ) or Pg(W ).

However, if a document does not belong to the core (Yi = 0), each its word is sampled

from Pg(W ), i.e. P (Zij = 0|Yi = 0) = 1.
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We use the Expectation-Maximization (EM) algorithm to learn parameters of

our model from the dataset. We now describe the model parameters Θ. First, the

probability of a document belonging to the core is denoted by P (Yi = 1) = k
n

= pd

(this parameter is fixed and will not be inferred from data). Second, for each document

di, we maintain a probability of each its word being relevant (given that the document

is relevant), P (Zij = 1|Yi = 1) = πi for i = 1, . . . , n. Third, for each word wl|
m
l=1 we let

P (wl|Zl = 1) = pr(wl) and P (wl|Zl = 0) = pg(wl). The overall number of parameters

is n + 2m + 1, one of which (pd) is preset. The dataset likelihood is then:

P (D) =
n∏

i=1

[pd P (di|Yi = 1) + (1 − pd)P (di|Yi = 0)] =

=
n∏

i=1



pd

|di|∏

j=1

[πipr(wij) + (1 − πi)pg(wij)] + (1 − pd)

|di|∏

j=1

pg(wij)



 .

At each iteration t of the EM algorithm, we first perform the E-step, where we com-

pute the posterior distribution of hidden variables {Yi} and {Zij} given the current

parameter values Θt and the data D. Then, at the M-step, we compute the new

parameter values Θt+1 that maximize the model log-likelihood given Θt, D and the

posterior distribution.

The initialization step is crucial for the EM algorithm. Our pilot experimentation

showed that if distributions Pr(W ) and Pg(W ) are initialized as uniform, the EM

results are close to random. Therefore, we borrow an idea from our OCCC model

(Section 6.4) and initialize word probabilities proportional to their relevance scores

from Equation (6.7). Initialization of πi parameters, which are the ratio of relevant

words in relevant documents, is a problem analogous to determining the word cluster

size in OCCC (see Section 6.4.1). We do not propose the optimal way to initialize πi

parameters, however, as we show later in Section 6.6, the EM algorithm appears to

be quite robust to the choice of πi, namely, πi = 0.5 (or close to that) leads to a good

result.
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Input:
D – the dataset
s(wl) – score for each word wl|

m
l=1

, from Equation (6.7)
T – number of EM iterations

Output: Posteriors P (Yi = 1|di,Θ
T ) for each document di|

n
i=1

Initialization:
for each document di initialize π1

i

for each word wl initialize p1
r(wl) = 1

Sr
exp(s(wl)); p1

g(wl) = 1

Sg
exp(−s(wl)),

where Sr and Sg are normalization factors
Main loop:
For each t = 1, . . . , T do

E-step:
for each document di compute αt

i = P (Yi = 1|di, Θ
t)

for each word token wij compute βt
ij = P (Zij = 1|Yi = 1, wij , Θ

t)
M-step:

for each document di update πt+1 = 1

|di|

∑

j βt
ij

for each word wl update

pt+1
r (wl) =

∑

i αt
i

∑

j δ(wij = wl) βt
ij

∑

i αt
i

∑

j βt
ij

; pt+1
g (wl) =

Nw −
∑

i αt
i

∑

j δ(wij = wl) βt
ij

N −
∑

i αt
i

∑

j βt
ij

Algorithm 4: EM algorithm for one-class clustering using the LTB model.

The EM procedure is sketched in Algorithm 4. We omit minor details, see Ap-

pendix B for more detailed description of the algorithm. After T iterations, we sort

the documents according to αi in decreasing order and choose the first k documents

to be the core. The complexity of our implementation of Algorithm 4 is O(TN). To

avoid overfitting, we set T to be a small number: in our experiments we fix T = 5.

6.6 Experimentation with OCCC and LTB

To define our evaluation criteria, let C be the constructed cluster and let Cr

be its portion consisting of documents that actually belong to the core. Preci-

sion is then defined as Prec = |Cr|/|C|, recall as Rec = |Cr|/k and F-measure as

(2 Prec Rec)/(Prec+Rec). In all our experiments we fix |C| = k, such that precision

equals recall and is then called one-class clustering accuracy, or just accuracy.
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Figure 6.4. Web appearance disambiguation. (left) OCCC accuracy as a function
of the word cluster size; (right) accuracy of LTB (with the underlying EM algorithm)
over various initializations of πi parameters: LTB shows a more robust behavior than
OCCC, however LTB’s maximal result (80.2%) is slightly inferior to the OCCC’s
(82.4%).

6.6.1 Web appearance disambiguation

The Web appearance disambiguation (WAD) task is described in Section 4.7.

WAD is a classic one-class clustering task, that was solved in that section using a

simulated one-class clustering method: multiple clusters are constructed, out of which

one cluster is then selected. Here we propose a more effective solution.

We test our methods on the WAD dataset (Section 4.7.3). The dataset consists

of the 1085 pages, out of which 420 are relevant, so we apply our algorithms with

k = 420. At a preprocessing step, we binarize document vectors and remove low

frequency words (both in terms of P (w) and Q(w)). The results are summarized in

Figure 6.4. On its left panel, the x-axis corresponds to the hypothetic number of

relevant words, and the y-axis to accuracy. The best OCCC performance is obtained

with mr = 2200 words: 82.4% accuracy, while the F-measure reported in Section 4.7.5

is 78.4% (on a cluster with less than 420 documents—its recall is only 71.3%).

As can be seen from the left panel of Figure 6.4, the OCCC performance is robust:

accuracy above 80% is obtained with a word cluster of any size in the 1000-3000

range. The heuristic from Section 6.4.1 suggests a cluster size of 1000. The right

panel of Figure 6.4 shows the LTB accuracy over various initialization values of the

πi parameter (the fraction of relevant words in core documents). We can infer from
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# OCCC LTB # OCCC LTB # OCCC LTB

1 cheyer artificial 8 mlittman proceedings 15 gorfu kaelbling
2 kachites learning 9 hardts computational 16 billmark andrew
3 quickreview cs 10 meuleau reinforcement 17 pomdps conference
4 adddoc intelligence 11 dipasquo papers 18 ml95 markov
5 aaai98 machine 12 shakshuki cmu 19 agentus stanford
6 kaelbling edu 13 xevil aaai 20 megacanje models
7 mviews algorithms 14 sangkyu workshop

Table 6.1. Most highly ranked words by OCCC and LTB, on the WAD dataset.

this plot that LTB is even more robust to parameter initialization than OCCC: any

but very large (i.e. πi ≈ 1) values can be chosen.

Finally, Table 6.1 lists the top 20 words according to the models learned by OCCC

and by LTB. The OCCC algorithm sorts words according to their score s(w), such

that words that often occur in the dataset but rarely in the Web, are on the top of

the list. These are mostly last names or login names of researchers, venues etc. The

EM algorithm of LTB is given the OCCC’s word rank list as an input to initialize

p1
r(w) and p1

g(w), which are then updated at each M-step. In the LTB column, words

are sorted by p5
r(w). The high quality of the LTB list is due to explaining away in

our generative model (via the Yi nodes). Still, OCCC (marginally) outperforms LTB

on this dataset: the maximal result obtained by OCCC is 82.4% accuracy, while LTB

obtains 80.2% accuracy.

6.6.2 Re-ranking Web retrieval results

Modern search engines are usually successful in identifying relevant documents for

a given general-type query. However, in most cases some of the top-ranked documents

have only marginal relation to the query. For example, querying Google for Beatles,

many top-ranked documents indeed talk about the quartet, however, one can see a

document about the Apple Corps vs. Apple Computer trial (which is certainly not

about Beatles), and some other clearly non-relevant documents.
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QUERY GOOGLE OC-SVM OC-IB OCCC LTB

Godfather 0.444 0.407 0.400 0.852 0.926
Bunker Hill 0.487 0.590 0.821 0.897 0.923
Beatles 0.400 0.457 0.571 0.629 0.771

Table 6.2. Re-ranking Web retrieval results: We compare one-class clustering
accuracy of our OCCC (with heuristic from Section 6.4.1) and LTB (initialized with
πi = 0.5) models with the accuracy of the original Google rank lists, of one-class SVM
(OC-SVM) and of one-class Information Bottleneck (OC-IB) [28] with l2-norm.

In this section, we leverage the high quality of Web retrieval results and attempt to

improve them even further. Our assumption is that relevant documents are topically

close to each other, while non-relevant documents can be on any topic. We notice that

as soon as a few relevant documents appear among the n top-ranked results, we can

apply our one-class clustering methods to the task of re-ranking those results, where

the goal is to move relevant documents up in the ranked list, while moving non-

relevant ones down the list. In one-class clustering, we identify the most coherent

subset (i.e. the core) from a set of n documents. Assuming that core documents are

relevant, while non-core documents are non-relevant, we re-organize the ranked list

such that core documents are now located above non-core ones, while preserving the

initial ordering within both the core and non-core subsets.

Note that the problem of one-class clustering for re-ranking Web retrieval results

is similar to the problem of pseudo-relevance feedback (see, e.g. [104]). However,

the two problems are still fundamentally different. In pseudo-relevance feedback, one

assumes that the first k documents in a ranked list are relevant, and re-ranks the

rest of the ranked list based on that assumption. In one-class clustering, in contrast,

we make a weaker assumption that the k relevant documents exist within the first n

documents in a ranked list. Our task is then to discover those k documents and place

them on the top of the ranked list.
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We test the resulting system on three small datasets that we created for this

chapter. Each of them contains 100 first Google hits retrieved on a certain query,

labeled as relevant / non-relevant with regards to the major meaning of the query.

These queries are:

• Godfather. While the word Godfather is ambiguous, a query Godfather most

probably refers to the popular movie/book2—other readings are considered non-

relevant. Among the set of 100 documents, 27 were annotated as relevant.

• “Bunker Hill”. The phrase Bunker Hill is not ambiguous, and a user who

types such a query is presumably interested in information about the Bunker

Hill battle and/or monument. However, some Bunker Hill mentions are not

directly related to the historical event, e.g. Bunker Hill Community College or

Bunker Hill Presbyterian Church. This dataset contains 39 relevant documents.

• Beatles. The obvious reading of the query Beatles is the name of the legendary

quartet. All the 100 first Google hits refer to the quartet, however only 35 of

them provide information about the quartet, such as their biography or discog-

raphy, while this is (almost) certainly the type of information a user expects to

retrieve on query Beatles.

We compare our methods with two previously proposed one-class clustering tech-

niques: an unsupervised one-class SVM and a one-class Information Bottleneck (see [28]

for details on those methods). Our results are shown in Table 6.2; together with the

two baselines, we list the accuracies of the original Google’s ranked lists, where the

first k documents are considered the core, while the rest of n− k documents are con-

sidered the noise. Our methods clearly outperform the baselines, while LTB shows

better performance than OCCC.

2According to imdb.com, The Godfather is the world’s most popular film to date.
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6.6.3 Detecting the topic of the week

As we discussed in this chapter’s introduction, the real-world data rarely consists

of a clean core and uniformly distributed noise. Usually, the noise has some structure,

namely, it may contain coherent components. With this respect, one-class clustering

can be used to detect the largest coherent component in a dataset, which is an integral

part of many applications. In this section, we solve the problem of automatically

detecting the topic of the week (TW) in a newswire stream, i.e. detecting all articles

in a weekly news roundup that refer to the most broadly discussed event.

The TW detection task can be considered as a subtask of Topic Detection and

Tracking (TDT) [2], and is closely related to:

• Generating topic overviews [103]. A topic overview is a set of keywords that

best describe the discussed topic. Using the one-class clustering terminology,

such set is the cluster of relevant words. In our OCCC approach, we generate

both a subset of core documents and a subset of relevant words. In LTB, we

rank documents and words according to their likelihood of belonging to the

core.

• Discovering thematic changes [103, 52]. Major topics (represented both as

subsets of documents and as their descriptive words) are changing with time.

In our work, we deal with those changes by discretizing the timeline into weeks.

A topic that was most broadly discussed one week, may or may not remain so

the next week.

• Quantifying trends [44]. The trend quantification task aims at discovering

how large a certain topic is, without necessarily mapping documents to topics.

In TW detection, however, the task is to discover which topic is the largest one.

Also, trend quantification is an intrinsically supervised task, while TW detection

can be formulated both in terms of supervised and unsupervised learning.

105



We evaluate the TW detection task on the TDT-5 dataset3, which consists of 250

news events spread over a time period of half a year, and 9,812 documents In English,

Arabic and Chinese (translated to English), annotated by their relationship to those

events.4 The largest event in TDT-5 dataset (#55106, titled “Bombing in Riyadh,

Saudi Arabia”) has 1,144 relevant documents, while 66 out of the 250 events have only

one relevant document each. We split the dataset to 26 weekly chunks (to have 26

full weeks, we delete all the documents dated with the last day in the dataset, which

decreases the dataset’s size to 9,781 documents). Each chunk contains from 138 to

1292 documents. Over each chunk, we applied our one-class clustering methods in

four setups:

• OCCC with the mr heuristic (from Section 6.4.1).

• OCCC with optimal mr. We unfairly choose the number mr of relevant words

such that the resulting accuracy is maximal. This setup can be considered as the

upper limit of the OCCC’s performance, which can be hypothetically achieved

if a better heuristic for choosing mr is proposed.

• LTB initialized with πi = 0.5. As we show in Sections 6.6.1 and 6.6.2 above,

if πi parameters are initialized with 0.5, the LTD model shows good results.

• LTB initialized with πi = pd. We notice a significant deviation in the core’s

size among our 26 datasets. Quite naturally, the number of relevant words in

a dataset depends on the number of core documents. For example, if the core

is only 10% of a dataset, it is unrealistic to assume that 50% of all words are

relevant. In this setup, we condition the ratio of relevant words on the ratio of

core documents.

3http://projects.ldc.upenn.edu/TDT5/

4We take into account only labeled documents, while ignoring unlabeled documents that can be
found in the TDT-5 data.
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Figure 6.5. One-class clustering results on the “topic of the week” detection task.

One-class clustering accuracies per week are shown in Figure 6.5. These results

reveal very interesting observations. First, OCCC methods tend to outperform LTB

only on datasets where the results are quite low in general (less than 60% accuracy).

Specifically, on weeks 2, 4, 11 and 16 the LTB models demonstrates extremely poor

performance. While investigating this phenomenon, we discovered that in two of the

four cases LTB was able to construct very clean core clusters, however, those clusters

corresponded to the second largest topic rather than to the largest one. For example,

on the week-4 data, topic #55077 (“River ferry sinks on Bangladeshi river”) was
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Method Accuracy

OCCC with the mr heuristic 61.4 ± 4.5%
OCCC with optimal mr 68.3 ± 3.6%
LTB initialized with πi = 0.5 65.3 ± 7.3%
LTB initialized with πi = pd 68.0 ± 5.9%

Table 6.3. One-class clustering accuracy on the “topic of the week” de-
tection task. The accuracies are macro-averaged over the 26 weekly data chunks.
Standard error of the mean is presented after the ± sign.

discovered as the largest and the most coherent one. In that dataset, topic #55077

is represented by 20 documents, while topic #55063 (“SARS Quarantined medics in

Taiwan protest”) is represented by 27 documents, such that topic #55077 is the second

largest one. Another interesting observation is that the (completely unsupervised)

LTB model can obtain very high results on some of the data chunks. For example,

on weeks 5, 8, 19, 21, 23, 24, 25 LTB’s accuracy is above 90%, with a striking 100%

on week-23.

The one-class clustering accuracies, macro-averaged over the 26 weekly chunks,

are presented in Table 6.3. As we can see, both LTB models outperform the OCCC

variation where the mr heuristic is applied. Moreover, even the optimal choice of

mr does not cause OCCC to perform significantly better than LTB. The dataset-

dependent initialization of LTB’s πi parameters (πi = pd) appears to be preferable

over the dataset-independent one (πi = 0.5).

6.7 Summary

We have addressed the problem of inducing objective functions in Comraf models.

For the task of one-class clustering, we proposed an information-theoretic and a proba-

bilistic objective functions, as well as algorithms for their optimization. The proposed

algorithms are very simple, very efficient and still surprisingly effective. More sophis-

ticated algorithms (e.g. better optimization of the objective function in OCCC) are
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emerging. Also, since the Comraf framework allows straightforward generalization

of OCCC to one-class clustering with many modalities, it will be interesting to see

whether one-class clustering results can be improved by adding more modalities, such

as author names or hyperlinks.

Our evaluation of one-class clustering models on the re-ranking task is preliminary.

It gives positive signals in the Web search case, where queries are of the general type

and unlikely to be ambiguous. Also, one-class clustering is likely to be useful in Topic

Detection and Tracking. However, our pilot experimentation in the ad-hoc retrieval

domain shows rather negative results. In ad-hoc retrieval, our main assumption that

the noise has no or little structure is generally wrong. For example, querying TREC

1 and 2 data for acid rain, the majority of 1000 retrieved documents are actually

weather reports, most probably because all the other documents in the collection are

even less relevant. Since one-class clustering methods do not take the query into

account, and since the weather reports’ subset is the largest and the most coherent

one in the set of retrieved documents, our re-ranking hurts the ranking results on that

query. Evaluating one-class clustering methods on other related tasks is the subject

of our future work.
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CHAPTER 7

IMAGE CLUSTERING WITH COMRAFS

In this chapter, we revise the Comraf clustering mechanism, proposed in Chap-

ter 4. Based on the concept of observed combinatorial random variables (discussed

in Chapter 5), we adapt the Comraf model to the case where the data consists of

both sparse modalities (which need to be clustered) and dense modalities (not to be

clustered). We also generalize the Comraf clustering objective function, making it

more flexible and adjustable to a variety of real-world tasks. These two innovations

finalize the development of the Comraf framework toward giving a comprehensive

recipe for modeling with Comrafs, which we present in Chapter 8.

We focus here on multi-modal clustering of image collections, particularly of those

where images are associated with textual captions.1 Besides the caption words’ modal-

ity, we consider visual modalities, both global (such as colors, texture) and local

(regions, blobs). For details, see Section 7.4 below. Image clustering can be a use-

ful component in a retrieval system [26], it can also be a stand-alone application,

for example, for constructing semantic groups of image retrieval results [108], or for

browsing image collections [5]. Unfortunately, existing uni-modal clustering methods

often demonstrate poor performance on the image clustering task. In this chapter,

we show that by employing the multi-modal learning paradigm we can significantly

improve image clustering results.

Multi-modal clustering of images has an important difference when compared to

multi-modal clustering of documents. Document features, such as words, POS tags

1A preliminary version of this work [12] was published at CVPR 2007.
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etc. are situated in a discrete, finite space. Two textual features can be either identical

or not. Some visual features, in contrast, are unique. These are local features, such

as interest points [91], image regions [56] etc. An affinity metric should be defined to

estimate similarity of those features. We find at least two disadvantages in working in

the affinity space. First, the choice of the affinity metric is often arbitrary. Second, the

affinity metric is defined for each pair of data points, which makes the computational

complexity of related clustering algorithms quadratic in the best case. In this thesis,

we aim at avoiding the explicit definition of the affinity metric (see Section 7.4.2).

7.1 Related work

The idea of clustering images using both low-level image features and surrounding

text (i.e. grouping together visually similar and semantically related images) has

attracted close attention of the research community. Barnard et al. [5] propose a

generative hierarchical model for image clustering, in which every node generates

words and blobs based on the given probability distributions for that node. Higher

level nodes generate more general terms and lower level nodes generate more specific

terms. The EM algorithm is used to fit the model. This approach can handle only

two feature types (words, blobs); to handle more types, the model and the learning

procedure must be revised.

Cai et al. [25] cluster Web image search results using visual, textual and link anal-

ysis. They extract text relevant to the image using a vision-based page segmentation

algorithm. First, only text and hyperlink data is used to cluster images. The resulting

clusters are clustered again using low-level image features. Loeff et al. [73] apply a

similar approach: they calculate a histogram of gradient magnitude of the pixel val-

ues from every interest point and then cluster images using these local features with

global color histograms and surrounding text. Both Cai et al. and Loeff et al. use

spectral clustering methods (where the affinity scores for every pair of data instances
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of every modality must be calculated), which are computationally infeasible in many

other multi-modal applications.

Bipartite spectral graph partitioning [34] is useful for co-clustering two modalities

such as documents and words. Gao et al. [47] extend this method to handle one

more modality. In their tripartite graph model, nodes are arranged in three layers:

words, images and image features. To handle more modalities, Gao et al. [48] propose

another method that is most closely related to our work: they organize modalities in

a star structure of interrelationships, where a central modality is connected to all the

others. They treat this problem as fusion of multiple pairwise co-clustering problems.

Each sub-problem is solved using the bipartite graph partitioning method.

Our approach has a few advantages over the others. First, our method has no

practical limitation in the number of modalities as long as the pairwise interaction

data is available—the addition of a modality increases the computational complexity

only linearly. Second, our model can cluster multiple modalities while taking into

account other modalities, which do not have to be clustered. Third, our information-

theoretic clustering method does not rely on hard-to-obtain affinity matrices of in-

dividual modalities. Instead, easily computable contingency tables of interacting

modalities are used. Overall, we propose a general framework for clustering multime-

dia collections, which can be straightforwardly applied to video data, sound tracks,

hypertext etc. as well as to any of their combinations.

7.2 Multi-modal clustering objective, revisited

In Section 4.1, we proposed an objective function for multi-modal clustering as

the sum of pairwise Mutual Information between interacting clusterings:

xc∗ = arg max
xc

P (xc) = arg max
xc

∑

(Xc
i ,Xc

i′
)∈E

I(X̃i; X̃i′),
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subject to |X̃i| = ki, where i = 1, . . . , m. In Section 3.3 we discussed one disadvantage

of a global objective function like that: Mutual Information terms can significantly

vary in their magnitude, dependently on the support size of corresponding variables.

Summing these terms together can cause an undesired effect of artificial preference

of some interactions over the others. A natural generalization of this objective would

be to consider a weighted linear combination of pairwise Mutual Information terms:

xc∗ = arg max
xc

∑

(Xc
i ,Xc

i′
)∈E

βii′I(X̃i; X̃i′), (7.1)

where the weights βii′ are chosen using some domain knowledge. An obvious choice

of the weights is such that all the Mutual Information terms are to be brought to the

same scale. Another factor for choosing the weights is to make them correspond to

various importance levels of various interactions. For example, if images are clustered

based on their captions and their color histograms, the images/captions interaction

can have a heavier weight than the weight of the images/colors interaction.

In some cases, weights βii′ can be adjusted during the course of an inference

algorithm, in an annealing framework. Also, the weights can be learned using a

model learning procedure. Both these extensions are left for our future work.

7.3 Comraf*: a lightweight version of the Comraf model

In previous chapters we made it obvious that, in most real-world situations, a

practitioner is interested in clustering only one modality (images, in our case), which

we call here a target modality. This implies that not every modality has to be

clustered: if a representation of a modality is dense enough, clustering it may cause

an underestimation of the joint (an effect known as oversmoothing), which may hurt

clustering results of the target modality. For example, if images are distributed over
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Figure 7.1. Comraf* models: (a) for images Gc and words W c from their captions;
(b) for images, words and colors Cc; (c) for images, words, colors and blobs Bc; (d)
straightforward generalization to any number of modalities.

256 colors, it makes no sense to simultaneously cluster images and colors because the

distributions are already dense enough.

In this section, we propose a special case of Comraf models, in which only the tar-

get modality is clustered, while the representations of all the other modalities are as-

sumed to be dense enough. Each unclustered modality is associated with an observed

combinatorial random variable. Recall that a combinatorial random variable is de-

fined over all the possible clusterings of a given set. In case of unclustered modalities,

the observed value of a corresponding combinatorial random variable is a clustering

of all singleton clusters. For example, given a set {red, green, blue}, the observed

value of a corresponding combinatorial random variable is {{red}, {green}, {blue}}.

Each observed combinatorial random variable of an unclustered modality is con-

nected by an edge with a hidden combinatorial random variable of the target modality.

Observed nodes are not connected to each other because they are statistically indepen-

dent by definition. Hence, the resulting topology of the Comraf model is an asterisk

with the target modality in the center. We call such a model Comraf*. Examples of

Comraf* graphs are given in Figure 7.1. Even though only one modality is clustered

in Comraf*, it is still a model for multi-modal clustering, as multiple modalities are

involved in the clustering process.
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Recall that in Chapter 4 we considered Comraf models for multi-modal clustering

where each modality should be clustered. In Comraf* models only one modality is

clustered. The general Comraf model, however, takes care of any number of dense

and sparse random variables. In Section 7.4.2 we present a Comraf model for si-

multaneously clustering images and their local features, while incorporating other

(unclustered) modalities. Since the simultaneous clustering can be computationally

hard, we also show how to reduce the computational burden by translating such

a Comraf model into a series of Comraf* models, each of which is then optimized

separately.

7.3.1 Inference in Comraf*

In Comraf*, where all the edges are attached to Xc
0 and all the leaves are observed

combinatorial random variables, Equation (7.1) is transformed into:

xc∗
0 = arg max

xc

m−1∑

i=1

βiI(X̃0; X̃i) = arg max
xc

m−1∑

i=1

βiI(X̃0; Xi), (7.2)

since X̃i = Xi for the unclustered modalities. As always, we have the |X̃0| = k

constraint.

To compute the weighted sum of pairwise mutual information from Equation (7.2),

the following procedure is used. The input of the procedure is an (empirical) joint

distribution P (X0, Xi) of the underlying data of each interacting pair (Xc
0, X

c
i ). For

a given partitioning xc
0, the distribution P (X̃0, Xi) is computed using the cumulative

rule P (x̃0; xi) =
∑

x0∈x̃0
P (x0, xi). Marginals P (X̃0) and P (Xi) are obtained through

the marginalization P (x̃0) =
∑

xi
P (x̃0, xi) and P (xi) =

∑

x̃0
P (x̃0, xi). Now we have

all the ingredients to calculate the mutual information:

I(X̃0; Xi) =
∑

x̃0,xi

P (x̃0, xi) log
P (x̃0, xi)

P (x̃0)P (xi)
.
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To perform an inference in Comraf*, we apply a version of our MDC algorithm

(see Section 4.3), where either top-down or bottom-up clustering procedures is used

for clustering X0. In the top-down procedure, we start with one cluster that contains

all the values of X0 and split it until the required number of clusters is obtained (while

interleaving with the optimization routine). In bottom-up clustering, we start with

all singleton clusters and merge them until, again, reaching the required number of

clusters.

The computational complexity of the top-down algorithm is O(l|X0|
∑m−1

j=1 |Xi|),

and of the bottom-up algorithm O(l|X0|
2
∑m−1

j=1 |Xi|), where l is a (fixed) number of

clustering iterations. Note that an arbitrary number of leaves (unclustered modalities)

can be incorporated into the Comraf* model, while adding new modalities increases

the complexity only linearly.

7.4 Modalities of an image collection

In this work, along with images, we consider three other modalities. The first

one is words from image captions. We remove stopwords and apply a simple ‘s’-

stemming (removal of plural suffixes). A joint probability of an image g and a word

w is P (g, w) = Nw∈g

|W |
, where Nw∈g is the number of occurrences of w in g’s caption, |W |

is the total number of words. Another modality is colors appearing in images. The

joint probability distribution of colors and images is obtained from color histograms,

as a number of pixels of color c in image g divided by the total number of pixels in

all images. The third modality is blobs, as described below.

7.4.1 Rectangular blobs

Blobs (or visual terms) are a special type of image content representation based on

a fixed vocabulary. To generate blobs, images are first segmented into regions, which

are then clustered across all images. Blobs are the resulting region clusters. Each
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image is mapped onto the set of blobs which leads to in a representation analogous

to the bag-of-words (BOW) in text processing.

Barnard and Forsyth [6] and Duygulu et al. [37] segment images into semantically

coherent regions using Blobworld and Normalized-Cuts algorithms, respectively. Un-

fortunately, these algorithms do not always produce segmentations accurate enough

for further use. Jeon and Manmatha [56] and Feng et al. [41] use a rectangular grid

to segment images and report better results on an image retrieval task. We apply

the same set of blobs as in [41], built using the following procedure. Images are first

segmented to regions using a 6 × 4 grid. Then, for each region, a feature vector is

constructed that contains texture and color information: Gabor texture filters with

4 orientations and 3 scales are used to construct 12 dimensional texture features; the

mean, standard deviation and skewness of RGB and LAB components are computed

to build 18 dimensional color features. The resulting 30 dimensional feature vectors

are clustered using k-means.

7.4.2 Blobs constructed by Comraf models

As discussed in Section 7.4.1 above, a clustering process is involved in constructing

blobs from rectangular regions, represented by color and texture features. Naturally,

since Comrafs are models for multi-modal clustering, an intrinsic Comraf model can be

used for simultaneously clustering images and their regions. Co-clustering of images

and features has been recently described in literature [89], however, Comrafs have

an additional power over co-clustering methods: Comrafs can incorporate multiple

modalities, both sparse (that are to be clustered) and dense (that are not).

Figure 7.2 (left) shows a Comraf model for clustering images G simultaneously

with their regions R, taking into account color C and texture T information of the

regions, as well as the colors and caption words W of the images. Obviously, more

edges and nodes can be added to the model, depending on the data’s availability.
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Figure 7.2. (left) A Comraf model for simultaneously clustering images Gc and their
rectangular regions Rc, while taking into account words W c from image captions,
colors Cc and texture data T c; (right) a translation of this model into a two-step
Comraf*: the first Comraf* is for clustering regions into blobs, whereas the second
Comraf* is for clustering images based on these blobs.

In Section 7.3.1 we mentioned that the input of a Comraf inference procedure is

a set of pairwise probability tables P (Xi, Xi′) for each edge in the Comraf graph. An

interesting case is the (Gc, Rc) edge between image and region combinatorial random

variables in Figure 7.2 (left). Unlike colors and caption words, each region is unique,

so for each region r and each image g, their joint probability is P (r, g) = 1
|R|

if r ∈ g,

and 0 otherwise (where |R| is the total number of regions in the dataset). Such a

probability mass function is useless for clustering regions, because only regions that

belong to the same image can be clustered together. A possible way to resolve this

problem would be to estimate this probability by giving a portion of its mass to

P (r, g) even if r /∈ g. Such an estimation can be made based on computing an affinity

metric between regions of various images, which is computationally hard: O(|R|2|r|),

where |r| is the size of any region.

Comrafs offer an elegant solution to this problem: since regions are clustered not

only based on images, but also based on colors and texture, neither of which has

this problem, we still can use our objective function from Equation (7.1). As long as

images are clustered in parallel with regions, Equation (7.1) allows grouping together

regions that belong to the same image cluster, as desired. Therefore, we apply the

Comraf model from Figure 7.2 (left) as it is. We choose to cluster images bottom-up
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and regions top-down. In our objective (7.1), we cope with the fact that I(R̃; G̃) is

two orders of magnitude larger than I(R̃; C̃) and I(R̃; T̃ ), by setting the weights of

the latter two terms to 100.

The simultaneous clustering of images and regions is a time consuming process:

its complexity is O(|R| |G| (|C| + |T | + |W |)). We propose a light-weight version of

this model, in which inference is done in two steps : first, regions are clustered based

on their color and texture features, and then images are clustered based on colors,

caption words and region clusters. Such a model is equivalent to two Comraf* models

applied one after another, as presented in Figure 7.2 (right). This model’s complexity

is plausible: O(|R| (|C|+|T |)+|G| (|C|+|R̃|+|W |)), where |R̃| is the number of region

clusters. Moreover, in Section 7.5.2 we show that the performance of the two-step

Comraf* is plausible as well: on one of our datasets, it obtains clustering accuracy

comparable to the one of a general Comraf. Generalizing the two-step setting, it is

easy to see that any Comraf can be translated into a series of Comraf* models.

7.5 Experimentation

We experiment with a variety of particular Comraf* models (see examples in Fig-

ure 7.1), as well as with the general Comraf models from Figure 7.2. The experiments

are conducted using our open-source Comraf clustering tool.2 In all our models, im-

ages are clustered agglomeratively. All our results are averaged over 10 independent

runs, with the standard error reported. As a baseline, we use the k-means algorithm

(SimpleKMeans implementation of WEKA3), where images are represented as BOW

of their captions. Also, our 2-node Comraf* model is equivalent to the hard-clustering

version of Information Bottleneck (IB) [106] (see Section 4.1 for discussion), hence

2http://sourceforge.net/projects/comraf

3http://cs.waikato.ac.nz/ml/weka

119



Category # of images Category # of images

Birds 152 Christianity 191
Desert 172 Islam 96
Flowers 165 Judaism 187
Trees 190 Personalities 188
Food 187 Symbols 130
Housing 165 OVERALL: 1823

Table 7.1. Categories (and their sizes) of the IsraelImages dataset.

we use it as our baseline as well. For evaluation of our clustering results, we use

micro-averaged accuracy (Section 4.6.1) of the constructed image clustering.

7.5.1 Datasets

We demonstrate the performance of our clustering methods on two datasets: a

subset of the benchmark Corel dataset and a new multimedia dataset, which we refer

to as IsraelImages , collected by us especially for this work.

The Corel subset4 has already been used in various previous research projects

[37, 55, 41]. The dataset consists of 5,000 images from 50 Corel Stock Photo CDs.

Each CD contains 100 images on the same topic, such as “Sunrises and Sunsets”,

“Mountains of America” and “Wild Animals”. Every image has a caption and an

annotation. The caption is a brief description of the scene and the annotation is a list

of objects that appear in the image. An example of an image caption is “Man And Boy

Fishing Mountain Lake”, while “Tree People Mountain Water” is an annotation for

this image. Overall 371 words are used to annotate the collection. The original dataset

has 4,500 training images and 500 test images. Since our model does not require

training, we use 4,500 training images for our experiments and save the remaining

500 images for future use.

4http://kobus.ca/research/data/eccv_2002
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Method Accuracy

k-means: images over caption words 22.0%
IB: images/caption words 44.2 ± 1.0%
IB: images/colors 24.4 ± 0.2%
Comraf*: images/words/colors 54.2 ± 0.9%
General Comraf: Figure 7.2 (left) 68.6 ± 1.0%
Two-step Comraf*: Figure 7.2 (right) 69.0 ± 0.6%

Table 7.2. Micro-averaged clustering accuracy on IsraelImages. All
IB/Comraf results are averaged over 10 independent runs with the standard error
of the mean reported after the ‘±’ sign.

The second dataset consists of 1823 images downloaded from IsraelImages.com.

The images reflect different aspects of Israel scenery and/or society and are grouped

into 11 categories (see Table 7.1). Each image is 375 by 250 pixels and has a 1 to 18

word long caption. This dataset is available to the research community.5

7.5.2 Comparative results

Our results on the IsraelImages dataset are reported in Table 7.2. Adding the

color modality to the caption BOW improves the clustering result by 10% (on an

absolute scale), whereas adding the regions (in a 2-step Comraf* scheme) leads to an

additional 15% improvement. These findings demonstrate the value of multi-modal

setting in image clustering. The general Comraf model from Figure 7.2 (left) is not

able to outperform the 2-step Comraf*. This is probably due to the fact that color and

texture information is more important for clustering regions than the correspondence

between regions and image clusters.

We also experiment with various levels of color granularity in a 3-node Comraf*

setting (from Figure 7.1b)—the results are presented in Figure 7.3 (left). As can be

seen, if the color information is detailed enough (above 216 colors), the difference in

the results is statistically insignificant. Figure 7.3 (center) shows the results of the

5http://www.cs.umass.edu/~ronb/image_clustering.html
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Method Accuracy

k-means: images over caption words 22.0%
IB: images/caption words 46.6 ± 0.5%
IB: images/colors 22.5 ± 0.2%
IB: images/blobs (see Section 7.4.1) 24.7 ± 0.3%
Comraf*: images/words/colors 55.3 ± 0.5%
Comraf*: images/words/blobs 59.4 ± 0.5%
Comraf*: images/words/colors/blobs 60.1 ± 0.3%
Two-step Comraf*: Figure 7.2 (right) 61.2 ± 0.4%
IB: images/annotation words 58.6 ± 0.3%

Table 7.3. Micro-averaged clustering accuracy on Corel. All IB/Comraf
results are averaged over 10 independent runs with the standard error of the mean
reported after the ‘±’ sign.

2-step Comraf* over various numbers of colors for clustering regions. Generally, less

colors are needed for clustering regions than for clustering images: 216 colors appear

to be too many.

A summary of our results on the Corel dataset is presented in Table 7.3. It

shows surprisingly similar trends as for IsraelImages. On a 3-node setup with caption

words and blobs we obtain 59.4% accuracy, which is especially impressive given that a

random assignment of images into 50 clusters would lead to 2% accuracy (our result

is 30 times above random). Adding the color modality improves this result only

insignificantly (as expected, since blobs already incorporate the color information,

among with texture). The success of 3-node and 4-node Comraf* clustering models

is also supported by the fact that they outperform a 2-node supervised clustering

model, in which images are clustered with respect to their annotations assigned by

human experts.

The 2-step Comraf* shows some further (minor) improvement over the 1-step

Comraf* models. Here, in contrast to IsraelImages, 8 colors are enough for clustering

regions, and adding more colors causes a significant drop in the performance. We

suspect that the Corel dataset is “too simple”: it contains many images that are
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Figure 7.3. Experimentation with various numbers of: (left) colors on IsraelIm-
ages in a 3-node images/words/colors Comraf*; (center) colors for clustering re-
gions in the 2-step Comraf* on IsraelImages; (right) blobs on Corel in a 3-node
images/words/blobs Comraf*. Our baseline is the 2-node images/words clustering
result. Left and right graphs show the same trend: after reaching a certain number of
colors (256) or blobs (2000), the results vary only insignificantly. The central graph,
however, shows that too many colors for clustering regions can hurt.

almost identical to each other, therefore more advanced clustering models lead to no

(or minor) gain over the simpler ones.

Analogously to our IsraelImages experiment with various sizes of color sets, we

test various numbers of blobs on Corel. In previous work [37, 55], the number of

blobs is set to 500, to (roughly) correspond to the number of annotation keywords.

Here we show that 500 blobs are not enough for clustering: when moving from 1000

to 2000 blobs, a significant boost in the system’s performance can be seen.

Figures 7.4 and 7.5 are illustrations of the quality of multi-modal setup: unrelated

groups of images are mixed together when the clustering is based only on caption

words, whereas they are nicely separated when a visual modality is added.

7.6 Summary

In this chapter, we have introduced the Comraf framework for clustering multime-

dia collections. We have also proposed a family of lightweight Comraf models called

Comraf*, which demonstrate excellent performance on clustering two real-world im-

age collections. To further improve the image clustering results, a semi-supervised
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Comraf setting (see Chapter 5) can be used, in which a few labeled examples are

taken into account in the clustering process. We plan to experiment with this setting

in our future work.

Designing general Comraf models for image clustering (in the flavor of the model

shown in Figure 7.2 left) is an ongoing process. Extensive experimentation will lead

to discovering the optimal Comraf setting for clustering multimedia collections.
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(a) Clustering results using only caption words, Corel dataset

(b) Clustering results using words and blobs, Corel dataset

Figure 7.4. Corel dataset. The first row shows clustering results using only words.
Swimmers and swimming tigers are clustered together because they share common
terms like “water” and “swim”. The second and the third rows show clustering results
using both words and blobs. The swimmers and the swimming tigers are now in two
different clusters with other similar images.

(a) Clustering results using only caption words, IsraelImages dataset

(b) Clustering results using words and color histograms, IsraelImages dataset

Figure 7.5. IsraelImages dataset. People portraits and pictures of the menorah mon-
ument are clustered together using caption words because they have a word ‘Knesset’
(the Israeli parliament) in common: the individuals are Knesset members, while the
menorah monument is placed in front of the Knesset building. The problem is resolved
after the color modality is added.
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CHAPTER 8

CONCLUSION

In this thesis we have introduced Combinatorial Markov Random Fields (Comrafs)—

a novel, generic framework for statistical modeling that consists of three basic com-

ponents:

1. An undirected graph with nodes being statistical objects of “rich” structure and

edges being interactions between those objects;

2. An objective function (either probabilistic or non-probabilistic) factored over

the graph;

3. A method for optimizing the objective.

We have applied the Comraf framework to multi-modal learning, which is a learning

problem in the environment where multiple views (or modalities) of the data are

available. Based on the material presented in previous chapters, we can give an

ultimate recipe for solving multi-modal learning problems with Comrafs:

1. Come up with a few modalities for a particular dataset. In most cases, it is

easy to come up with two modalities: one for data instances, another for their

features. Once a few data types or feature types are available, they can be

represented as modalities. Note that a modality is a set over which a proba-

bility distribution can be defined. Comrafs are unlikely to be useful in cases

where data instances are represented as feature vectors, where each feature is

intrinsically different from the others (e.g. where feature vectors consist of four
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features: color, size, temperature, and price, such that it is difficult to define a

probability distribution over this feature set).

2. Decide which modalities interact with each other. This decision should be made

upon availability of contingency information for each pair of modalities, as well

as based on domain knowledge (e.g. whether or not it is natural to see these

modalities interacting). For example, say we are given three modalities images,

their colors, and their caption words. Captions definitely interact with images,

as well as colors interact with images. However, we can assume that captions do

not interact with colors, as it is a very rare case where captions directly describe

colors in an image. Note that a decision about presence / absence of interactions

is analogous to defining conditional independencies in other types of graphical

models: the number of interactions should be kept as low as possible in order

to keep the model tractable.

3. For a particular learning task, decide which modalities should be optimized and

which should be observed. Observed modalities usually provide some level of

supervision to the model: using observed modalities, prior knowledge can be

represented. Also, a modality can be observed if its size is very small, such that

a distribution defined over this modality is statistically dense.

4. Represent those modalities that are to be optimized as hidden combinatorial

random variables, and those that are not as observed combinatorial random vari-

ables. A combinatorial r.v. can be defined over a set of possible partitionings,

subsets, partial orderings of a modality, or over other types of combinatorial

sets, according to the particular problem being solved.

5. Represent each combinatorial r.v. as a node in a graph in which undirected

edges correspond to interactions. We now have finished building the Comraf

graph.

127



6. Represent the learning task as optimization of an objective function that is de-

fined over nodes and edges in the Comraf graph. Choose the objective function

that best suits the task. The choice of objective function can be made based on

previously published work in the field (as in Chapter 4), or based on theoretical

analysis (as in Chapter 6), as well as based on some pilot research or other

considerations.

7. Since optimizing the objective function simultaneously over the entire Comraf

graph appears to be intractable, propose a method for traversing the Comraf

graph in order to perform iterative optimization of the objective. In this thesis,

we have discussed two such methods: Iterative Conditional Modes (ICM) and

Clique-wise Optimization (CWO)—see Section 3.3. ICM can be considered a

global optimization method, as the objective is optimized at each node condi-

tionally on the rest of the model. In contrast, CWO is a local optimization

method, as the objective is optimized over each clique independently of the rest

of the model.

8. At each node / clique, apply a combinatorial optimization method for optimizing

the objective. In Section 4.3, we proposed two simple and greedy combinatorial

optimization methods (sequential and shuffled), both of which explore the local

neighborhood of an initial configuration. More sophisticated methods, such as

Branch and Bound, can be used as well.

9. As the global optimum of the objective function is unlikely to be found, propose

a stopping criterion of the optimization procedure. In our experimentations

with multi-modal clustering, we halted the optimization procedure as soon as

the desired number of clusters was achieved.

We applied the proposed framework to multi-modal clustering (Chapter 4), semi-

supervised learning (Chapter 5), and one-class clustering (Chapter 6). Both text and
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image domains (Chapter 7) were explored. Three important issues have not been

addressed in this thesis—we leave them for our future work:

• Multi-modal ranking, which is another application of the Comraf framework.

In the multi-modal ranking problem, one simultaneously ranks a number of

modalities, given rankings of the other modalities. One example of multi-modal

ranking comes from the data mining / collaborative filtering area: given a

ranking of movies, the task is to simultaneously rank its directors and actors

who starred in those movies. The goal of such system would be to adequately

measure popularity of celebrities. Another example comes from image retrieval:

given a ranked list of documents, retrieved on a certain query, the task is to

simultaneously rank images in these documents and their local features (blobs

or interest points). Our intuition here is that the simultaneous ranking would

improve the quality of image ranked lists. Note that the layout of Comraf graphs

for multi-modal ranking is the same as for multi-modal clustering. However,

the objective function and optimization method should be specific for the multi-

modal ranking task.

• Scalability issue in Comrafs. Unfortunately, the current version of our MDC

implementation for multi-modal clustering is very slow. Given that each opti-

mization iteration is repeated ten times (i.e. ten random restarts), a straightfor-

ward enhancement would be to perform those random restarts in parallel on ten

machines. Another possible enhancement would be to limit the search length

in the shuffled version of MDC, or to parallelize the shuffling steps using the

MapReduce paradigm [33].

• Model learning in Comrafs. It turns out that the main factor for achieving

good clustering results with Comraf models is the good choice of modalities and
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their interactions. It is desired to construct a system that could a priori decide

whether the available modalities would be helpful or harmful.

In addition to being a useful framework for multi-modal learning, Comrafs can go

beyond it: Comraf nodes do not necessarily have to represent data modalities. Also,

random variables of rich structure may not necessarily be of the combinatorial nature,

so Comrafs have good potential for a generalization into a new framework. We call it

Non-Bayesian Networks (NBN). Development of such a framework is also the subject

of our future work. An interesting question yet to be answered is how to model NBN’s

nodes (which are structurally rich) in a finer-grained manner. A possible answer is

to use a lower-level NBN at each node of the (upper-level) NBN, by which we build

a telescopic model. Constructing such a model would resemble designing an object-

oriented software system, which has a direct connection with the power framework of

Object-Oriented Bayesian Networks [61]. Developing Object-Oriented Non-Bayesian

Networks would be the final goal of this research.

To conclude, the contributions of this thesis are:

1. Proposing Comrafs—a novel framework for statistical modeling that brings to-

gether two research fields: graphical models and combinatorial optimization.

2. Applying this framework to a variety of problems in multi-modal learning, such

as multi-modal clustering, semi-supervised clustering, interactive clustering,

one-class clustering etc.

3. Proposing model layouts, objective functions and optimization procedures for

each of these problems.

4. Showing empirical advantage of Comrafs over previous state-of-the-art methods

on various real-world tasks, such as Web appearance disambiguation, document

clustering by genre and author’s sentiment, organization of image galleries etc.
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APPENDIX A

PROOF OF THEOREM 6.2.1

First, note that since both distributions Pr and Pg are uniform, then P (Wij =
w|Zij = 1) = 1

mr
and P (Wij = w|Zij = 0) = 1

m
.

Let us now compute the marginal P (Wij = w). For a relevant word wr, let us
denote it P (Wij = wr) = pr:

pr = P (Wij = wr) = P (Wij = wr|Zij = 1)P (Zij = 1) +

P (Wij = wr|Zij = 0)P (Zij = 0) =
1

mr

π +
1

m
(1 − π) (A.1)

For a non-relevant word wn, denote P (Wij = wn) = pn:

pn = P (Wij = wn) = P (Wij = wn|Zij = 1)P (Zij = 1) +

P (Wij = wn|Zij = 0)P (Zij = 0) = 0 · π +
1

m
(1 − π) =

1

m
(1 − π)

We assume that the difference between these two probabilities is substantial, that is
pr − pn = π/mr >> 0. Let τ be their arithmetic mean:

τ =
1

2
(pr + pn). (A.2)

For each word w, we introduce a random variable Xw of its count (the number of
its occurrences in the dataset), which is distributed binomially : if w is relevant, then
Xw ∼ Bi(pr, N) and its mean is prN ; if w is non-relevant, then Xw ∼ Bi(pn, N) with
mean pnN . We are interested in bounding the probability that Xw ≤ τN for relevant
words, and that Xw ≥ τN for non-relevant words.

Using Chernoff bound for a relevant word w, we have:

P (Xw ≤ τN) ≤ exp

(

−N
(pr − τ)2

2pr

)

≤ ǫ. (A.3)

For a non-relevant word w we have:

P (Xw ≥ τN) ≤ exp

(

−N
(pn − τ)2

3pn

)

≤ ǫ. (A.4)

Solving (A.3) and (A.4) simultaneously with respect to N , we have:

N ≥ max

(
2pr ln 1

ǫ

(pr − τ)2
,

3pn ln 1
ǫ

(pn − τ)2

)

,
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and then substituting τ from (A.2):

N ≥ max

(
8pr ln 1

ǫ

(pr − pn)2
,

12pn ln 1
ǫ

(pr − pn)2

)

=
8pr ln 1

ǫ

(pr − pn)2
,

where we use the given constraint that pw < 2π (and thus 3pn < 2pr, so the first term
is always greater than the second one). Substituting pr − pn = π

pwm
, and applying the

definition of pr from (A.1), we get:

8pr ln 1
ǫ

(pr − pn)2
= 8

π + pw − πpw

pwm
·
p2

wm2

π2
ln

1

ǫ

≤ 8
pwm

π2
ln

1

ǫ
≤ 16

m

π
ln

1

ǫ
,

where we used the fact that π + pw − πpw ≤ 1 and that pw < 2π. Finally, we choose
the value of N to be the minimum among all the possible choices:

N = 16
m

π
ln

1

ǫ
.

Putting it all together: What is the probability that there exists a word w which was
not detected correctly? Using the union bound we get:

P
(

∪w∈R(Xw ≤ τN)
⋃

∪w/∈R(Xw ≥ τN)
)

≤ ǫm = δ,

so ǫ = δ
m

, and then

N = 16
m

π
ln

m

δ
,

which is log-linear in m. ¤
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APPENDIX B

DETAILS OF EM ALGORITHM FOR ONE-CLASS
CLUSTERING

Given the graphical model from Figure 6.1, the joint distribution is:

P ({Y }, {Z}, {w}) =
∏

i

P (Yi)
∏

j

[P (Zij|Yi)P (wij|Zij)] (B.1)

Note that we represent a document di as its Bag-Of-Words: di , {wi1, wi2, . . . , wi|di|}.
Let us now define EM parameters Θ:

P (Yi = 1) = pd (B.2)

For each document di|
n
i−1: P (Zij = 1|Yi = 1) = πi (B.3)

P (Zij = 1|Yi = 0) = 0 (B.4)

For each word wl|
m
l=1: P (wl|Zl = 1) = pr(wl) (B.5)

P (wl|Zl = 0) = pg(wl) (B.6)

Using this notation, the marginal distribution of a document is written as:

P (di) =
∑

Yi

P (Yi)
∑

Zi1

P (Zi1|Yi)P (wi1|Zi1)
∑

Zi2

P (Zi2|Yi)P (wi2|Zi2) . . .

∑

Zi|di|

P (Zi|di||Yi)P (wi|di||Zi|di|)

=
∑

Yi

P (Yi)

|di|∏

j=1

(P (Zij = 1|Yi)P (wij|Zij = 1) + P (Zij = 0|Yi)P (wij|Zij = 0))

= pd

|di|∏

j=1

(πi pr(wij) + (1 − πi) pg(wij)) + (1 − pd)

|di|∏

j=1

pg(wij) (B.7)

E-step
Given the current set of parameters Θk at iteration k, for each document di and

each word wij in di, we compute the posteriors:

P̃ k(Yi = 1|di, Θ
k) =

P (di|Yi = 1, Θk)P (Yi = 1|Θk)

P (di|Θk)
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=
pd

∏|di|
j=1

(
πk

i pk
r(wij) + (1 − πk

i ) pk
g(wij)

)

pd

∏|di|
j=1

(
πk

i pk
r(wij) + (1 − πk

i ) pk
g(wij)

)
+ (1 − pd)

∏|di|
j=1 pk

g(wij)
︸ ︷︷ ︸

denote αk
i

P̃ k(Yi = 1, Zij = 1|di, Θ
k) = P̃ k(Yi = 1|di, Θ

k)P (Zij = 1|Yi = 1, wij, Θ
k)

= P̃ k(Yi = 1|di, Θ
k) ×

P (wij, Zij = 1|Yi = 1, Θk)

P (wij, Zij = 1|Yi = 1, Θk) + P (wij, Zij = 0|Yi = 1, Θk)

= P̃ k(Yi = 1|di, Θ
k)

πk
i pk

r(wij)

πk
i pk

r(wij) + (1 − πk
i ) pk

g(wij)
︸ ︷︷ ︸

denote βk
ij

, αk
i βk

ij

P̃ k(Yi = 1, Zij = 0|di, Θ
k) = P̃ k(Yi = 1|di, Θ

k)
(1 − πk

i ) pk
g(wij)

πk
i pk

r(wij) + (1 − πk
i ) pk

g(wij)
︸ ︷︷ ︸

this term is (1 − βk
ij)

, αk
i (1 − βk

ij)

P̃ k(Zij = 1|di, Θ
k) = P̃ k(Yi = 1, Zij = 1|di, Θ

k) , αk
i βk

ij

P̃ k(Zij = 0|di, Θ
k) = 1 − P̃ k(Zij = 1|di, Θ

k) , 1 − αk
i βk

ij

M-step
We maximize:

Q(Θk+1|Θk) =
∑

i

E[log(P (Yi, {Zij}, {wij}|Θ
k+1)|P̃ k]

=
∑

i

E

[

log

(

P (Yi|Θ
k+1)

∏

j

P (Zij|Yi, Θ
k+1)

∏

j

P (wij|Zij, Θ
k+1)

)

|P̃ k

]

=
∑

i

E
[

log
(
P (Yi|Θ

k+1)
)
|P̃ k

]

︸ ︷︷ ︸

denote A

+
∑

i,j

E
[

log
(
P (Zij|Yi, Θ

k+1)
)
|P̃ k

]

︸ ︷︷ ︸

denote B

+
∑

i,j

E
[

log
(
P (wij|Zij, Θ

k+1)
)
|P̃ k

]

︸ ︷︷ ︸

denote C

The A portion should not be optimized, because pd is a constant in our setting.

B =
∑

i,j

E
[

log
(
P (Zij|Yi, Θ

k+1)
)
|P̃ k

]
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=
∑

i,j

P̃ k(Yi = 1, Zij = 1|di) log
(
P (Zij = 1|Yi = 1, Θk+1)

)

+
∑

i,j

P̃ k(Yi = 1, Zij = 0|di) log
(
P (Zij = 0|Yi = 1, Θk+1)

)

+
∑

i,j

P̃ k(Yi = 0, Zij = 1|di) log
(
P (Zij = 1|Yi = 0, Θk+1)

)

+
∑

i,j

P̃ k(Yi = 0, Zij = 0|di) log
(
P (Zij = 0|Yi = 0, Θk+1)

)

=
∑

i,j

αk
i βk

ij log
(
πk+1

i

)

+
∑

i,j

αk
i (1 − βk

ij) log
(
1 − πk+1

i

)

+
∑

i,j

0 log (0) +
∑

i,j

1 log (1)

C =
∑

i,j

E
[

log
(
P (wij|Zij, Θ

k+1)
)
|P̃ k

]

=
∑

i,j

P̃ (Zij = 1|di) log
(
P (wij|Zij = 1, Θk+1)

)

+
∑

i,j

P̃ (Zij = 0|di) log
(
P (wij|Zij = 0, Θk+1)

)

=
∑

i,j

αk
i βk

ij log
(
pk+1

r (wij)
)

+
∑

i,j

(1 − αk
i βk

ij) log
(
pk+1

g (wij)
)

Now we compute derivatives of Q(Θk+1|Θk) with respect to πk+1
i , pk+1

r (wl), pk+1
g (wl)

and find their values. First, let us find the optimal value of πk+1
i .

∂Q

∂πk+1
i

=
∂B

∂πk+1
i

=
∂

∂πk+1
i

[
∑

j

αk
i βk

ij log πk+1
i +

∑

j

αk
i (1 − βk

ij) log(1 − πk+1
i )

]

= αk
i

[
∑

j

βk
ij

1

πk+1
i

−
∑

j

(1 − βk
ij)

1

1 − πk+1
i

]

= 0

πk+1
i =

∑

j βk
ij

∑

j βk
ij +

∑

j(1 − βk
ij)

=
1

|di|

∑

j

βk
ij

Second, let us find the optimal value of pk+1
r (wl):

∂Q

∂pk+1
r (wl)

=
∂C

∂pk+1
r (wl)
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=
∂

∂pk+1
r (wl)

[
∑

i,j

αk
i βk

ij log
(
pk+1

r (wij)
)

+ λ

(

1 −
m∑

l

pk+1
r (wl)

)]

=
∂

∂pk+1
r (wl)

[
∑

i,j

δ(wij = wl) αk
i βk

ij log
(
pk+1

r (wl)
)

+ λ

(

1 −
m∑

l

pk+1
r (wl)

)]

=

∑

i,j δ(wij = wl) αk
i βk

ij

pk+1
r (wl)

− λ = 0

pk+1
r (wl) =

1

λ

∑

i,j

δ(wij = wl) αk
i βk

ij

1 =
m∑

l

pk+1
r (wl) =

m∑

l

1

λ

∑

i,j

δ(wij = wl) αk
i βk

ij =
1

λ

∑

i,j

αk
i βk

ij

λ =
∑

i,j

αk
i βk

ij

pk+1
r (wl) =

∑

i,j δ(wij = wl) αk
i βk

ij
∑

i,j αk
i βk

ij

=

∑

i α
k
i

∑

j δ(wij = wl) βk
ij

∑

i α
k
i

∑

j βk
ij

Finally, let us find the optimal value of pk+1
g (wl):

∂Q

∂pk+1
g (wl)

=
∂C

∂pk+1
g (wl)

=
∂

∂pk+1
g (wl)

[
∑

i,j

(1 − αk
i βk

ij) log
(
pk+1

g (wij)
)

+ λ

(

1 −
m∑

l

pk+1
g (wl)

)]

=
∂

∂pk+1
g (wl)

[
∑

i,j

δ(wij = wl)(1 − αk
i βk

ij) log
(
pk+1

g (wl)
)

+λ

(

1 −
m∑

l

pk+1
g (wl)

)]

=

∑

i,j δ(wij = wl)(1 − αk
i βk

ij)

pk+1
g (wl)

− λ = 0

pk+1
g (wl) =

∑

i,j δ(wij = wl)(1 − αk
i βk

ij)
∑

i,j(1 − αk
i βk

ij)
=

Nw −
∑

i α
k
i

∑

j δ(wij = wl) βk
ij

N −
∑

i α
k
i

∑

j βk
ij

EM algorithm
To compute αi and βij efficiently, let us use the following relations:

αi =
pd

∏|di|
j=1 (πi pr(wij) + (1 − πi) pg(wij))

pd

∏|di|
j=1 (πi pr(wij) + (1 − πi) pg(wij)) + (1 − pd)

∏|di|
j=1 pg(wij)

=
1

1 + 1−pd

pd

∏

j
pg(wij)

πi pr(wij)+(1−πi) pg(wij)

=
1

1 + 1−pd

pd

∏

j
1

πi

pr(wij)

pg(wij)
+1−πi
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=
1

1 +
1−pd

pd

∏

j

(
πi pr(wij)

(1−πi) pg(wij)
+1

)

(1−πi)

βij =
πi pr(wij)

πi pr(wij) + (1 − πi) pg(wij)
=

1

1 + 1−πi

πi

pg(wij)

pr(wij)

=
1

1 + 1
πi pr(wij)

(1−πi) pg(wij)

Let us denote γk
ij =

πk
i pk

r (wij)

(1−πk
i ) pk

g(wij)
. Then we have

αk
i =

1

1 +
1−pd

pd∏

j(γ
k
ij+1)(1−πk

i )

(B.8)

βk
ij =

1

1 + 1
γk

ij

(B.9)

Algorithm:

1. Initialization:

(a) For each document di: π0
i ← pw.

(b) For each word wl: p0
r(wl) ←

score(wl)∑

l′ score(wl′ )
, and p0

g(wl) ←
1

score(wl)∑

l′
1

score(w
l′ )

.

2. For each document di:

(a) For each word wij calculate γk
ij, and then βk

ij using (B.9).

(b) Accumulate
∏

j(γ
k
ij + 1)(1 − πi). Calculate αk

i using (B.8).

(c) Accumulate
∑

j βk
ij. Calculate πk+1

i ← 1
|di|

∑

j βij.

3. Over all documents, accumulate ψk ←
∑

i α
k
i

∑

j βk
ij.

4. Rank documents in decreasing order of αk
i . Stop if the ranking has not changed

since the previous iteration.1

5. For each word wl

(a) Over all documents, accumulate ̺k
l ←

∑

i α
k
i

∑

j δ(wij = wl) βk
ij.

(b) Calculate pk+1
r (wl) ←

̺k
l

ψk , and pk+1
g (wl) =

Nwl
−̺k

l

N−ψk .

6. k ← k + 1. Go to 2.

1Alternatively, the algorithm can be terminated after a predefined number of EM iterations.
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