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Abstract. We show that several previously proposed passage-based doc-
ument ranking principles, along with some new ones, can be derived from
the same probabilistic model. We use language models to instantiate spe-
cific algorithms, and propose a passage language model that integrates
information from the ambient document to an extent controlled by the
estimated document homogeneity. Several document-homogeneity mea-
sures that we propose yield passage language models that are more ef-
fective than the standard passage model for basic document retrieval
and for constructing and utilizing passage-based relevance models; the
latter outperform a document-based relevance model. We also show that
the homogeneity measures are effective means for integrating document-
query and passage-query similarity information for document retrieval.

Keywords: passage-based document retrieval, document homogeneity,
passage language model, passage-based relevance model

1 Introduction

The ad hoc retrieval task is to rank documents in response to a query by their
assumed relevance to the information need it represents. While a document can
be compared as a whole to the query, it could be the case (e.g., for long and/or
heterogeneous documents) that only (very few, potentially small) parts of it,
i.e., passages, contain information pertaining to the query. Thus, researchers
have proposed different approaches for utilizing passage-based information for
document retrieval [1–8].

We show that some of these previously proposed passage-based document-
ranking approaches can in fact be derived from the same probabilistic model.
Among the methods we derive are ranking a document by the highest query-
similarity score that any of its passages is assigned [2, 4, 8], and by interpolating
this score with the document-query similarity score [2, 4].

We instantiate specific retrieval algorithms by using statistical language mod-

els [9]. In doing so, we propose a passage language model that incorporates in-
formation from the ambient document to an extent controlled by the estimated
document homogeneity. Our hypothesis is that (language) models of passages in
highly homogeneous documents should pull a substantial amount of information



from the ambient document; for passages in highly heterogeneous documents,
minimal such information should be used.

Several document-homogeneity measures that we propose yield passage lan-
guage models that are more effective than the standard passage model [8] — as
experiments over TREC data attest — for basic passage-based document rank-
ing and for constructing and utilizing passage-based relevance models [8]; the
latter also outperform a document-based relevance model [10].

We also derive, and demonstrate the effectiveness of, a novel language-model-
based algorithm that integrates, using document-homogeneity measures, the
query-similarity of a document and of its passages for document ranking.

2 Retrieval Framework

In what follows we show that some previously-proposed passage-based document-
ranking approaches, and some new ones, can be derived from the same model.

Notation and conventions. Throughout this section we assume that the following
have been fixed: a query q, a document d, and a corpus of documents C (d ∈ C).
We use g to denote a passage, and write g ∈ d if g is one of d’s m passages.
(Our algorithms are not dependent on the type of passages.) We write px(·) to
denote a (smoothed) unigram language model induced from x (a document or a
passage); our language model induction methods are described in Sec. 2.2.

2.1 Passage-Based Document Ranking

We rank document d in response to query q by estimating the probability p(q|d)
that q can be generated3 from a model induced from d, as is common in the
language modeling approach to retrieval [12, 9]. We hasten to point out, however,
that our framework is not committed to any specific estimates for probabilities
of the form p(q|x), which we often refer to as the “query-similarity” of x.

Since passages are smaller — and hence potentially more focused — units
than documents, they can potentially “help” in generating queries. Thus, assum-
ing that all passages in the corpus can serve as proxies (representatives) of d for
generating any query, and using p(gi|d) to denote the probability that passage
gi (of some document in the corpus) is chosen as a proxy of d, we can write

p(q|d) =
∑

gi

p(q|d, gi)p(gi|d) . (1)

If we assume that d’s passages are much better proxies for d than passages

not in d, then we can define p̂(gi|d)
def
= p(gi|d)

P

gj∈d p(gj |d) if gi ∈ d, 0 otherwise, and

3 While it is convenient to use the term “generate” in reference to work on language
models for IR [9], we do not think of text items as literally generating the query.
Furthermore, we do not we assume an underlying generative theory in contrast to
Lavrenko and Croft [10], and Lavrenko [11], inter alia.



use it in Eq. 1 to rank d as follows:

Score(d)
def
=

∑

gi∈d

p(q|d, gi)p̂(gi|d) . (2)

To estimate p(q|d, gi), we integrate p(q|d) and p(q|gi) based on the assumed
homogeneity of d: the more homogeneous d is assumed to be, the higher the
impact it has as a “whole” on generating q. Specifically, we use the estimate4

h[M](d)p(q|d) + (1 − h[M](d))p(q|gi), where h[M](d) assigns a value in [0, 1] to
d by homogeneity model M. (Higher values correspond to higher estimates of
homogeneity; we present document-homogeneity measures in Sec. 2.3.) Using
some probability algebra (and the fact that

∑
gi∈d p̂(gi|d) = 1), Eq. 2 then

becomes

Score(d)
def
= h[M](d)p(q|d) + (1 − h[M](d))

∑

gi∈d

p(q|gi)p̂(gi|d) , (3)

with more weight put on the “match” of d as a whole to the query as d is
considered more homogeneous.

If we consider d to be highly heterogeneous and consequently set h[M](d) to
0, and in addition use the relative importance (manually) attributed to gi as
a surrogate for p̂(gi|d), Eq. 3 is then a previously proposed ranking approach
for (semi-)structured documents [4]; if a uniform distribution is used for p̂(gi|d),
instead, we score d by the mean “query-similarity” of its constituent passages,
which yields poor retrieval performance that supports our premise from Sec. 1
about long (and heterogeneous) documents.

Alternatively, we can bound Eq. 3 by

Scoreinter−max(d)
def
= h[M](d)p(q|d) + (1 − h[M](d))max

gi∈d
p(q|gi) . (4)

This scoring function is a generalized form of approaches that interpolate the
document-query similarity score and the maximum query-similarity score as-
signed to any of its passages using fixed weights [14, 2, 15, 4]; hence, such meth-
ods (implicitly) assume that all documents are homogeneous to the same ex-
tent. Furthermore, note that assuming that d is highly homogeneous and setting
h[M](d) = 1 results in a standard document-based ranking approach; on the
other hand, assuming d is highly heterogeneous and setting h[M](d) = 0 yields a
commonly-used approach that scores d by the maximum query-similarity mea-
sured for any of its passages [2, 7, 4, 8]:

Scoremax(d)
def
= max

gi∈d
p(q|gi) . (5)

2.2 Language-Model-Based Algorithms

Following standard practice in work on language models for IR [9], we esti-
mate p(q|d) and p(q|gi) using the unigram language models induced from d

4 This is reminiscent of some work on cluster-based retrieval [13].



and gi, i.e., pd(q) and pgi
(q), respectively. Then, Eq. 4 yields the novel Inter-

polated Max-Scoring Passage algorithm, which scores d by h[M](d)pd(q) +
(1 − h[M](d))maxgi∈d pgi

(q). Using language models in Eq. 5 yields the Max-

Scoring Passage algorithm, which scores d by maxgi∈d pgi
(q) as was proposed

by Liu and Croft [8].

Language Model Induction. We use p̃ MLE
x (w) to denote the maximum like-

lihood estimate (MLE) of term w with respect to text (or text collection) x, and
smooth it using corpus statistics to get the standard (basic) language model [16]:

p̃[basic]
x (w) = (1 − λC)p̃MLE

x (w) + λC p̃MLE
C (w) ; (6)

λC is a free parameter.
We extend the estimate just described to a sequence of terms w1w2 · · ·wn by

using the unigram-language-model term-independence assumption

p[basic]
x (w1w2 · · ·wn)

def
=

n∏

j=1

p̃[basic]
x (wj) . (7)

Passage Language Model. Using p
[basic]
gi (q) in the above-described algorithms

implies that document d is so heterogeneous that in estimating the “match” of
each of its passages with the query we do not consider any information from d,
except for that in the passage itself.

Some past work on question answering, and passage and XML retrieval [17–
22] uses a passage language model that exploits information from the ambient
document to the same fixed extent for all passages and documents. In con-
trast, here we suggest to use the document estimated homogeneity to control
the amount of reliance on document information. (Recall that homogeneity mea-
sures are used in the Interpolated Max-Scoring Passage algorithm for fusion of
similarity scores.) Hence, for g ∈ d we define the passage language model

p̃[M]
g (w)

def
= λpsg(g)p̃MLE

g (w) + λdoc(d)p̃MLE
d (w) + λC p̃MLE

C (w) ; (8)

we fix λC to some value, and set λdoc(d) = (1 − λC)h[M](d) and λpsg(g) =
1 − λC − λdoc(d) to have a valid probability distribution. We then extend this
estimate to sequences as we did at the above

p[M]
g (w1w2 · · ·wn)

def
=

n∏

j=1

p̃[M]
g (wj) . (9)

Setting h[M](d) = 0 — considering d to be highly heterogeneous — we get
the standard passage language model from Eq. 7. On the other hand, assuming
d is highly homogeneous and setting h[M](d) = 1 results in representing each
of d’s passages with d’s standard language model from Eq. 7; note that in this
case the Max-Scoring Passage algorithm amounts to a standard document-based
language model retrieval approach.



2.3 Document Homogeneity

We now consider a few simple models M for estimating document homogene-
ity. We define functions h[M] : C → [0, 1] with higher values corresponding to
(assumed) higher levels of homogeneity.

Long documents are often considered as more heterogeneous than shorter
ones. We thus define the normalized length-based measure

h[length](d)
def
= 1 −

log |d| − mindi∈C log |di|

maxdi∈C log |di| − mindi∈C log |di|
,

where |dj | is the number of terms in dj .
5

The length-based measure does not handle the case of short heterogeneous
documents. We can alternatively say that d is homogeneous if its term distribu-
tion is concentrated around a small number of terms [23]. To model this idea, we
use the entropy of d′s unsmoothed language model and normalize it with respect
to the maximum possible entropy of any document with the same length as that
of d (i.e., log |d|):6

h[ent](d)
def
= 1 +

∑
w′∈d p̃MLE

d (w′) log(p̃MLE
d (w′))

log |d|
.

Both homogeneity measures just described are based on the document as a
whole and do not explicitly estimate the variety among its passages. We can
assume, for example, that the more similar the passages of a document are to
each other, the more homogeneous the document is. Alternatively, a document
with passages highly similar to the document as a whole might be considered
homogeneous. Assigning d’s passages with unique IDs, and denoting the tf.idf7

vector-space representation of text x as x, we can define these homogeneity
notions using the functions h[interPsg](d) and h[docPsg](d), respectively, where

h[interPsg](d)
def
=

{
2

m(m−1)

∑
i<j;gi,gj∈d cos(gi, gj) if m > 1 ,

1 otherwise ;

h[docPsg](d)
def
=

1

m

∑

gi∈d

cos(d, gi) .

5 Normalizing the length with respect to documents in several corpora (including the
ambient corpus) yields very similar retrieval performance to that resulting from
normalization with respect to documents in the ambient corpus alone.

6 Entropy(d)
def
= −

P

w′∈d
ep MLE

d (w′) log(ep MLE
d (w′)); higher values correspond to (as-

sumed) lower levels of homogeneity. A document d with all terms different from each
other has the maximum entropy (log |d|) with respect to documents of length |d|. If
|d| = 1, we set h[ent](d) to 1.

7 Modeling these two homogeneity notions using the KL divergence between language
models yields substantially-inferior retrieval performance to that of using the pro-
posed vector space representation with the cosine measure.



3 Related Work

There is a large body of work on utilizing (different types of) passages for doc-
ument retrieval [1–8]. We showed in Sec. 2 that several of these methods can be
derived and generalized from the same model.

Utilizing passage language models is a recurring theme in question answering
[24, 25, 18], sentence and passage retrieval [26, 20, 22], document retrieval [3, 6, 8]
and XML retrieval [19, 21]. As mentioned in Sec. 2.2, some prior work [17–22]
smooth the passage (sentence) model with its ambient document’s statistics, by
using interpolation with fixed weights. We present in Section 4.1 the relative
merits of our approach of using document homogeneity measures for controlling
the reliance on document statistics.

Liu and Croft’s work [8] most resembles ours in that they use the Max-
Scoring Passage algorithm with the basic passage model from Eq. 7; they also
use a passage-based relevance model [10] to rank documents. We demonstrate the
merits in using their methods with our passage language model in Sec. 4.

4 Evaluation

We conducted our experiments on the following four TREC corpora:

corpus # of docs avg. length queries disk(s)

FR12 45,820 935 51-100 1,2
LA+FR45 186,501 317 401-450 4,5
WSJ 173,252 263 151-200 1-2
AP89 84,678 264 1-50 1

FR12, which was used in work on passage-based document retrieval [2, 8], and
LA+FR45, which is a challenging benchmark [27], contain documents that are
longer on average (and often considered more heterogeneous) than those in WSJ
and AP89.

We used the Lemur toolkit (www.lemurproject.org) to run our experiments.
We applied basic tokenization and Porter stemming, and removed INQUERY
stopwords. We used titles of TREC topics as queries.

To evaluate retrieval performance, we use the mean average (non-interpolated)
precision (MAP) at 1000, and the precision of the top 10 documents (p@10). We
determine statistically significant differences in performance using the two-tailed
Wilcoxon test at the 95% confidence level.

Passages. While there are several passage types we can use [7], our focus is on
the general validity of our retrieval algorithms and language-model induction
techniques. Therefore, we use half overlapping fixed-length windows (of 150 and
50 terms8) as passages and mark them prior to retrieval time. Such passages are
computationally convenient to use and were shown to be effective for document
retrieval [2], specifically, in the language model framework [8].

8 Passages of 25 terms yield degraded performance as in some previous reports [2, 8].



Table 1. Performance numbers of the Max-Scoring Passage algorithm (MSP) with
either the basic passage language model (MSPbase) or our passage language model
(MSP[M]) that utilizes homogeneity model M. Document-based language-model
(DOCbase) retrieval performance is presented for reference. Boldface: best result per
colomn; underline: best performance for a corpus per evaluation measure. d and p mark
statistically significant differences with DOCbase and MSPbase, respectively.

FR12 LA+FR45
PsgSize 150 PsgSize 50 PsgSize 150 PsgSize 50
MAP p@10 MAP p@10 MAP p@10 MAP p@10

DOCbase 22.0 13.3 22.0 13.3 22.7 26.4 22.7 26.4

MSPbase 28.4 14.8 30.1d 14.8 21.9 25.5 21.7 25.7

MSP[length] 29.6d 15.7 31.8d
p 15.7 23.1p 27.5 23.6p 26.0

MSP[ent] 29.3d
16.2 30.1d

16.2 22.2 26.2 21.8 26.0

MSP[interPsg] 29.1d 15.7 30.7d
16.2 22.8p 26.6 21.9 25.3

MSP[docPsg] 29.3d
16.2 31.0d 15.7 23.2d

27.9 23.0 25.5

WSJ AP89
PsgSize 50 PsgSize 150 PsgSize 50 PsgSize 150
MAP p@10 MAP p@10 MAP p@10 MAP p@10

DOCbase 28.4 39.6 28.4 39.6 20.0 24.1 20.0 24.1

MSPbase 28.8 41.8 26.1d 40.4 18.8d 23.0 17.7d 22.4

MSP[length] 29.3d
43.0d 29.0p 44.8d

p 19.3p 23.7 18.7p 24.6

MSP[ent] 29.3p 41.6 27.9p 41.8 19.1p 22.8 18.2d
p 22.6

MSP[interPsg] 29.2d 42.4d 28.2p 43.2p 19.5p 23.7 18.4d
p 23.9

MSP[docPsg] 29.1d 42.6d
29.2p 44.8d

p 19.8p 23.3 19.1p 24.6

4.1 Experimental Results

Passage Language Model. To study the performance of our passage language
model independently of score-integration (as performed by Interpolated Max-
Scoring Passage), we use it in the Max-Scoring Passage algorithm, which was
previously studied with the basic passage model [8].

Specifically, let MSP [M] denote the implementation of Max-Scoring Pas-

sage with our passage model p
[M]
g (·), and MSPbase denote its implementation

with the basic passage model p
[basic]
g (·) [8]. Since our passage model leverages

information from the ambient document, we also use as a reference comparison a
standard document-based language-model retrieval arpproach (DOCbase) that

scores document d by p
[basic]
d (q).

All tested algorithms incorporate a single free parameter λC , which con-
trols the extent of corpus-based smoothing. We fix λC to 0.5, because this re-
sults in (near) optimal (MAP) performance for both our reference comparisons
(MSPbase and DOCbase) with respect to values in {0.1, 0.2, . . . , 0.9}.9

We present the performance numbers in Table 1. Our first observation is that
the Max-Scoring Passage algorithm is consistently more effective (many times to
a statistically significant degree) when utilizing our new passage language model
(MSP [M]) than when using the basic passage language model (MSPbase).

We can also see in Table 1 that the most effective homogeneity measures
for inducing our passage model are length — demonstrating its correlation with

9 Similar relative-performance patterns are observed for λC = 0.3.



heterogeneity — and docPsg; the latter measures the similarity between a doc-
ument and its passages, and is thus directly related to the balance we want to
control of using document-based vs. passage-based information. Furthermore,
MSP [length] and MSP [docPsg] yield performance that is superior to that of
document-based retrieval (DOCbase) in many of the relevant comparisons, es-
peically for FR12 and WSJ. For AP89, however, document-based retrieval is
superior (in terms of MAP) to using (any) passage-based information, possibly
due to the high homogeneity of the documents.
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Fig. 1. The MAP performance curve of Max-Scoring Passage (PsgSize=150) when
setting λdoc(d) (see Eq. 8) to the same fixed value in {0, 0.1, . . . , 0.5} for all documents.
(0 and 0.5 correspond to MSPbase and DOCbase, respectively.) The performance of
using the homogeneity measures length and docPsg is plotted for comparison with
thin and thick horizontal lines, respectively. Note: figures are not to the same scale.

Further Analysis. Our passage model incorporates information from the ambient
document to an extent controlled by the estimated document homogeneity. We
now study the alternative of fixing the reliance on document information to the
same extent for all documents and passages, as proposed in some past work [17,
18, 20, 22]. We do so by fixing λdoc(d) in Eq. 8 to a value in {0, 0.1, . . . , 0.5}.
(Recall that λdoc(d) = (1 − λC)h[M](d) and λC = 0.5; also, setting λdoc(d) to 0
and 0.5 corresponds to MSPbase and DOCbase, respectively.) We depict the
resultant MAP performance curve (for passages of 150 terms) of the Max-Scoring
Passage algorithm in Fig. 1. We plot for comparison the performance of using
our best-performing homogeneity measures length and docPsg.

We can see in Fig. 1 that using homogeneity measures improves performance
over a poor choice of a fixed λdoc(d); furthermore, for FR12, LA+FR45 and
WSJ, the measures yield performance that is sometimes better than the best



performance obtained by using some fixed λdoc(d), and always better than that
of using either passage-only information or document-only information (see the
end points of the curves). Many of the performance improvements posted by
the homogeneity measures over a fixed λdoc(d) are also statistically significant,
e.g., MSP [length] and MSP [docPsg]’s performance is better to a statistically
significant degree than setting λdoc(d) to (i) 0 for LA+FR45 and AP89, (ii) 0.5
for FR12 and WSJ, and (iii) {0.1, 0.2} for AP89.

Table 2. Performance numbers of a passage-based relevance model [8]. We use either
the originally suggested basic passage language model (relPsgBase) or our passage lan-
guage model (relPsg[M]). Document-based relevance-model performance is presented
for reference (relDoc). Best result in a colomn is boldfaced, and best result for a corpus
(per evaluation measure) is underlined; statistically significant differences with relDoc
and relPsgBase are marked with d and p, respectively.

FR12 LA+FR45
PsgSize 150 PsgSize 50 PsgSize 150 PsgSize 50
MAP p@10 MAP p@10 MAP p@10 MAP p@10

relDoc 10.7 9.1 10.7 9.1 20.7 23.8 20.7 23.8

relPsgBase 31.7d 14.3d 31.1d 16.2d
22.4 26.0 21.9 24.7

relPsg[length] 28.0d 14.8d 30.7d
18.1d 21.8p 26.6 23.3d

p 25.3

relPsg[docPsg] 26.9d
15.7d

34.2d
18.1d 20.4p 25.1 22.8d

p 25.7

WSJ AP89
PsgSize 150 PsgSize 50 PsgSize 150 PsgSize 50
MAP p@10 MAP p@10 MAP p@10 MAP p@10

relDoc 33.9 48.4 33.9 48.4 25.6 28.5 25.6 28.5
relPsgBase 34.5 47.2 34.0 45.0 24.1 29.8 22.2 25.9

relPsg[length] 35.4d 50.0 37.5d
p 49.0p 25.1 30.4 24.3p 30.0p

relPsg[docPsg] 35.9d
50.2 37.6d

p 50.2p 25.7 29.8 25.1p 31.3p

Relevance Model. The most effective passage-based relevance model approach
for ranking documents that was suggested by Liu and Croft [8] is to construct a
relevance model [10] only from passages and use it to rank documents. We com-
pare their original implementation relPsgBase, which utilizes the basic passage
model, to an implementation relPsg[M], which utilizes our passage language

model p
[M]
g (·). We also use a document-based relevance model (relDoc) [10] as

a reference comparison.
We optimize the performance of each of our reference comparisons (relPsgBase

and relDoc) with respect to the number of top-retrieved elements (i.e., passages
or documents) and the number of terms used for constructing the relevance mod-
els; specifically, we select these parameters’ values from {25, 50, 75, 100, 250, 500}
— i.e., 36 parameter settings — so as to optimize MAP performance. We set
λC = 0.5 (as at the above) except for estimating top-retrieved elements’ language
models for constructing relevance models, wherein we set λC = 0.2 following past
recommendations [10]. Our relPsg[M] (M ∈ {length, docPsg}) algorithms use
the parameter values selected for the relPsgBase reference comparison; there-
fore, their performance is not necessarily the optimal one they can achieve.



Table 2 shows that in most of the relevant comparisons using our passage
language model yields passage-based relevance models (relPsg[M]) that out-
perform both the original implementation (relPsgBase) [8] — which utilizes
the basic passage model — and the document-based relevance model (relDoc).
(Note, for example, that underlined numbers that constitute the best perfor-
mance for a corpus per evaluation metric appear only in relPsg[M] rows.) In
many cases, the performance differences are also statistically significant.

Interpolated Max-Scoring Passage. The algorithm scores document d by
interpolation (governed by the homogeneity-based interpolation weight h[M](d))
of the document-based language model score (DOCbase) with the score as-
signed by Max-Scoring Passage. (See Sec. 2.2.) To focus on this score integra-
tion, rather than combine it with information integration at the language model
level10, which we explored at the above, we use the basic passage language model

p
[basic]
g (·); the Max-Scoring Passage implementation is then the MSPbase de-

fined above.
In Fig. 2 we present the MAP performance of Interpolated Max-Scoring

Passage (with passages of 150 terms). We either use h[M](d) with the length and
docPsg homogeneity measures11, or set h[M](d) to a fixed value in {0, 0.1, . . . , 1}
for all documents (0 and 1 correspond to MSPbase and DOCbase, respectively),
which echoes some past work [2, 4].

We see in Fig. 2 that homogeneity measures yield performance that is (i) bet-
ter than that of several fixed values of h[M](d), (ii) always better than the worse
performing among MSPbase and DOCbase (see the end points of the curves),
and (iii) sometimes (e.g., for FR12 and WSJ) better than the best performance
attained by using some fixed h[M](d) for all documents12. Many of the improve-
ments obtained by our homogeneity measures over a fixed h[M](d) are also sta-
tistically significant, e.g., length is significantly better than setting h[M](d) to
(i) 0 for LA+FR45, WSJ and AP89, (ii) 0.9 for FR12, (iii) {0.1, . . . , 0.4} for
LA+FR45, and (iv) {0.1, 0.3} for WSJ.

5 Conclusions

We derived some previously-proposed and new passage-based document-ranking
approaches from the same model. We proposed an effective passage language

model that incorporates information from the ambient document to an extent
controlled by the estimated document homogeneity. Our homogeneity measures
are also effective for integrating document and passage query-similarity infor-
mation for document retrieval.

10 Experiments show that such combination yields additional performance gains.
11 ent and interPsg yield inferior performance to that of length and docPsg, and are

omitted to avoid cluttering of the figure.
12 These observations also hold if Dirichlet-smoothed [16] language models are used for

both passages and documents.
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Fig. 2. The MAP performance curve of the Interpolated Max-Scoring Passage algo-
rithm (PsgSize=150) when setting h[M](d) (see Eq. 4) to the same fixed value in
{0, 0.1, . . . , 1} for all documents. (0 and 1 correspond to MSPbase and DOCbase,
respectively.) We also plot the performance of setting M to length and docPsg with
thin and thick horizontal lines, respectively. Note: figures are not to the same scale.
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