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ABSTRACT

EFFICIENT TRAINING METHODS
FOR CONDITIONAL RANDOM FIELDS

FEBRUARY 2008

CHARLES A. SUTTON

B.A., ST. MARY’S COLLEGE OF MARYLAND

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

Many applications require predicting not a just a single variable, but multiple

variables that depend on each other. Recent attention has therefore focused on struc-

tured prediction methods, which combine the modeling flexibility of graphical models

with the ability to employ complex, dependent features typical of traditional classi-

fication methods. Especially popular have been conditional random fields (CRFs),

which are graphical models of the conditional distribution over outputs given a set

of observed features. Unfortunately, parameter estimation in CRFs requires repeated

inference, which can be computationally expensive. Complex graphical structures are

increasingly desired in practical applications, but then training time often becomes

prohibitive.

In this thesis, I investigate efficient training methods for conditional random fields

with complex graphical structure, focusing on local methods which avoid propagating

vii



information globally along the graph. First, I investigate piecewise training, which

trains each of a model’s factors separately. I present three views of piecewise train-

ing: as maximizing the likelihood in a so-called “node-split graph”, as maximizing

the Bethe likelihood with uniform messages, and as generalizing the pseudo-moment

matching estimator of Wainwright, Jaakkola, and Willsky. Second, I propose piece-

wise pseudolikelihood, a hybrid procedure which “pseudolikelihood-izes” the piecewise

likelihood, and is therefore more efficient if the variables have large cardinality. Piece-

wise pseudolikelihood performs well even on applications in which standard pseudo-

likelihood performs poorly. Finally, motivated by the connection between piecewise

training and BP, I explore training methods using beliefs arising from stopping BP

before convergence. I propose a new schedule for message propagation that improves

upon the dynamic schedule proposed recently by Elidan, McGraw, and Koller, and

present suggestive results applying dynamic schedules to the system of equations that

combine inference and learning.

I also present two novel families of loopy CRFs, which appear as test cases through-

out. First is the dynamic CRF, which combines the factorized state representation of

dynamic Bayesian networks with the modeling flexibility of conditional models. The

second of these is the skip-chain CRF, which models the fact that identical words are

likely to have the same label, even if they occur far apart.
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CHAPTER 1

INTRODUCTION

Fundamental to many applications is the ability to predict multiple variables that

depend on each other. Such applications are as diverse as classifying regions of an

image [61], estimating the score in a game of Go [116], segmenting genes in a strand

of DNA [5], and extracting syntax from natural-language text [130]. In such applica-

tions, we wish to predict a vector y = {y0, y1, . . . , yT} of random variables given an

observed feature vector x. A relatively simple example from natural-language pro-

cessing is part-of-speech tagging, in which each variable ys is the part-of-speech tag of

the word at position s, and the input x is divided into feature vectors {x0,x1 . . .xT}.

Each xs contains various information about the word at position s, such as its identity,

orthographic features such as prefixes and suffixes, membership in domain-specific

lexicons, and information in semantic databases such as WordNet.

One approach to this multivariate prediction problem, especially if our goal is to

maximize the number of ys that are correctly classified, is to learn a per-position

classifier that maps x 7→ ys for each s. There are two difficulties with this method,

however. The first is that we are not always interested in maximizing the number

of correct predictions. Sometimes the objective function over predictions may be to

maximize the probability that the entire sequence is correct, or to maximize a more

complicated function like BLEU or F1. The second difficulty is that the size of both

the input and output vectors can be extremely large. For example, in part-of-speech

tagging, each vector xs may have tens of thousands of components, so a classifier

based on all of x would have many parameters. But using only xs to predict ys is also
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bad, because information from neighboring feature vectors is also useful in making

predictions. Both of these difficulties can be addressed by explicitly modeling the

dependence between outputs, so that a confident prediction about one variable needs

to be able to influence nearby, possibly less confident predictions.

A natural way to represent the manner in which variables depend on each other is

provided by graphical models. Graphical models—which include such diverse model

families as Bayesian networks, neural networks, factor graphs, Markov random fields,

Ising models, and others—represent a complex distribution over many variables as a

product of local factors on smaller subsets of variables. It is then possible to describe

how a given factorization of the probability density corresponds to a particular set

of conditional independence relationships satisfied by the distribution. This corre-

spondence makes modeling much more convenient, because often our knowledge of

the domain suggests reasonable conditional independence assumptions, which then

determine our choice of factors.

Much of the early work in learning with graphical models, especially in statistical

natural-language processing, focused on generative models that explicitly attempted

to model a joint probability distribution over inputs and outputs. Although there

are advantages to this approach, it also has important limitations. Not only can the

dimensionality of x become very large, but the features have complex dependencies,

so constructing a probability distribution over them is difficult. In practice, one

must either employ a complex model of the features, which is intractable, or make

strong independence assumptions among the features, which can lead to reduced

performance.

An alternative approach is to predict y directly, without modeling x. This is the

idea behind structured prediction. Structured prediction methods are essentially a

combination of classification and graphical modeling, combining the ability to com-

pactly model multivariate data with the ability to perform prediction using large sets
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of input features. The idea is, for an input x, to define a discriminant function Fx(y),

and predict y∗ = arg maxy Fx(y). This function factorizes according to a set of local

factors, just as in graphical models. But as in classification, each local factor is mod-

eled a linear function of x, although perhaps in some induced high-dimensional space.

To understand the benefits of this approach, consider a hidden Markov model (for-

mally introduced in Section 2.2.2) and a set of per-position classifiers, both with fixed

parameters. In principle, the per-position classifiers predict an output ys given all of

x0 . . .xT .1 In the HMM, on the other hand, to predict ys it is statistically sufficient

to know only the local input xs, the previous forward message p(ys−1,x0 . . .xs−1),

and the backward message p(xs+1 . . .xT |ys). So the forward and backward messages

serve as a summary of the rest of the input, a summary that is generally non-linear

in the observed features.

1.1 Approaches to Structured Prediction

Several types of structured prediction algorithms have been studied. All such

algorithms assume that the discriminant function Fx(y) over labels can be written

as a sum of local functions Fx(y) =
∑

a fa(ya,x, θ). The task is to estimate the

real-valued parameter vector θ given a training set D = {x(i),y(i)}Ni=1. The methods

differ in how the parameters are selected.

In this thesis, I focus on conditional random fields (CRFs) [58], in which the

score Fx(y) is viewed as defining a conditional probability distribution p(y|x) ∝

exp{Fx(y)}. As we see in detail in Chapter 2, training requires computing marginal

distributions, which are intractable in general. The task of dealing with this in-

tractable will be the main focus of this thesis. Perhaps the main advantage of prob-

1To be fair, in practice the classifier for ys would probably depend only on a sliding window
around xs, rather than all of x. But still the structured approach has the advantage that the
forward and backward messages serve as a flexible, nonlinear summary of the surrounding input.
This has the effect of choosing an effective window size from the data.
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abilistic methods is that they can incorporate latent variables in a natural way, by

marginalization. A particularly powerful example of this is provided by Bayesian

methods, in which the model parameters themselves are integrated out.

Alternative structured prediction methods are based on maximizing over assign-

ments rather than marginalizing. Perhaps the most popular of these methods has

been maximum-margin methods that are so successful for univariate classification.

Recently max-margin methods have been generalized to the structured case [3, 129].

Both batch and online algorithms are available to maximize this objective function.

The perceptron update can also be generalized to structured models [22]. The result-

ing algorithm is particularly appealing because it is little more difficult to implement

than the algorithm for selecting y∗. The online perceptron update can also be made

margin-aware, yielding the MIRA algorithm [25], which may perform better than the

perceptron update.

Another class of methods are search-based methods [28] in which a heuristic search

procedure over outputs is assumed, and learns a classifier that predicts the next step

in the search. This has the advantage of fitting in nicely to many problems that are

complex enough to require performing search. It is also able to incorporate arbitrary

loss functions over predictions.

A general advantage of all of these maximization-based methods is that they

do not require summation over all configurations for the partition function or for

marginal distributions. There are certain combinatorial problems, such as matching

and network flow problems, in which finding an optimal configuration is tractable,

but summing over configurations is not (for an example of applying max-margin

methods in such situations, see Taskar et al. [131]). For more complex problems,

neither summation nor maximization is tractable, so this advantage is perhaps not

as significant. Another advantage of these methods is that kernels can be naturally

incorporated.
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Finally, LeCun et al. [60] generalizes many prediction methods, including the ones

listed above, under the rubric of energy-based methods, and presents interesting his-

torical information about their use. They advocate changing the loss function to avoid

probabilities altogether, and so their work may serve as an interesting complement

to my work in this thesis.

An older method for predicting multiple outputs simultaneously is neural net-

works. The main difference between the more recent structured prediction work and

neural networks is that neural networks represent the dependence between output

variables using a shared latent representation, while structured methods learn these

dependences as direct functions of the output variables. Therefore, the main insight

of structured models can be expressed in the language of neural networks as: If you

add connections among the nodes in the output layer, then in some problems you

do not need a hidden layer to get good performance. Omitting the hidden layer has

great computational advantages, because the objective functions used for training

become convex, and we do not need to worry about the problems of local minima

that arise when training neural networks. For harder problems, however, one might

expect that even after modeling output structure, incorporating hidden state will still

yield additional benefit. Once hidden state is introduced into the model, whether it

be a neural network or a structured model, the loss of convexity is inevitable. There

are currently few examples of structured models with latent variables (for exceptions,

see Quattoni et al. [97] and McCallum et al. [73]), but it is likely that such models

will become more important in the future.

The differences between the various structured prediction methods are not well

understood. For example, I am not aware of any empirical study that compares

these algorithms on a broad range of data sets. Indeed, my presentation in this

section is motivated by the view that the similarities between various structured

prediction methods are more important than the differences. For this reason, my
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choice in this thesis to focus on conditional random fields is difficult to justify, but

perhaps of secondary importance. As I explain next, my main area of interest is to

incorporate approximate inference algorithms into training of models with intractable

structure, and most structured prediction methods do require performing inference

during training.

1.2 Efficient Training of CRFs

Early work on CRFs focused on the case in which the variables y are arranged

in a linear chain, because this choice allows the marginals of the distribution to be

computed exactly using the forward-backward algorithm, and because this choice

is very natural for certain tasks such as information extraction and shallow parsing.

Recently, however, research in NLP has begun to explore global models, which exploit

long-distance dependencies between words to improve performance [14, 32, 118]. With

such rich models, however, a major difficulty with CRFs becomes the amount of

computation required for training. This is because the likelihood gradient requires

matching the marginal distributions of the model to those of the training data, and

computing the model marginals is intractable for general graphs. In addition, the

amount of training data can be somewhat large, with the largest data sets reaching

one million words of labeled training data. The standard approach for dealing with

this is to approximate the model marginals, most commonly using variational methods

such as belief propagation, although many other methods are also possible.

Because inference in graphical models is intractable, there is a vast literature

on approximate inference. Here I mention a few recent studies that are relevant to

efficient training methods in undirected models and in conditional random fields.

For generative models, Abbeel et al. [1] present parameter estimation and structure

learning algorithms that, unlike maximum likelihood, require polynomial time and
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have polynomial sample complexity. These algorithms are not yet practical, however,

because they make poor use of the training data.

Remarkably, the pseudo-moment matching estimator of Wainwright et al. [142]

computes a parameter setting that maximizes the BP approximation to the likelihood

without ever requiring any of the message updates to be computed. This estimator

appears to have very limited practical applicability, however, because it applies only

to generative random fields with a special parameterization that does not allow tied

parameters. In this thesis I present a generalization that handles these issues (Sec-

tion 4.1.3).

Although the original work on CRFs used iterative scaling, it was later found that

second-order gradient-based methods converged much faster [112]. Recently, however,

online methods have been shown to converge much faster than second-order methods

for CRFs [136]. Globerson et al. [42] present a particularly interesting method using

the dual of the likelihood, provably finding the minimum if the step size is small

enough, but with an online-like update. The difference between these methods and

my work is that they focus on the case where there are many iid training instances,

not when there is intractable structure. In cases where there are both many training

examples and intractable structure, then one of these online-style updates could be

incorporated orthogonally into the methods presented in this thesis.

1.3 Main Contributions

The main contributions of this thesis are:

• Modeling (Chapter 3). I present two novel classes of loopy conditional models:

dynamic conditional random fields (DCRFs) and skip-chain CRFs. A common

theme of these models is to show that adding long-distance dependencies be-

tween words can improve performance in sequence labeling tasks. These models

also motivate the need for more efficient training methods for CRFs.
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• Piecewise Training (Chapter 4). I introduce piecewise training, a method for

training regions of a factor graph separately and combining them at test time.

This method has appeared as a heuristic in scattered places in the literature,

but has never been studied systematically. On several benchmark NLP tasks, I

show that the factor-as-piece approximation performs surprisingly well, always

exceeding pseudolikelihood and sometimes rivaling exact maximum likelihood.

In addition, piecewise training can be understood as a generalization of the

pseudo-moment matching estimator of Wainwright et al. [142] that allows for

conditional models with arbitrary parameterization. This provides a satisfying

theoretical explanation of the positive experimental results of the factor-as-piece

approximation.

• Piecewise Pseudolikelihood (Chapter 5). Piecewise training scales poorly

in computation time to variables or factors that have large cardinality. Pseu-

dolikelihood scales much better in computation time, but has poor accuracy

in the NLP data that I consider. Therefore I propose a hybrid method called

piecewise pseudolikelihood (PWPL), which “pseudolikelihoodizes” (in a sense

that can be stated formally) the individual terms in the piecewise likelihood. I

show that under certain conditions, PWPL converges to the piecewise solution

in the limit of infinite data. In terms of accuracy, PWPL performs more like

piecewise training than like pseudolikelihood, making it a practical alternative

to pseudolikelihood for the problems considered here.

• Improved Dynamic Schedules for Belief Propagation (Section 6.1). In

Chapter 4, I show how piecewise training can be viewed as a type of early stop-

ping of belief propagation. But the running time of BP and even its convergence

depend greatly on the schedule used to send the messages. Dynamic update

schedules have recently been shown to converge much faster on hard networks
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than static schedules by Elidan et al. [30], who propose a simple and effective

schedule which they call residual BP. But that RBP algorithm wastes message

updates: many messages are computed solely to determine their priority, and

are never actually performed. I show that estimating the residual, rather than

calculating it directly, leads to significant decreases in the number of messages

required for convergence, and in the total running time. The residual is esti-

mated using an upper bound based on recent work on message errors in BP. On

both synthetic and real-world networks, this dramatically decreases the running

time of BP, in some cases by a factor of five, without affecting the quality of

the solution.

• Integrating Inference and Learning (Section 6.2). Piecewise training can

be seen as a sort of early stopping of BP, one in which BP is stopped before

sending any messages. Therefore it is natural to ask whether one can do better

by using some less drastic form of early stopping. I propose a view of such

methods as attempting to find fixed points of a single system of equations,

which includes both gradient updates on the model parameters and BP message

updates. Update schedules for solving this system can be seen as integrating

inference and learning, because they have the freedom to dynamically choose

when to make parameter updates and when to send messages.

1.4 Declaration of Previous Work

Most the work of this thesis has been previously published. The rest has been

collected into several technical reports. These are:

• Much of the tutorial information in Chapter 2 has been published in Sutton

and McCallum [121].

9



• The work on DCRFs in Section 3.1 has appeared as Sutton, McCallum, and

Rohanimanesh [126], which was based on two earlier conference papers [120,

125].

• The work on skip-chain CRFs in Section 3.2 appeared as Sutton and McCallum

[118].

• The initial work on piecewise training was Sutton and McCallum [119].

• The work on shared-unary piecewise and one-step cutout (Section 4.4 and 4.5)

was done at Microsoft Research in collaboration with Tom Minka, and appears

in an MSR tech report [124].

• Chapter 5 on piecewise pseudolikelihood was originally published as Sutton and

McCallum [122].

• The work on zero-lookahead RBP0 in Section 6.1 has been published as Sutton

and McCallum [123].
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CHAPTER 2

BACKGROUND

This chapter provides the statistical and algorithmic background necessary to

understand the current work. I review necessary concepts in graphical models and

inference (Section 2.1), and then explain conditional random fields, starting with the

linear-chain case (Section 2.3) and then describing CRFs in general (Section 2.4).

2.1 Graphical Models

Graphical modeling is a powerful framework for representation and inference in

multivariate probability distributions. It has proven useful in diverse areas of stochas-

tic modeling, including coding theory [76], computer vision [38], knowledge represen-

tation [91], Bayesian statistics [37], and natural-language processing [11, 58].

Distributions over many variables can be very expensive to represent näıvely. For

example, a table of joint probabilities of n binary variables requires storing O(2n)

floating-point numbers. The insight of the graphical modeling perspective is that

even when a distribution is defined over a large set of variables, it can often be rep-

resented as a product of local functions that depend on a much smaller subset of

variables. This factorization turns out to have a close connection to certain con-

ditional independence relationships among the variables—both types of information

being easily summarized by a graph. Indeed, this relationship between factorization,

conditional independence, and graph structure comprises much of the power of the

graphical modeling framework: the conditional independence viewpoint is most use-
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ful for designing models, and the factorization viewpoint is most useful for designing

inference algorithms.

In the rest of this section, I introduce graphical models from both the factorization

and conditional independence viewpoints, focusing on those models which are based

on undirected graphs, because such models are the principal topic of this thesis. I also

discuss a few approximate inference algorithms that are useful in the present work.

2.1.1 Undirected Graphical Models

We consider probability distributions over sets of random variables V = X ∪ Y ,

where X is a set of input variables that we assume are observed, and Y is a set of

output variables that we wish to predict. Every variable s ∈ V takes outcomes from

a set V , which can be either continuous or discrete, although I consider only the

discrete case in this thesis. An arbitrary assignment to X is denoted by a vector x.

Given a variable s ∈ X, the notation xs denotes the value assigned to s by x, and

similarly for an assignment to a subset a ⊂ X by xa. The notation 1{x=x′} denotes

an indicator function of x which takes the value 1 when x = x′ and 0 otherwise. We

also require a special notation for marginalization. For a fixed variable assignment ys,

we use the summation
∑

y\ys
to indicate a summation over all possible assignments

y whose value for variable s is equal to ys.

Suppose that we have reason to believe that a probability distribution p of interest

can be represented by a product of factors of the form Ψa(xa,ya), where each factor

scope a ⊂ V . This factorization can allow us to represent p much more efficiently,

because the sets a may be much smaller than the full variable set V . We assume that

without loss of generality that each distinct set a has at most one factor Ψa, so that

An undirected graphical model is a family of probability distributions that fac-

torize according to given collection of scopes. Formally, given a collection of subsets

F = a ⊂ V , an undirected graphical model is defined as the set of all distributions
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that can be written in the form

p(x,y) =
1

Z

∏
a∈F

Ψa(xa,ya), (2.1)

for any choice of local function F = {Ψa}, where Ψa : V |a| → IR+. (These functions

are also called factors or compatibility functions.) We will occasionally use the term

random field to refer to a particular distribution among those defined by an undirected

model. The reason for the term graphical model will become apparently shortly, when

we discuss how the factorization of (2.1) can be represented as a graph.

The constant Z is a normalization factor that ensures the distribution p sums to

1. It is defined as

Z =
∑
x,y

∏
a∈F

Ψa(xa,ya). (2.2)

The quantity Z, considered as a function of the set F of factors, is called the partition

function in the statistical physics and graphical models communities. Computing Z

is intractable in general, but much work exists on how to approximate it.

We will generally assume further that each local function has the form

Ψa(xa,ya) = exp

{∑
k

θakfak(xa,ya)

}
, (2.3)

for some real-valued parameter vector θa, and for some set of feature functions or

sufficient statistics {fak}. If x and y are discrete, then this is no restriction, because

we can have features have indicator functions for every possible value, that is, if we

include one feature function fak(xa,ya) = 1{xa=x∗a}1{ya=y∗a} for every possible value

x∗a and y∗a.

Also, a consequence of this parameterization is that the family of distributions

over V parameterized by θ is an exponential family. Indeed, much of the discussion

of maximum-likelihood parameter estimation in this chapter applies to exponential

families in general.
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Figure 2.1. A Markov network with an ambiguous factorization. Both of the factor
graphs at right factorize according to the Markov network at left.

As we have mentioned, there is a close connection between the factorization of

a graphical model and the conditional independencies among the variables in its

domain. This connection can be understood by means of an undirected graph known

as a Markov network, which directly represents conditional independence relationships

in a multivariate distribution. Let G be an undirected graph with variables V , that

is, G has one node for every random variable of interest. For a variable s ∈ V , let

N(s) denote the neighbors of s. Then we say that a distribution p is Markov with

respect to G if it meets the local Markov property: for any two variables s, t ∈ V ,

the variable s is independent of t conditioned on its neighbors N(s). Intuitively, this

means that the neighbors of s contain all of the information necessary to predict its

value.

Given a factorization of a distribution p as in (2.1), an equivalent Markov network

can be constructed by connecting all pairs of variables that share a local function.

It is straightforward to show that p is Markov with respect to this graph, because

the conditional distribution p(xs|xN(s)) that follows from (2.1) is a function only of

variables that appear in the Markov blanket.

In other words, if p factorizes according to G, then p is Markov with respect to

G. The converse direction also holds, as long as p is strictly positive. This is stated

in the following classical result [7, 45]:
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Theorem 2.1 (Hammersley-Clifford). Suppose p is a strictly positive distribution,

and G is an undirected graph that indexes the domain of p. Then p is Markov with

respect to G if and only if p factorizes according to G.

A Markov network has an undesirable ambiguity from the factorization perspec-

tive, however. Consider the three-node Markov network in Figure 2.1 (left). Any

distribution that factorizes as p(x1, x2, x3) ∝ a(x1, x2, x3) for some positive function

a is Markov with respect to this graph. However, we may wish to use a more re-

stricted parameterization, where p(x1, x2, x3) ∝ a(x1, x2)b(x2, x3)c(x1, x3). This sec-

ond parameterization denotes a smaller set of models, which therefore may be more

amenable to parameter estimation. But the Markov network formalism cannot distin-

guish between these two parameterizations. In order to state models more precisely,

the factorization (2.1) can be represented directly by means of a factor graph [54].

A factor graph is a bipartite graph G = (V, F,E) in which a variable node vs ∈ V

is connected to a factor node Ψa ∈ F if vs is an argument to Ψa. An example of a

factor graph is shown graphically in Figure 2.2 (right). In that figure, the circles are

variable nodes, and the shaded boxes are factor nodes.

2.1.2 Directed Graphical Models

Whereas the local functions in an undirected model need not have a direct prob-

abilistic interpretation, a directed graphical model describes how a distribution fac-

torizes into local conditional probability distributions. Let G = (V,E) be a directed

acyclic graph. A directed graphical model is a family of distributions that factorize

as:

p(y,x) =
∏
v∈V

p(v|π(v)), (2.4)

where π(v) are the parents of v in G. An example of a directed model is shown in

Figure 2.2 (left). It can be shown by structural induction on G that p is properly
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normalized. Directed models are often used as generative models, as we explain in

Section 2.2.3.

2.1.3 Inference

The fundamental problem in graphical models is inference, that is, given a speci-

fication of the joint distribution p(y) over all the variables, to compute the resulting

marginal distribution over subsets of Y . (In order to simplify notation, we have omit-

ted the variables X in this section.) There are two inference problems of interest in

this thesis: first, computing the marginal distributions of single variables

p(ys) =
∑
y\ys

p(y), (2.5)

and second, that of computing max-marginals

δ(ys) = max
y\ys

p(y). (2.6)

We will also be interested in the problem of computing marginals over factors, that

is, p(ya) =
∑

y\ya
p(y) where the set a ⊂ V is the scope of some factor.

These two inference problems can be seen as fundamentally the same operation

on two different semirings [2], that is, to change the marginal problem to the max-

marginal problem, we simply substitute max for plus. Indeed, many algorithms for

computing marginals have analogous procedures for computing max-marginals. Al-

though for discrete variables the marginals can be computed by brute-force summa-

tion, the time required to do this is exponential in the size of Y . Indeed, both inference

problems are intractable for general graphs, because any propositional satisfiability

problem can be easily represented as a factor graph.

Exact inference algorithms are known for general graphs. Although these algo-

rithms require exponential time in the worst case, they can still be efficient for many
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graphs that occur in practice. The most popular such algorithm, the junction tree

algorithm, successively clusters variables until the graph becomes a tree. Once such

an equivalent tree has been constructed, its marginals can be computed using ex-

act inference algorithms that are specific to trees, one of which is described in the

next section. For certain complex graphs, the junction tree algorithm is forced to

make clusters which are very large, so that on such graphs the procedure requires

exponential time. For more details on exact inference, see Cowell et al. [24].

For this reason, an enormous amount of effort has been devoted to approximate

inference algorithms. Two classes of approximate inference algorithms have received

the most attention: Monte Carlo algorithms, that attempt to sample from the dis-

tribution of interest; and variational algorithms, that convert the inference problem

into an optimization problem, which is then relaxed or approximated until it becomes

tractable. Generally, Monte Carlo algorithms are guaranteed to sample from the dis-

tribution of interest given enough computation time, although it is usually impossible

in practice to know when that point has been reached. Variational algorithms, on

the other hand, can be faster, but they tend to be biased, by which I mean that they

tend to have a source of error that is inherent to the approximation, and cannot be

easily lessened by giving them more computation time.

Despite this, I focus on variational algorithms in this thesis, for two reasons.

First, parameter estimation requires performing inference many times, and so a fast

inference procedure is vital to efficient training. Second, a natural connection exists

between variational inference algorithms and performing parameter estimation on

subgraphs, which is one of the central ideas in this thesis (Chapter 4).

2.1.4 Belief Propagation

An important variational inference algorithm for is belief propagation (BP), which

I explain in this section. I choose to explain BP in detail for two reasons: First, it is a
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direct generalization of the exact inference algorithms for linear-chain CRFs. Second,

and more important for the purposes of this thesis, it has a close connection to the

piecewise methods that I introduce in Chapter 4.

Suppose that G is a tree, and we wish to compute the marginal distribution of a

variable s. The intuition behind BP is that each of the neighboring factors of s makes

a multiplicative contribution to the marginal of s, called a message, and each of these

messages can be computed separately because the graph is a tree. More formally, for

every factor a ∈ N(s), call Va the set of variables that are “upstream” of a, that is,

the set of variables v for which a is between s and v. In a similar fashion, call Fa

the set of factors that are upstream of a, including a itself. But now because G is a

tree, the sets {Va} ∪ {s} form a partition of the variables in G. This means that we

can split up the summation required for the marginal into a product of independent

subproblems as:

p(ys) ∝
∑
y\ys

∏
a

Ψa(ya) (2.7)

=
∏

a∈N(s)

∑
yVa

∏
Ψb∈Fa

Ψb(yb) (2.8)

Denote each factor in the above equation by mas, that is,

mas(xs) =
∑
yVa

∏
Ψb∈Fa

Ψb(yb), (2.9)

can be thought of as a message from the factor a to the variable s that summarizes

the impact of the network upstream of a on the belief in s. In a similar fashion, we

can define messages from variables to factors as

msA(xs) =
∑
yVs

∏
Ψb∈Fs

Ψb(yb). (2.10)
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Then, from (2.8), we have that the marginal p(ys) is proportional to the product of

all the incoming messages to variable s. Similarly, factor marginals can be computed

as

p(ya) ∝ Ψa(ya)
∏
s∈a

msa(ya). (2.11)

Here I have treated a as a set a variables denoting the scope of factor Ψa. I will do

this throughout this thesis. In addition, I will sometimes use the reverse notation

c 3 s to mean the set of all factors c that contain the variable s.

Naively computing the messages according to (2.9) is impractical, because the

messages as we have defined them require summation over possible many variables

in the graph. Fortunately, the messages can also be written using a recursion that

requires only local summation. The recursion is

mas(xs) =
∑
ya\ys

Ψa(ya)
∏
t∈a\s

mta(xt)

msa(xs) =
∏

b∈N(s)\a

mbs(xs)

(2.12)

That this recursion matches the explicit definition of m can be seen by repeated

substitution, and proven by induction. In a tree, it is possible to schedule these

recursions such that the antecedent messages are always sent before their dependents,

by first sending messages from the root, and so on. This is the algorithm known as

belief propagation [91].

In addition to computing single-variable marginals, we will also wish to compute

factor marginals p(ya) and joint probabilites p(y) for a given assignment y. (Re-

call that the latter problem is difficult because it requires computing the partition

function logZ.) First, to compute marginals over factors—or over any connected set

of variables, in fact—we can use the same decomposition of the marginal as for the

single-variable case, and get
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p(ya) = κΨa(ya)
∏
s∈a

msa(ys), (2.13)

where κ is a proportionality constant, computed to make the distribution sum to

1. In fact, a similar idea works for any connected set of variables—not just a set

that happens to be the domain of some factor—although if the set is too large, then

computing κ is impractical.

This comment motivates the second problem, computing joint probabilities p(y).

Perhaps the most convenient way to do this is to use the fact that in a tree-structured

distribution

p(y) =
∏
s∈Y

p(ys)
∏
a

pa(ya)∏
t∈a p(yt)

(2.14)

This is because any tree can be represented as a junction tree with one cluster for

each factor. Using this identity, we can compute p(y) (or logZ) from the per-variable

and per-factor marginals.

The preceding discussion assumes that the graph G is a tree. If G is not a tree,

the message updates (2.12) are no longer guaranteed to return the exact marginals,

nor are they guaranteed even to converge, but we can still iterate them in an attempt

to find a fixed point. This procedure is called loopy belief propagation. To emphasize

the approximate nature of this procedure, I refer to the approximate marginals that

result from loopy BP as beliefs rather than as marginals, and denote them by q(ys).

Surprisingly, loopy BP can be seen as a variational method as follows. The general

variational idea is to:

1. Define a family of tractable distributions Q and an objective function O(q).

The function O should be designed to measure how well a tractable distribution

q ∈ Q approximates the distribution p of interest.

2. Find the “closest” tractable distribution q∗ = minq∈QO(q).

3. Use the marginals of q∗ to approximate those of p.
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For example, suppose that we take Q be the set of all possible distributions over y,

and

O(q) = KL(q‖p)− logZ (2.15)

= −H(q)−
∑
a

q(ya) log Ψa(ya). (2.16)

Then the solution to this variational problem is q∗ = p with optimal value O(q∗) =

logZ. Solving this particular variational formulation is thus equivalent to performing

exact inference. Approximate inference techniques can be devised by changing the

set Q—for example, by requiring q to be fully factorized—or by using a different

objective O.

With that background on variational methods, let us see how belief propagation

can be understood in this framework. We make two approximations. First, we ap-

proximate the entropy term H(q) of (2.16), which as it stands is difficult to compute.

If q were a tree-structured distribution, then its entropy could be written exactly as

HBethe(q) =
∑
a

q(ya) log q(ya) +
∑
i

(1− di)q(yi) log q(yi). (2.17)

This follows from substituting the junction-tree formulation (2.14) of the joint into

the definition of entropy. If q is not a tree, then we can still take HBethe as an

approximation to H to compute the exact variational objective O. This yields the

Bethe free energy :

OBethe(q) = HBethe(q)−
∑
a

q(ya) log Ψa(ya) (2.18)

The objective OBethe depends on q only through its marginals, so rather than opti-

mizing it over all probability distributions q, we can optimize over the space of all

marginal vectors. Specifically, every distribution q has an associated belief vector q,
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with elements qa;ya for each factor a and assignment ya, and elements qi;yi
for each

variable i and assignment yi. The space of all possible belief vectors has been called

the marginal polytope [138]. However, for intractable models, the marginal polytope

can have extremely complex structure.

This leads us to the second variational approximation made by loopy BP, namely

that the objective OBethe is optimized instead over a relaxation of the marginal poly-

tope. The relaxation is to require that the beliefs be only locally consistent, that is,

that

∑
ya\yi

qa(ya) = qi(yi) ∀a, i ∈ a (2.19)

Under these constraints, Yedidia et al. [149] show that constrained stationary points

of OBethe fixed points of loopy BP. So we can view the Bethe energy OBethe as an

objective function that the loopy BP fixed-point operations attempt to optimize.

A second way of formulating BP as a variational algorithm yields a dual form of

the Bethe energy that will prove particularly useful [81]. This dual energy arises from

the expectation propagation view of BP [77]. Suppose we have a set of BP messages

{mai}, which have not necessarily converged. Then we view the outgoing messages

from each factor as approximating it, that is,

Ψa(ya) ≈ t̃a(ya) =
∏
i∈a

mai(yi). (2.20)

This yields an approximation to the distribution p, namely, p(y) ≈ q(y) =
∏

a t̃a(ya).

Observe that q is possibly unnormalized. As Minka [77] observes, each message update

of loopy BP can be viewed as refining one of the terms t̃a so that q is closer, in terms

of KL divergence.
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Since q was therefore chosen to approximate p, it makes sense to use the mass of

q to approximate the mass of p. More precisely, let p′ be the unnormalized version of

p, that is, p′(y) =
∏

a Ψa(ya). Then define rescaled versions of t̃a and q as

t̄a(ya) = sat̃a(ya) (2.21)

q̄(y) =
∏
a

t̄a(ya) (2.22)

Then the idea is to scale each of the t̄a so that the resulting
∑

y q̄(y) matches as

closely as possible the partition function
∑

y p
′(y). This can be done by optimizing

local divergences in an analogous manner to EP. Define q̄\a as the approximating q̄

without the factor t̃a, that is, each sa is separately chosen to optimize

min
sa

KL(Ψa(ya)q̄
\a(ya)‖sat̃a(ya)q̄\a(ya)). (2.23)

Observe that because q̄\a depends on all of the scale factors sb for all factors b, the

local objective function depends on all of the other scale factors as well. The optimal

sa is given by

sa =

∑
y

Ψa(ya)

t̃(ya)
q(y)∑

y q(y)
. (2.24)

Thus the optimal sa actually does not depend on the other scale values. Now taking

the integral
∑

y q̄(y) yields the following approximation to the partition function

ZBetheDual =
∏
i

(∑
yi

qi(yi)

)1−di ∏
a

(∑
ya

Ψa(ya)

t̃(ya)
q(ya)

)
. (2.25)

It can be shown [78] that this is also a free energy for BP, that is, that fixed points

of BP are stationary points of this objective.

Another view of BP is the reparameterization viewpoint [141]. In this view, the

BP updates are expressed solely in terms of the beliefs bn at each iteration n of the
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algorithm. The beliefs are initialized as b0
a ∝ Ψa for all factors, and b0

s ∝ 1 for all

variables. The updates at iteration n are

bns (ys) =
∑
yN(s)

Bn−1
s (ys,yN(s))

bna(ya) =
∑
yN(a)

Bn−1
a (ya,yN(a))

(2.26)

where the distributions Bn−1
a and Bn−1

s are defined as

Bn−1
s (ys,yN(s)) ∝ bn−1(ys)

∏
a3s

bn−1
a (ya)

bn−1
s (ys)

Bn−1
a (ya,yN(a)) ∝ bn−1

a (ya)
∏
s∈a

∏
c3s\a

bc(yc)

bs(ys)

(2.27)

(This notation is adapted from Rosen-Zvi et al. [103].)

To see how this corresponds to the message-based recursions (2.12), consider the

following message passing schedule. At each iteration n, first compute all of the

to-variable messages simultaneously as

mn
as(ys) =

∑
ya\ys

Ψa(ya)
∏
t∈a\s

mn−1
ta (yt) (2.28)

then compute all of the to-factor messages as

mn
sa(ys) =

∏
c3s\a

mn
cs(ys). (2.29)

Then define the beliefs as usual: qns ∝
∏

a3sm
n
as for all variables s, and qna ∝

Ψa

∏
s∈a
∏

c3s\am
n
cs for all factors a. In order to obtain a clean correspondence be-

tween these reparameterization updates, we also need the assumption that the graphs

defined by Bn−1
a and Bn−1

s are trees, which always happens if all factors are pairwise.
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Now we can state the correspondence between the message-based and reparam-

eterization viewpoints: The beliefs from the message-based recursions are equal to

those from the reparameterization-based recursions. That is, for all iterations m,

qns = bns and qna = bna . This can be seen by induction, substituting the messages

corresponding to qn−1 into the update equations (2.26) for bn.

The reason for the term “reparameterization” is that at each iteration n, we can

construct a distribution T n(y) over the full space with factors

T ns = bns , T na =
bna∏
s∈a b

n
s

. (2.30)

This distribution is invariant under the message update, that is, T n = T n−1 = · · · =

T 0 = p. So each T n can be viewed as a reparameterization of the original distribution.

This view of BP will prove especially useful in Section 4.1.3.

2.2 Applications of Graphical Models

In this section we discuss several applications of graphical models to natural lan-

guage processing. Although these examples are well-known, they serve both to clarify

the definitions in the previous section, and to illustrate some ideas that will arise

again in our discussion of conditional random fields. We devote special attention to

the hidden Markov model (HMM), because it is closely related to the linear-chain

CRF.

2.2.1 Classification

First we discuss the problem of classification, that is, predicting a single class vari-

able y given a vector of features x = (x1, x2, . . . , xK). One simple way to accomplish

this is to assume that once the class label is known, all the features are independent.
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Figure 2.2. The naive Bayes classifier, as a directed model (left), and as a factor
graph (right).

The resulting classifier is called the naive Bayes classifier. It is based on a joint

probability model of the form:

p(y,x) = p(y)
K∏
k=1

p(xk|y). (2.31)

This model can be described by the directed model shown in Figure 2.2 (left). We can

also write this model as a factor graph, by defining a factor Ψ(y) = p(y), and a factor

Ψk(y, xk) = p(xk|y) for each feature xk. This factor graph is shown in Figure 2.2

(right).

Another well-known classifier that is naturally represented as a graphical model is

logistic regression (sometimes known as the maximum entropy classifier in the NLP

community). In statistics, this classifier is motivated by the assumption that the log

probability, log p(y|x), of each class is a linear function of x, plus a normalization

constant. This leads to the conditional distribution:

p(y|x) =
1

Z(x)
exp

{
λy +

K∑
j=1

λy,jxj

}
, (2.32)

where Z(x) =
∑

y exp{λy +
∑K

j=1 λy,jxj} is a normalizing constant, and λy is a bias

weight that acts like log p(y) in naive Bayes. Rather than using one weight vector

per class, as in (2.32), we can use a different notation in which a single set of weights

is shared across all the classes. The trick is to define a set of feature functions that

are nonzero only for a single class. To do this, the feature functions can be defined
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as fy′,j(y,x) = 1{y′=y}xj for the feature weights and fy′(y,x) = 1{y′=y} for the bias

weights. Now we can use fk to index each feature function fy′,j, and λk to index its

corresponding weight λy′,j. Using this notational trick, the logistic regression model

becomes:

p(y|x) =
1

Z(x)
exp

{
K∑
k=1

λkfk(y,x)

}
. (2.33)

We introduce this notation because it mirrors the usual notation for conditional ran-

dom fields.

2.2.2 Sequence Models

Classifiers predict only a single class variable, but the true power of graphical

models lies in their ability to model many variables that are interdependent. In this

section, we discuss perhaps the simplest form of dependency, in which the output

variables are arranged in a sequence. To motivate this kind of model, we discuss an

application from natural language processing, the task of named-entity recognition

(NER). NER is the problem of identifying and classifying proper names in text,

including locations, such as China; people, such as George Bush; and organizations,

such as the United Nations. The named-entity recognition task is, given a sentence,

first to segment which words are part of entities, and then to classify each entity by

type (person, organization, location, and so on). The challenge of this problem is

that many named entities are too rare to appear even in a large training set, and

therefore the system must identify them based only on context.

One approach to NER is to classify each word independently as one of either Per-

son, Location, Organization, or Other (meaning not an entity). The problem

with this approach is that it assumes that given the input, all of the named-entity

labels are independent. In fact, the named-entity labels of neighboring words are

dependent; for example, while New York is a location, New York Times is an or-

ganization. This independence assumption can be relaxed by arranging the output
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variables in a linear chain. This is the approach taken by the hidden Markov model

(HMM) [98]. An HMM models a sequence of observations X = {xt}Tt=1 by assuming

that there is an underlying sequence of states Y = {yt}Tt=1 drawn from a finite state

set S. In the named-entity example, each observation xt is the identity of the word

at position t, and each state yt is the named-entity label, that is, one of the entity

types Person, Location, Organization, and Other.

To model the joint distribution p(y,x) tractably, an HMM makes two indepen-

dence assumptions. First, it assumes that each state depends only on its immediate

predecessor, that is, each state yt is independent of all its ancestors y1, y2, . . . , yt−2

given the preceding state yt−1. Second, an HMM assumes that each observation vari-

able xt depends only on the current state yt. With these assumptions, we can specify

an HMM using three probability distributions: first, the distribution p(y1) over ini-

tial states; second, the transition distribution p(yt|yt−1); and finally, the observation

distribution p(xt|yt). That is, the joint probability of a state sequence y and an

observation sequence x factorizes as

p(y,x) =
T∏
t=1

p(yt|yt−1)p(xt|yt), (2.34)

where, to simplify notation, we write the initial state distribution p(y1) as p(y1|y0). In

natural language processing, HMMs have been used for sequence labeling tasks such

as part-of-speech tagging, named-entity recognition, and information extraction.

2.2.3 Discriminative and Generative Models

An important difference between naive Bayes and logistic regression is that naive

Bayes is generative, meaning that it is based on a model of the joint distribution

p(y,x), while logistic regression is discriminative, meaning that it is based on a model

of the conditional distribution p(y|x). In this section, we discuss the differences

between generative and discriminative modeling, and the potential advantages of
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discriminative modeling. For concreteness, we focus on the examples of naive Bayes

and logistic regression, but the discussion in this section actually applies in general

to the differences between generative models and conditional random fields.

The main difference is that a conditional distribution p(y|x) does not include

a model of p(x), which is not needed for classification anyway. The difficulty in

modeling p(x) is that it often contains many highly dependent features that are

difficult to model. For example, in named-entity recognition, an HMM relies on

only one feature, the word’s identity. But many words, especially proper names, will

not have occurred in the training set, so the word-identity feature is uninformative.

To label unseen words, we would like to exploit other features of a word, such as

its capitalization, its neighboring words, its prefixes and suffixes, its membership in

predetermined lists of people and locations, and so on.

The principal advantage of discriminative modeling is that it is better suited to

including rich, overlapping features. To understand this, consider the family of naive

Bayes distributions (2.31). This is a family of joint distributions whose conditionals all

take the “logistic regression form” (2.33). But there are many other joint models, some

with complex dependencies among x, whose conditional distributions also have the

form (2.33). By modeling the conditional distribution directly, we can remain agnostic

about the form of p(x). This may explain why it has been observed that conditional

random fields tend to be more robust than generative models to violations of their

independence assumptions [58]. Simply put, CRFs make independence assumptions

among y, but not among x.

To include interdependent features in a generative model, we have two choices:

enhance the model to represent dependencies among the inputs, or make simplifying

independence assumptions, such as the naive Bayes assumption. The first approach,

enhancing the model, is often difficult to do while retaining tractability. For example,

it is hard to imagine how to model the dependence between the capitalization of a
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word and its suffixes, nor do we particularly wish to do so, since we always observe the

test sentences anyway. The second approach—to include a large number of depen-

dent features in a generative model, but to include independence assumptions among

them—is possible, and in some domains can work well. But it can also be problematic

because the independence assumptions can hurt performance. For example, although

the naive Bayes classifier performs well in document classification, it performs worse

on average across a range of applications than logistic regression [17].

Furthermore, even when naive Bayes has good classification accuracy, its probabil-

ity estimates tend to be poor. To understand why, imagine training naive Bayes on a

data set in which all the features are repeated, that is, x = (x1, x1, x2, x2, . . . , xK , xK).

This will increase the confidence of the naive Bayes probability estimates, even though

no new information has been added to the data. Assumptions like naive Bayes can

be especially problematic when we generalize to sequence models, because inference

essentially combines evidence from different parts of the model. If probability esti-

mates of the label at each sequence position are overconfident, it might be difficult

to combine them sensibly.

Actually, the difference between naive Bayes and logistic regression is due only to

the fact that the first is generative and the second discriminative; the two classifiers

are, for discrete input, identical in all other respects. Naive Bayes and logistic re-

gression consider the same hypothesis space, in the sense that any logistic regression

classifier can be converted into a naive Bayes classifier with the same decision bound-

ary, and vice versa. Another way of saying this is that the naive Bayes model (2.31)

defines the same family of distributions as the logistic regression model (2.33), if we

interpret it generatively as

p(y,x) =
exp {

∑
k λkfk(y,x)}∑

ỹ,x̃ exp {
∑

k λkfk(ỹ, x̃)}
. (2.35)
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Figure 2.3. Diagram of the relationship between naive Bayes, logistic regression,
HMMs, linear-chain CRFs, generative models, and general CRFs.

This means that if the naive Bayes model (2.31) is trained to maximize the conditional

likelihood, we recover the same classifier as from logistic regression. Conversely, if

the logistic regression model is interpreted generatively, as in (2.35), and is trained to

maximize the joint likelihood p(y,x), then we recover the same classifier as from naive

Bayes. In the terminology of Ng and Jordan [88], naive Bayes and logistic regression

form a generative-discriminative pair.

One perspective for gaining insight into the difference between generative and

discriminative modeling is due to Minka [80]. Suppose we have a generative model

pg with parameters θ. By definition, this takes the form

pg(y,x; θ) = pg(y; θ)pg(x|y; θ). (2.36)

But we could also rewrite pg using Bayes rule as

pg(y,x; θ) = pg(x; θ)pg(y|x; θ), (2.37)

where pg(x; θ) and pg(y|x; θ) are computed by inference, i.e., pg(x; θ) =
∑

y pg(y,x; θ)

and pg(y|x; θ) = pg(y,x; θ)/pg(x; θ).
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Now, compare this generative model to a discriminative model over the same

family of joint distributions. To do this, we define a prior p(x) over inputs, such

that p(x) could have arisen from pg with some parameter setting. That is, p(x) =

pc(x; θ′) =
∑

y pg(y,x|θ′). We combine this with a conditional distribution pc(y|x; θ)

that could also have arisen from pg, that is, pc(y|x; θ) = pg(y,x; θ)/pg(x; θ). Then

the resulting distribution is

pc(y,x) = pc(x; θ′)pc(y|x; θ). (2.38)

By comparing (2.37) with (2.38), it can be seen that the conditional approach has

more freedom to fit the data, because it does not require that θ = θ′. Intuitively,

because the parameters θ in (2.37) are used in both the input distribution and the

conditional, a good set of parameters must represent both well, potentially at the

cost of trading off accuracy on p(y|x), the distribution we care about, for accuracy

on p(x), which we care less about. On the other hand, this added freedom brings

about an increased risk of overfitting the training data, and generalizing worse on

unseen data.

So far I have tried provide intuition on why discriminative models can have better

accuracy than generative models. To be fair, however, generative models have several

advantages of their own. First, generative models tend to be able to incorporate

partially-labeled or semi-supervised data more naturally, although there has been

work on incorporating both in discriminative models. In the most extreme case, when

the data is entirely unlabeled, generative models can be applied in an unsupervised

fashion, which can sometimes yield insight into the data, whereas a discriminative

model is not useful in this case. Second, on some data a generative model can perform

better than a discriminative model, intuitively because the input model p(x) may have

a smoothing effect on the conditional. Ng and Jordan [88] argue that this effect is

especially pronounced when the data set is small. For any particular data set, it is
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impossible to predict in advance whether a generative or a discriminative model will

perform better. Finally, sometimes either the problem suggests a natural generative

model, or the application requires the ability to predict future inputs and outputs,

making a generative model preferable.

It is often natural to represent generative models by a directed graphs in which in

outputs y topologically precede the inputs. Thus, the generative model describes how

the outputs probabilistically “generate” the inputs. An example of this is the hidden

Markov model, discussed in Section 2.2.2. Similarly, as we will see, discriminative

models are often naturally described by undirected graphs. This correspondence need

not always hold, however. The key distinction is whether the parameters that control

p(x) and p(y|x) are forced to be identical, as in a directed model, or are modeled as

independent, as in a discriminative model. Indeed, hybrids of these two regimes are

also possible [59].

In this section, we have discussed the relationship between naive Bayes and lo-

gistic regression in detail because it mirrors the relationship between HMMs and

linear-chain CRFs. Just as naive Bayes and logistic regression are a generative-

discriminative pair, there is a discriminative analog to hidden Markov models, and

this analog is a particular type of conditional random field, as we explain next. The

analogy between naive Bayes, logistic regression, generative models, and conditional

random fields is depicted in Figure 2.3.

2.3 Linear-Chain Conditional Random Fields

In the previous section, we have seen advantages both to discriminative modeling

and to sequence modeling. So it makes sense to combine the two. This yields a linear-

chain CRF, which we describe in this section. First, in Section 2.3.1, we define linear-

chain CRFs, motivating them from HMMs. Then, we discuss parameter estimation

(Section 2.3.2) and inference (Section 2.3.3) in linear-chain CRFs.
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Figure 2.4. Graphical model of an HMM-like linear-chain CRF.
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Figure 2.5. Graphical model of a linear-chain CRF in which the transition score
depends on the current observation.

2.3.1 From HMMs to CRFs

To motivate our introduction of linear-chain conditional random fields, we begin by

considering the conditional distribution p(y|x) that follows from the joint distribution

p(y,x) of an HMM. The key point is that this conditional distribution is in fact a

conditional random field with a particular choice of feature functions.

First, we rewrite the HMM joint (2.34) in a form that is more amenable to gen-

eralization. This is

p(y,x) =
1

Z
exp

{∑
t

∑
i,j∈S

λij1{yt=i}1{yt−1=j} +
∑
t

∑
i∈S

∑
o∈O

µoi1{yt=i}1{xt=o}

}
,

(2.39)

where θ = {λij, µoi} are the parameters of the distribution, and can be any real

numbers. Every HMM can be written in this form, as can be seen simply by setting

λij = log p(y′ = i|y = j) and so on. Because we do not require the parameters to

be log probabilities, we are no longer guaranteed that the distribution sums to 1,

unless we explicitly enforce this by using a normalization constant Z. Despite this

added flexibility, it can be shown that (2.39) describes exactly the class of HMMs in
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(2.34); we have added flexibility to the parameterization, but we have not added any

distributions to the family.

We can write (2.39) more compactly by introducing the concept of feature func-

tions, just as we did for logistic regression in (2.33). Each feature function has the form

fk(yt, yt−1, xt). In order to duplicate (2.39), there needs to be one feature fij(y, y
′, x) =

1{y=i}1{y′=j} for each transition (i, j) and one feature fio(y, y
′, x) = 1{y=i}1{x=o} for

each state-observation pair (i, o). Then we can write an HMM as:

p(y,x) =
1

Z
exp

{
K∑
k=1

λkfk(yt, yt−1, xt)

}
. (2.40)

Again, equation (2.40) defines exactly the same family of distributions as (2.39), and

therefore as the original HMM equation (2.34).

The last step is to write the conditional distribution p(y|x) that results from the

HMM (2.40). This is

p(y|x) =
p(y,x)∑
y′ p(y

′,x)
=

exp
{∑K

k=1 λkfk(yt, yt−1, xt)
}

∑
y′ exp

{∑K
k=1 λkfk(y

′
t, y
′
t−1, xt)

} . (2.41)

This conditional distribution (2.41) is a linear-chain CRF, in particular one that

includes features only for the current word’s identity. But many other linear-chain

CRFs use richer features of the input, such as prefixes and suffixes of the current word,

the identity of surrounding words, and so on. Fortunately, this extension requires little

change to our existing notation. We simply allow the feature functions fk(yt, yt−1,xt)

to be more general than indicator functions. This leads to the general definition of

linear-chain CRFs, which we present now.

Definition 2.2. Let Y,X be random vectors, Λ = {λk} ∈ IRK be a parameter vector,

and {fk(y, y′,xt)}Kk=1 be a set of real-valued feature functions. Then a linear-chain

conditional random field is a distribution p(y|x) that takes the form
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p(y|x) =
1

Z(x)
exp

{
K∑
k=1

λkfk(yt, yt−1,xt)

}
, (2.42)

where Z(x) is an instance-specific normalization function

Z(x) =
∑
y

exp

{
K∑
k=1

λkfk(yt, yt−1,xt)

}
. (2.43)

We have just seen that if the joint p(y,x) factorizes as an HMM, then the asso-

ciated conditional distribution p(y|x) is a linear-chain CRF. This HMM-like CRF is

pictured in Figure 2.4. Other types of linear-chain CRFs are also useful, however.

For example, in an HMM, a transition from state i to state j receives the same score,

log p(yt = j|yt−1 = i), regardless of the input. In a CRF, we can allow the score of

the transition (i, j) to depend on the current observation vector, simply by adding a

feature 1{yt=j}1{yt−1=1}1{xt=o}. A CRF with this kind of transition feature, which is

commonly used in text applications, is pictured in Figure 2.5.

To indicate in the definition of linear-chain CRF that each feature function can

depend on observations from any time step, we have written the observation argument

to fk as a vector xt, which should be understood as containing all the components

of the global observations x that are needed for computing features at time t. For

example, if the CRF uses the next word xt+1 as a feature, then the feature vector xt

is assumed to include the identity of word xt+1.

Finally, note that the normalization constant Z(x) sums over all possible state

sequences, an exponentially large number of terms. Nevertheless, it can be computed

efficiently by forward-backward, as we explain in Section 2.3.3.

2.3.2 Parameter Estimation

In this section we discuss how to estimate the parameters θ = {λk} of a linear-

chain CRF. We are given iid training data D = {x(i),y(i)}Ni=1, where each x(i) =
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{x(i)
1 ,x

(i)
2 , . . .x

(i)
T } is a sequence of inputs, and each y(i) = {y(i)

1 , y
(i)
2 , . . . y

(i)
T } is a

sequence of the desired predictions. Thus, we have relaxed the iid assumption within

each sequence, but we still assume that distinct sequences are independent. (In

Section 2.4, we will see how to relax this assumption as well.)

Parameter estimation is typically performed by penalized maximum likelihood.

Because we are modeling the conditional distribution, the following log likelihood,

sometimes called the conditional log likelihood, is appropriate:

`(θ) =
N∑
i=1

log p(y(i)|x(i)). (2.44)

One way to understand the conditional likelihood p(y|x; θ) is to imagine combining

it with some arbitrary prior p(x; θ′) to form a joint p(y,x). Then when we optimize

the joint log likelihood

log p(y,x) = log p(y|x; θ) + log p(x; θ′), (2.45)

the two terms on the right-hand side are decoupled, that is, the value of θ′ does not

affect the optimization over θ. If we do not need to estimate p(x), then we can simply

drop the second term, which leaves (2.44).

After substituting in the CRF model (2.42) into the likelihood (2.44), we get the

following expression:

`(θ) =
N∑
i=1

T∑
t=1

K∑
k=1

λkfk(y
(i)
t , y

(i)
t−1,x

(i)
t )−

N∑
i=1

logZ(x(i)), (2.46)

Before we discuss how to optimize this, we mention regularization. It is often the case

that we have a large number of parameters. As a measure to avoid overfitting, we

use regularization, which is a penalty on weight vectors whose norm is too large. A

common choice of penalty is based on the Euclidean norm of θ and on a regularization
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parameter 1/2σ2 that determines the strength of the penalty. Then the regularized

log likelihood is

`(θ) =
N∑
i=1

T∑
t=1

K∑
k=1

λkfk(y
(i)
t , y

(i)
t−1,x

(i)
t )−

N∑
i=1

logZ(x(i))−
K∑
k=1

λ2
k

2σ2
. (2.47)

The parameter σ2 is a free parameter which determines how much to penalize large

weights. The notation for the regularizer is intended to suggest that regularization can

also be viewed as performing maximum a posteriori estimation of θ, if θ is assigned a

Gaussian prior with mean 0 and covariance σ2I. Determining the best regularization

parameter can require a computationally-intensive parameter sweep. Fortunately,

often the accuracy of the final model is not sensitive to changes in σ2, even when

σ2 is varied up to a factor of 10. An alternative choice of regularization is to use

the L1 norm instead of the Euclidean norm, which corresponds to an exponential

prior on parameters [43]. This regularizer tends to encourage sparsity in the learned

parameters. Many other choices of regularization are possible as well.

In general, the function `(θ) cannot be maximized in closed form, so numerical

optimization is used. The partial derivatives of (2.47) are

∂`

∂λk
=

N∑
i=1

T∑
t=1

fk(y
(i)
t , y

(i)
t−1,x

(i)
t )−

N∑
i=1

T∑
t=1

∑
y,y′

fk(y, y
′,x

(i)
t )p(y, y′|x(i))− λk

σ2
. (2.48)

The first term is the expected value of fk under the empirical distribution:

p̃(y,x) =
1

N

N∑
i=1

1{y=y(i)}1{x=x(i)}. (2.49)

The second term, which arises from the derivative of logZ(x), is the expectation of fk

under the model distribution p(y|x; θ)p̃(x). Therefore, at the unregularized maximum

likelihood solution, when the gradient is zero, these two expectations are equal. This
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pleasing interpretation is a standard result about maximum likelihood estimation in

exponential families.

Now we discuss how to optimize `(θ). The function `(θ) is concave, which follows

from the convexity of functions of the form g(x) = log
∑

i expxi. Convexity is ex-

tremely helpful for parameter estimation, because it means that every local optimum

is also a global optimum. Adding regularization ensures that ` is strictly concave,

which implies that it has exactly one global optimum.

Perhaps the simplest approach to optimize ` is steepest ascent along the gradient

(2.48), but this requires too many iterations to be practical. Newton’s method con-

verges much faster because it takes into account the curvature of the likelihood, but it

requires computing the Hessian, the matrix of all second derivatives. The size of the

Hessian is quadratic in the number of parameters. Since practical applications often

use tens of thousands or even millions of parameters, even storing the full Hessian is

not practical.

Instead, current techniques for optimizing (2.47) make approximate use of second-

order information. Particularly successful have been quasi-Newton methods such

as BFGS [6], which compute an approximation to the Hessian from only the first

derivative of the objective function. A full K ×K approximation to the Hessian still

requires quadratic size, however, so a limited-memory version of BFGS is used, due

to Byrd et al. [15]. As an alternative to limited-memory BFGS, conjugate gradient

is another optimization technique that also makes approximate use of second-order

information and has been used successfully with CRFs. Either can be thought of as

a black-box optimization routine that is a drop-in replacement for vanilla gradient

ascent. When such second-order methods are used, gradient-based optimization is

much faster than the original approaches based on iterative scaling in Lafferty et al.

[58], as shown experimentally by several authors [65, 79, 112, 143]. Finally, trust
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region methods have recently been shown to perform well on multinomial logistic

regression [62], and may work well for more general CRFs as well.

Recently, stochastic gradient methods, which make updates based on subsets of

the training instances, have been shown to be highly effective [136], and may be an

attractive alternative to second-order methods, which tend to evaluate the gradient

over all the training instances before making an update. A promising new alterna-

tive to stochastic gradient methods is presented by Globerson et al. [42]. They make

online-style updates in a dual of the original likelihood rather than in the primal rep-

resentation, which both provides stronger convergence guarantees and added stability

in practice.

Finally, it is important to remark on the computational cost of training. Both the

partition function Z(x) in the likelihood and the marginal distributions p(yt, yt−1|x)

in the gradient can be computed by forward-backward, which uses computational

complexity O(TM2). However, each training instance will have a different partition

function and marginals, so we need to run forward-backward for each training instance

for each gradient computation, for a total training cost of O(TM2NG), where N is the

number of training examples, and G the number of gradient computations required

by the optimization procedure. (Unfortunately, the number of iterations G depends

on the data set, and is difficult to predict in advance. For batch L-BFGS on linear-

chain CRFs, it is usually but not always under 100.) For many data sets, this cost is

reasonable, but if the number of states is large, or the number of training sequences is

very large, then this can become expensive. For example, on a standard named-entity

data set, with 11 labels and 200,000 words of training data, CRF training finishes in

under two hours on current hardware. However, on a part-of-speech tagging data set,

with 45 labels and one million words of training data, CRF training requires over a

week.
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2.3.3 Inference

There are two common inference problems for CRFs. First, during training,

computing the gradient requires marginal distributions for each edge p(yt, yt−1|x),

and computing the likelihood requires Z(x). Second, to label an unseen instance,

we compute the most likely labeling y∗ = arg maxy p(y|x). In linear-chain CRFs,

both inference tasks can be performed efficiently and exactly by variants of the stan-

dard dynamic-programming algorithms for HMMs: forward-backward for computing

marginal distributions and Viterbi algorithm for computing max-marginals. In this

section, we briefly review the HMM algorithms, and extend them to linear-chain

CRFs. These standard inference algorithms are described in more detail by Rabiner

[98]. Both of these algorithms are special cases of the belief propagation algorithm

described in Section 2.1.4, but I discuss this special case in detail both because it

may help to make the earlier discussion more concrete, and because it is very useful

in practice.

First, we introduce notation which will simplify the forward-backward recursions.

An HMM can be viewed as a factor graph p(y,x) =
∏

t Ψt(yt, yt−1, xt) where Z = 1,

and the factors are defined as:

Ψt(j, i, x)
def
= p(yt = j|yt−1 = i)p(xt = x|yt = j). (2.50)

If the HMM is viewed as a weighted finite state machine, then Ψt(j, i, x) is the weight

on the transition from state i to state j when the current observation is x.

Now, we review the HMM forward algorithm, which is used to compute the prob-

ability p(x) of the observations. The idea behind forward-backward is to first rewrite

the naive summation p(x) =
∑

y p(x,y) using the distributive law:
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p(x) =
∑
y

T∏
t=1

Ψt(yt, yt−1, xt) (2.51)

=
∑
yT

∑
yT−1

ΨT(yT, yT−1, xT)
∑
yT−2

ΨT−1(yT−1, yT−2, xT−1)
∑
yT−3

· · · (2.52)

Now we observe that each of the intermediate sums is reused many times during the

computation of the outer sum, and so we can save an exponential amount of work by

caching the inner sums.

This leads to defining a set of forward variables αt, each of which is a vector of

size M (where M is the number of states) which stores one of the intermediate sums.

These are defined as:

αt(j)
def
= p(x〈1...t〉, yt = j) (2.53)

=
∑

y〈1...t−1〉

Ψt(j, yt−1, xt)
t−1∏
t′=1

Ψt′(yt′ , yt′−1, xt′), (2.54)

where the summation over y〈1...t−1〉 ranges over all assignments to the sequence of

random variables y1, y2, . . . , yt−1. The alpha values can be computed by the recursion

αt(j) =
∑
i∈S

Ψt(j, i, xt)αt−1(i), (2.55)

with initialization α1(j) = Ψ1(j, y0, x1). (Recall that y0 is the fixed initial state of

the HMM.) It is easy to see that p(x) =
∑

yT
αT(yT) by repeatedly substituting the

recursion (2.55) to obtain (2.52). A formal proof would use induction.

The backward recursion is exactly the same, except that in (2.52), we push in the

summations in reverse order. This results in the definition

βt(i)
def
= p(x〈t+1...T〉|yt = i) (2.56)

=
∑

y〈t+1...T〉

T∏
t′=t+1

Ψt′(yt′ , yt′−1, xt′), (2.57)
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and the recursion

βt(i) =
∑
j∈S

Ψt+1(j, i, xt+1)βt+1(j), (2.58)

which is initialized βT(i) = 1. Analogously to the forward case, we can compute p(x)

using the backward variables as p(x) = β0(y0)
def
=
∑

y1
Ψ1(y1, y0, x1)β1(y1).

By combining results from the forward and backward recursions, we can compute

the marginal distributions p(yt−1, yt|x) needed for the gradient (2.48). This can be

seen from either the probabilistic or the factorization perspectives. First, taking a

probabilistic viewpoint we can write

p(yt−1, yt|x) =
p(x|yt−1, yt)p(yt, yt−1)

p(x)
(2.59)

=
p(x〈1...t−1〉, yt−1)p(yt|yt−1)p(xt|yt)p(x〈t+1...T〉|yt)

p(x)
(2.60)

∝ αt−1(yt−1)Ψt(yt, yt−1, xt)βt(yt), (2.61)

where in the second line we have used the fact that x〈1...t−1〉 is independent from

x〈t+1...T〉 and from xt given yt−1, yt. Second, from the factorization perspective, we

can apply the distributive law to obtain we see that

p(yt−1, yt,x) = Ψt(yt, yt−1, xt) ∑
y〈1...t−2〉

t−1∏
t′=1

Ψt′(yt′ , yt′−1, xt′)


 ∑

y〈t+1...T〉

T∏
t′=t+1

Ψt′(yt′ , yt′−1, xt′)

 , (2.62)

which can be computed from the forward and backward recursions as

p(yt−1, yt,x) = αt−1(yt−1)Ψt(yt, yt−1, xt)βt(yt). (2.63)
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Once we have p(yt−1, yt,x), we can renormalize over yt, yt−1 to obtain the desired

marginal p(yt−1, yt|x).

Finally, to compute the globally most probable assignment y∗ = arg maxy p(y|x),

we observe that the trick in (2.52) still works if all the summations are replaced by

maximization. This yields the Viterbi recursion:

δt(j) = max
i∈S

Ψt(j, i, xt)δt−1(i) (2.64)

Now that we have described the forward-backward and Viterbi algorithms for

HMMs, the generalization to linear-chain CRFs is fairly straightforward. The forward-

backward algorithm for linear-chain CRFs is identical to the HMM version, except

that the transition weights Ψt(j, i, xt) are defined differently. We observe that the

CRF model (2.42) can be rewritten as:

p(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt, yt−1,xt), (2.65)

where we define

Ψt(yt, yt−1,xt) = exp

{∑
k

λkfk(yt, yt−1,xt)

}
. (2.66)

With that definition, the forward recursion (2.55), the backward recursion (2.58),

and the Viterbi recursion (2.64) can be used unchanged for linear-chain CRFs. Instead

of computing p(x) as in an HMM, in a CRF the forward and backward recursions

compute Z(x).

A final inference task that is useful in some applications is to compute a marginal

probability p(yt, yt+1, . . . yt+k|x) over a possibly non-contiguous range of nodes. For

example, this is useful for measuring the model’s confidence in its predicted labeling

over a segment of input. This marginal probability can be computed efficiently using

constrained forward-backward, as described by [26].
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2.4 CRFs in General

In this section, we define CRFs with general graphical structure, as they were

introduced originally [58]. Although initial applications of CRFs used linear chains,

there have been many later applications of CRFs with more general graphical struc-

tures. Such structures are especially useful for relational learning, because they allow

relaxing the iid assumption among entities, or for more complicated entities, such as

grids and trees. Also, although CRFs have typically been used for across-network

classification, in which the training and testing data are assumed to be independent,

we will see that CRFs can be used for within-network classification as well, in which

we model probabilistic dependencies between the training and testing data.

The generalization from linear-chain CRFs to general CRFs is fairly straightfor-

ward. We simply move from using a linear-chain factor graph to a more general factor

graph, and from forward-backward to more general (perhaps approximate) inference

algorithms.

2.4.1 Model

First we present the general definition of a conditional random field.

Definition 2.3. Let G be a factor graph over Y . Then p(y|x) is a conditional random

field if for any fixed x, the distribution p(y|x) factorizes according to G.

Thus, every conditional distribution p(y|x) is a CRF for some, perhaps trivial,

factor graph. If F = {Ψa} is the set of factors in G, and each factor takes the

exponential family form (2.3), then the conditional distribution can be written as

p(y|x) =
1

Z(x)

∏
ΨA∈G

exp


K(A)∑
k=1

λakfak(ya,xa)

 . (2.67)

In addition, practical models rely extensively on parameter tying. For example, in

the linear-chain case, often the same weights are used for the factors Ψt(yt, yt−1,xt) at
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each time step. To denote this, we partition the factors of G into C = {C1, C2, . . . CP},

where each Cp is a clique template whose parameters are tied. This notion of clique

template generalizes that in Taskar et al. [128], Sutton et al. [125], and Richardson and

Domingos [101]. Each clique template Cp is a set of factors which has a corresponding

set of sufficient statistics {fpk(xp,yp)} and parameters θp ∈ IRK(p). Then the CRF

can be written as

p(y|x) =
1

Z(x)

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,yc; θp), (2.68)

where each factor is parameterized as

Ψc(xc,yc; θp) = exp


K(p)∑
k=1

λpkfpk(xc,yc)

 , (2.69)

and the normalization function is

Z(x) =
∑
y

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,yc; θp). (2.70)

For example, in a linear-chain conditional random field, typically one clique tem-

plate C = {Ψt(yt, yt−1,xt)}Tt=1 is used for the entire network.

Several special cases of conditional random fields are of particular interest. First,

dynamic conditional random fields [125] are sequence models which allow multiple

labels at each time step, rather than single labels as in linear-chain CRFs. Second,

relational Markov networks [128] are a type of general CRF in which the graphical

structure and parameter tying are determined by an SQL-like syntax. Finally, Markov

logic networks [101, 113] are a type of probabilistic logic in which there are parameters

for each first-order rule in a knowledge base.
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2.4.2 Applications of CRFs

CRFs have been applied to a variety of domains, including text processing, com-

puter vision, and bioinformatics. In this section, we discuss several applications,

highlighting the different graphical structures that occur in the literature.

One of the first large-scale applications of CRFs was by Sha and Pereira [112],

who matched state-of-the-art performance on segmenting noun phrases in text. Since

then, linear-chain CRFs have been applied to many problems in natural language

processing, including named-entity recognition [70], feature induction for NER [68],

identifying protein names in biology abstracts [111], segmenting addresses in Web

pages [27], finding semantic roles in text [106], identifying the sources of opinions

[19], Chinese word segmentation [92], Japanese morphological analysis [56], and many

others.

In bioinformatics, CRFs have been applied to RNA structural alignment [109]

and protein structure prediction [64]. Semi-Markov CRFs [108] add somewhat more

flexibility in choosing features, which may be useful for certain tasks in information

extraction and especially bioinformatics.

General CRFs have also been applied to several tasks in NLP. One promising

application is to performing multiple labeling tasks simultaneously. For example,

[125] show that a two-level dynamic CRF for part-of-speech tagging and noun-phrase

chunking performs better than solving the tasks one at a time. Another applica-

tion is to multi-label classification, in which each instance can have multiple class

labels. Rather than learning an independent classifier for each category, Ghamrawi

and McCallum [40] present a CRF that learns dependencies between the categories,

resulting in improved classification performance. Finally, the skip-chain CRF, which

we present in Chapter 3, is a general CRF that represents long-distance dependencies

in information extraction.
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An interesting graphical CRF structure has been applied to the problem of proper-

noun coreference, that is, of determining which mentions in a document, such as Mr.

President and he, refer to the same underlying entity. McCallum and Wellner [71]

learn a distance metric between mentions using a fully-connected conditional random

field in which inference corresponds to graph partitioning. A similar model has been

used to segment handwritten characters and diagrams [23, 96].

In some applications of CRFs, efficient dynamic programs exist even though the

graphical model is difficult to specify. For example, [73] learn the parameters of a

string-edit model in order to discriminate between matching and nonmatching pairs of

strings. Also, there is work on using CRFs to learn distributions over the derivations

of a grammar [21, 102, 117, 135]. A potentially useful unifying framework for this

type of model is provided by case-factor diagrams [67].

In computer vision, several authors have used grid-shaped CRFs [46, 57] for la-

beling and segmenting images. Also, for recognizing objects, Quattoni et al. [97] use

a tree-shaped CRF in which latent variables are designed to recognize characteristic

parts of an object.

2.4.3 Parameter Estimation

Parameter estimation for general CRFs is essentially the same as for linear-chains,

except that computing the model expectations requires more general inference algo-

rithms. First, we discuss the fully-observed case, in which the training and testing

data are independent, and the training data is fully observed. In this case the condi-

tional log likelihood is given by

`(θ) =
∑
Cp∈C

∑
Ψc∈Cp

K(p)∑
k=1

λpkfpk(xc,yc)− logZ(x). (2.71)
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It is worth noting that the equations in this section do not explicitly sum over training

instances, because if a particular application happens to have iid training instances,

they can be represented by disconnected components in the graph G.

The partial derivative of the log likelihood with respect to a parameter λpk asso-

ciated with a clique template Cp is

∂`

∂λpk
=
∑

Ψc∈Cp

fpk(xc,yc)−
∑

Ψc∈Cp

∑
y′c

fpk(xc,y
′
c)p(y

′
c|x). (2.72)

The function `(θ) has many of the same properties as in the linear-chain case. First,

the zero-gradient conditions can be interpreted as requiring that the sufficient statis-

tics Fpk(x,y) =
∑

Ψc
fpk(xc,yc) have the same expectations under the empirical dis-

tribution and under the model distribution. Second, the function `(θ) is concave, and

can be efficiently maximized by second-order techniques such as conjugate gradient

and L-BFGS. Finally, regularization is used just as in the linear-chain case.

Now, we discuss the latent-variable case, in which the model contains variables

that are observed at neither training nor test time. It is more difficult to train

CRFs with latent variables, because the latent variables need to be marginalized

out to compute the likelihood. Because of this difficultly, the original work on CRFs

focused on fully-observed training data, but recently there has been increasing interest

in training latent-variable CRFs [73, 97].

Suppose we have a conditional random field with inputs x in which the output

variables y are observed in the training data, but we have additional variables w that

are latent, so that the CRF has the form

p(y,w|x) =
1

Z(x)

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,wc,yc; θp). (2.73)

A natural objective function to maximize during training is the marginal likelihood
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`(θ) = log p(y|x) = log
∑
w

p(y,w|x). (2.74)

The first question is how even to compute the marginal likelihood `(θ), because if

there are many variables w, the sum cannot be computed directly. The key is to

realize that we need to compute log
∑

w p(y,w|x) not for any possible assignment y,

but only for the particular assignment that occurs in the training data. This motivates

taking the original CRF (2.73), and clamping the variables Y to their observed values

in the training data, yielding a distribution over w:

p(w|y,x) =
1

Z(y,x)

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,wc,yc; θp), (2.75)

where the normalization factor is

Z(y,x) =
∑
w

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,wc,yc; θp). (2.76)

This new normalization constant Z(y,x) can be computed by the same inference

algorithm that we use to compute Z(x). In fact, Z(y,x) is easier to compute, because

it sums only over w, while Z(x) sums over both w and y. Graphically, this amounts

to saying that clamping the variables y in the graph G can simplify the structure

among w.

Once we have Z(y,x), the marginal likelihood can be computed as

p(y|x) =
1

Z(x)

∑
w

∏
Cp∈C

∏
Ψc∈Cp

Ψc(xc,wc,yc; θp) =
Z(y,x)

Z(x)
. (2.77)

Now that we have a way to compute `, we discuss how to maximize it with

respect to θ. Maximizing `(θ) can be difficult because ` is no longer convex in general

(intuitively, log-sum-exp is convex, but the difference of two log-sum-exp functions
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might not be), so optimization procedures are typically guaranteed to find only local

maxima. Whatever optimization technique is used, the model parameters must be

carefully initialized in order to reach a good local maximum.

We discuss two different ways to maximize `: directly using the gradient, as in

Quattoni et al. [97]; and using EM, as in McCallum et al. [73]. To maximize ` directly,

we need to calculate its gradient. The simplest way to do this is to use the following

fact. For any function f(λ), we have

df

dλ
= f(λ)

d log f

dλ
, (2.78)

which can be seen by applying the chain rule to log f and rearranging. Applying this

to the marginal likelihood `(Λ) = log
∑

w p(y,w|x) yields

∂`

∂λpk
=

1∑
w p(y,w|x)

∑
w

∂

∂λpk

[
p(y,w|x)

]
(2.79)

=
∑
w

p(w|y,x)
∂

∂λpk

[
log p(y,w|x)

]
. (2.80)

This is the expectation of the fully-observed gradient, where the expectation is taken

over w. This expression simplifies to

∂`

∂λpk
=
∑

Ψc∈Cp

∑
w′c

p(w′c|y,x)fk(yc,xc,w
′
c)−

∑
Ψc∈Cp

∑
w′c,y

′
c

p(w′c,y
′
c|xc)fk(y′c,xc,w′c).

(2.81)

This gradient requires computing two different kinds of marginal probabilities.

The first term contains a marginal probability p(w′c|y,x), which is exactly a marginal

distribution of the clamped CRF (2.75). The second term contains a different marginal

p(w′c,y
′
c|xc), which is the same marginal probability required in a fully-observed CRF.

Once we have computed the gradient, ` can be maximized by standard techniques
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such as conjugate gradient. In our experience, conjugate gradient tolerates violations

of convexity better than limited-memory BFGS, so it may be a better choice for

latent-variable CRFs.

Alternatively, ` can be optimized using expectation maximization (EM). At each

iteration j in the EM algorithm, the current parameter vector θ(j) is updated as

follows. First, in the E-step, an auxiliary function q(w) is computed as q(w) =

p(w|y,x; θ(j)). Second, in the M-step, a new parameter vector θ(j+1) is chosen as

θ(j+1) = arg max
θ′

∑
w′

q(w′) log p(y,w′|x; θ′). (2.82)

The direct maximization algorithm and the EM algorithm are strikingly similar. This

can be seen by substituting the definition of q into (2.82) and taking derivatives. The

gradient is almost identical to the direct gradient (2.81). The only difference is that

in EM, the distribution p(w|y,x) is obtained from a previous, fixed parameter setting

rather than from the argument of the maximization. We are unaware of any empirical

comparison of EM to direct optimization for latent-variable CRFs.

2.4.4 Inference

In general CRFs, just as in the linear-chain case, gradient-based training requires

computing marginal distributions p(yc|x), and testing requires computing the most

likely assignment y∗ = arg maxy p(y|x). This can be accomplished using any inference

algorithm for graphical models. If the graph has small treewidth, then the junction

tree algorithm can be used to exactly compute the marginals, but because both

inference problems are NP-hard for general graphs, this is not always possible. In

such cases, approximate inference must be used to compute the gradient.

When choosing an inference algorithm to use within CRF training, the important

thing to understand is that it will be invoked repeatedly, once for each time that

the gradient is computed. This can cause difficultly with sampling-based approaches,
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such as Markov chain Monte Carlo, which may take many iterations to converge for

each parameter setting. However, contrastive divergence [47], a more computationally

efficient method in which an MCMC sampler is run for only a few samples, has been

successfully applied to CRFs in vision [46]. Because of their computational efficiency,

variational approaches can be well-suited for CRF training. Several authors [125, 128]

have used loopy belief propagation, described in Section 2.1.4.

2.4.5 Discussion

This section contains miscellaneous remarks about CRFs. First, it is easily seen

that logistic regression model (2.33) is a conditional random field with a single output

variable. Thus, CRFs can be viewed as an extension of logistic regression to arbitrary

graphical structures.

Linear-chain CRFs were originally introduced as an improvement to the maximum-

entropy Markov model (MEMM) [72], which is essentially a Markov model in which

the transition distributions are given by a logistic regression model. MEMMs can

exhibit the problems of label bias [58] and observation bias [53]. Both of these prob-

lems can be readily understood graphically: the directed model of an MEMM implies

that for all time steps t, the observation xt is marginally independent of the labels

yt−1, yt−2, and so on—an independence assumption which is usually strongly vio-

lated in sequence modeling. Sometimes this assumption can be effectively avoided

by including information from previous time steps as features, and this explains why

MEMMs have had success in some NLP applications.

Although we have emphasized the view of a CRF as a model of the conditional

distribution, one could view it as an objective function for parameter estimation

of joint distributions. As such, it is one objective among many, including generative

likelihood, pseudolikelihood [9], and the maximum-margin objective [3, 129]. Another

related discriminative technique for structured models is the averaged perceptron,
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which has been especially popular in the natural language community [22], in large

part because of its ease of implementation. To date, there has been little careful

comparison of these, especially CRFs and max-margin approaches, across different

structures and domains.

Given this view, it is natural to imagine training directed models by conditional

likelihood, and in fact this is commonly done in the speech community, where it is

called maximum mutual information training. However, it is no easier to maximize

the conditional likelihood in a directed model than an undirected model, because in

a directed model the conditional likelihood requires computing log p(x), which plays

the same role as Z(x) in the CRF likelihood. In fact, training is more complex in a

directed model, because the model parameters are constrained to be probabilities—

constraints which can make the optimization problem more difficult. This is in stark

contrast to the joint likelihood, which is much easier to compute for directed models

than undirected models (although recently several computationally efficient param-

eter estimation techniques have been proposed for undirected factor graphs, such as

Abbeel et al. [1] and Wainwright et al. [142]).

2.4.6 Implementation Concerns

There are a few implementation techniques that can help both training time and

accuracy of CRFs, but are not always fully discussed in the literature. Although these

apply especially to language applications, they are also useful more generally.

First, when the predicted variables are discrete, the features fpk are ordinarily

chosen to have a particular form:

fpk(yc,xc) = 1{yc=ỹc}qpk(xc). (2.83)

In other words, each feature is nonzero only for a single output configuration ỹc, but

as long as that constraint is met, then the feature value depends only on the input
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observation. Essentially, this means that we can think of our features as depending

only on the input xc, but that we have a separate set of weights for each output

configuration. This feature representation is also computationally efficient, because

computing each qpk may involve nontrivial text or image processing, and it need be

evaluated only once for every feature that uses it. To avoid confusion, we refer to

the functions qpk(xc) as observation functions rather than as features. Examples of

observation functions are “word xt is capitalized” and “word xt ends in ing”.

This representation can lead to a large number of features, which can have signif-

icant memory and time requirements. For example, to match state-of-the-art results

on a standard natural language task, Sha and Pereira [112] use 3.8 million features.

Not all of these features are ever nonzero in the training data. In particular, some

observation functions qpk are nonzero only for certain output configurations. This

point can be confusing: One might think that such features can have no effect on the

likelihood, but actually they do affect Z(x), so putting a negative weight on them can

improve the likelihood by making wrong answers less likely. In order to save mem-

ory, however, sometimes these unsupported features, that is, those which never occur

in the training data, are removed from the model. In practice, however, including

unsupported features typically results in better accuracy.

In order to get the benefits of unsupported features with less memory, we have had

success with an ad hoc technique for selecting a small set of unsupported features.

The idea is to add unsupported features only for likely paths, as follows: first train

a CRF without any unsupported features, stopping after a few iterations; then add

unsupported features fpk(yc,xc) for cases where xc occurs in the training data for

some instance x(i), and p(yc|x(i)) > ε. McCallum [68] presents a more principled

method of feature selection for CRFs.

Second, if the observations are categorical rather than ordinal, that is, if they

are discrete but have no intrinsic order, it is important to convert them to binary
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features. For example, it makes sense to learn a linear weight on fk(y, xt) when fk is

1 if xt is the word dog and 0 otherwise, but not when fk is the integer index of word

xt in the text’s vocabulary. Thus, in text applications, CRF features are typically

binary; in other application areas, such as vision and speech, they are more commonly

real-valued.

Third, in language applications, it is sometimes helpful to include redundant fac-

tors in the model. For example, in a linear-chain CRF, one may choose to include

both edge factors Ψt(yt, yt−1,xt) and variable factors Ψt(yt,xt). Although one could

define the same family of distributions using only edge factors, the redundant node

factors provide a kind of backoff, which is useful when there is too little data. In lan-

guage applications, there is always too little data, even when hundreds of thousands

of words are available. It is important to use regularization when using redundant

features like this, because it is the penalty on large weights that encourages the weight

to be spread across the overlapping features.

Fourth, sometimes it is preferable to use L1 regularization instead of L2, particu-

larly if it is desired that the trained weights be sparse; it also has certain theoretical

advantages [87]. The L1 regularizer is not differentiable at 0, which complicates nu-

merical parameter estimation somewhat [4, 43].

Finally, often the probabilities involved in forward-backward and belief propaga-

tion become too small to be represented within numerical precision. There are two

standard approaches to this common problem. One approach is to normalize each of

the vectors αt and βt to sum to 1, thereby magnifying small values. This scaling does

not affect our ability to compute Z(x). The details of how to do this are given by

Rabiner [98].

A second approach is to perform computations in the logarithmic domain, e.g.,

the forward recursion becomes
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logαt(j) =
⊕
i∈S

(
log Ψt(j, i, xt) + logαt−1(i)

)
, (2.84)

where ⊕ is the operator a⊕ b = log(ea + eb). At first, this does not seem much of an

improvement, since numerical precision is lost when computing ea and eb. But ⊕ can

be computed as

a⊕ b = a+ log(1 + eb−a) = b+ log(1 + ea−b), (2.85)

which can be much more numerically stable, particularly if we pick the version of the

identity with the smaller exponent. CRF implementations often use the log-space ap-

proach because it makes computing Z(x) more convenient, but in some applications,

the computational expense of taking logarithms is an issue, making normalization

preferable.

Notes on Terminology

Different parts of the theory of graphical models have been developed indepen-

dently in many different areas, so many of the concepts in this chapter have different

names in different areas. For example, undirected models are commonly also referred

to Markov random fields, Markov networks, and Gibbs distributions. As mentioned,

I reserve the term “graphical model” for a family of distributions defined by a graph

structure; “random field” or “distribution” for a single probability distribution; and

“network” as a term for the graph structure itself. This choice of terminology is not

always consistent in the literature, partly because it is not ordinarily necessary to be

precise in separating these concepts.

Similarly, directed graphical models are commonly known as Bayesian networks,

but I have avoided this term because of its confusion with the area of Bayesian

statistics. The term generative model is an important one that is commonly used in

the literature, but is not usually given a precise definition.
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CHAPTER 3

MODELS

Although many sequence tagging and information extraction tasks have proven

amenable to linear-chain CRFs, higher-order dependencies do exist in these problems.

In this chapter, I introduce two families of loopy conditional random fields that model

limited forms of long-distance structure, and achieve better accuracy as a result. Not

only are these models of practical interest, but also they will prove useful for testing

the approximate training algorithms that I present in the remainder of the thesis.

Both of the model families that I discuss are constructed as augmentations of

linear-chain CRFs. First, I introduce the dynamic CRF (Section 3.1), which aug-

ments a linear-chain CRF with factorized state. That is, the state at each sequence

position is represented as a vector rather than as a single variable, which allows the

transition distribution to be represented more efficiently. Second, I introduce the

skip-chain CRF (Section 3.2), which captures the idea that similar tokens should re-

ceive similar labels, even if they are far apart in the sequence. This smoothing effect

can be achieved by adding long-distance factors that depend on the similar token

pairs. For both DCRFs and skip-chain CRFs, I explore the use of approximate infer-

ence algorithms, particularly loopy belief propagation, during training. Approximate

inference can greatly improve training speed while maintaining accuracy; however, if

inference is too inaccurate, then the quality of the solution can degrade markedly.
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3.1 Dynamic CRFs

Many sequence labeling problems have a natural notion of factorized state. In a

factorized state representation, rather than representing the state as a single random

variable yt for each sequence position t, the state is represented as a vector yt =

{yt1, yt2, . . . , ytm}, allowing the model to be more compact because it can represent

the graphical structure among components of y. In generative sequence models, this

factorization is typically represented by a dynamic Bayesian network (DBN) [29, 84],

which is a directed graphical model whose structure is repeated across a sequence.

DBNs have been used for applications as diverse as robot navigation [133], audio-

visual speech recognition [86], activity recognition [13], information extraction [93,

114], and automatic speech recognition [10]. DBNs are typically trained to maximize

the joint probability distribution p(y,x) of a set of observation sequences x and labels

y. As discussed in Section 2.2.3, however, when the task does not require the ability

to generate x, such as in segmentation and labeling, modeling the joint distribution

is a waste of modeling effort.

A solution to this problem is to model instead the conditional probability distribu-

tion p(y|x), as in a conditional random field. For this reason, we introduce dynamic

CRFs (DCRFs), which are a generalization of linear-chain CRFs that repeat struc-

ture and parameters over a sequence of state vectors. This allows us to both represent

distributed hidden state and complex interaction among labels, as in DBNs, and to

use rich, overlapping feature sets, as in conditional models. For example, the fac-

torial structure in Figure 3.1(b) includes links between cotemporal labels, explicitly

modeling limited probabilistic dependencies between two different label sequences.

Other types of DCRFs can model higher-order Markov dependence between labels

(Figure 3.2), or incorporate a fixed-size memory. For example, a DCRF for part-of-

speech tagging could include for each word a hidden state that is true if any previous

word has been tagged as a verb.
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Figure 3.1. Graphical representation of (a) linear-chain CRF, and (b) factorial CRF.
Although the hidden nodes can depend on observations at any time step, for clarity
we have shown links only to observations at the same time step.

Any DCRF with multiple state variables can be collapsed into a linear-chain CRF

whose state space is the cross-product of the outcomes of the original state vari-

ables. However, such a linear-chain CRF needs exponentially many parameters in

the number of variables. Like DBNs, DCRFs represent the joint distribution with

fewer parameters by exploiting conditional independence relations.

In natural-language processing, DCRFs are especially attractive because they are

a probabilistic generalization of cascaded, weighted finite-state transducers [82]. In

general, many sequence-processing problems are traditionally solved by chaining er-

rorful subtasks, such as chains of finite state transducers. In such an approach,

however, errors early in processing nearly always cascade through the chain, causing

errors in the final output. This problem can be solved by jointly representing the

subtasks in a single graphical model, both explicitly representing their dependence,

and preserving uncertainty between them. DCRFs can represent dependence between

subtasks solved using finite-state transducers, such as phonological and morphological

analysis, POS tagging, shallow parsing, and information extraction.

More specifically, in information and data mining, McCallum and Jensen [69] argue

that the same kind of probabilistic unification can potentially be useful, because in

many cases, we wish to mine a database that has been extracted from raw text. A

unified probabilistic model for extraction and mining can allow data mining to take
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Figure 3.2. Examples of DCRFs. The dashed lines indicate the boundary between
time steps. The input variables x are not shown.

into account the uncertainty in the extraction, and allow extraction to benefit from

emerging pattern produced by data mining. The applications here, in which DCRFs

are used to jointly perform multiple sequence labeling tasks, can be viewed as an

initial step toward that goal.

In this chapter, we evaluate DCRFs on several natural-language processing tasks.

First, a factorial CRF that learns to jointly predict parts of speech and segment

noun phrases performs better than cascaded models that perform the two tasks in

sequence. Also, we compare several schedules for belief propagation, showing that

although exact inference is feasible, on this task approximate inference has lower total

training time with no loss in testing accuracy.

In addition to conditional maximum likelihood training, we present an alternative

training method for DCRFs, cascaded training. Cascaded training is intended for

situations in which a single fully-labeled data set is not available, and instead the

outputs are partitioned into sets (y0,y1, . . . ,y`), and we have one data set D0 labeled

for y0, another data set D1 labeled for y1, and so on. For example, this can be

the case in transfer learning, in which we wish to use previous learning problems

(that is, y0,y1, . . . ,y`−1) to improve performance on a new task y`. To handle the

fact that a single fully-labeled training set is unavailable, our procedure works in a

cascaded fashion, in which first we train a CRF p0 to predict y0 on D0, then we

annotate D1 with the most likely prediction from p0, then we train a CRF p1 on
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p(y1|y0,x), and so on. Compared to other work in transfer learning, an interesting

aspect of this approach is that the model includes no shared latent structure between

subtasks; rather, the probabilistic dependence between tasks is modeled directly. On

a benchmark information extraction task, we show that a DCRF trained in a cascaded

fashion performs better than a linear-chain CRF on the original task.

In the rest of this section, we first define DCRFs (Section 3.1.1), explaining meth-

ods for approximate inference and parameter estimation, including parameter estima-

tion using BP (Section 3.1.4) and cascaded parameter estimation (Section 3.1.5). In

Section 3.1.6, we present the experimental results, including evaluation of FCRFs on

noun-phrase chunking (Section 3.1.6.1), comparison of BP schedules in FCRFs (Sec-

tion 3.1.6.2), and cascaded training of DCRFs for transfer learning (Section 3.1.6.3).

3.1.1 Model Representation

A dynamic CRF (DCRF) is a conditional distribution that factorizes according

to an undirected graphical model whose structure and parameters are repeated over

a sequence. As with a DBN, a DCRF can be specified by a template that gives

the graphical structure, features, and weights for two time slices, which can then

be unrolled given an input x. The same set of features and weights is used at each

sequence position, so that the parameters are tied across the network. Several example

templates are given in Figure 3.2.

Now we give a formal description of the unrolling process. Let y = {y1 . . .yT} be

a sequence of random vectors yi = (yi1 . . . yim), where yi is the state vector at time i,

and yij is the value of variable j at time i. To give the likelihood equation for arbitrary

DCRFs, we require a way to describe a clique in the unrolled graph independent of

its position in the sequence. For this purpose we introduce the concept of a clique

index. Given a time t, we can denote any variable yij in y by two integers: its

index j in the state vector yi, and its time offset ∆t = i − t. We will call a set
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c = {(∆t, j)} of such pairs a clique index, which denotes a set of variables yt,c by

yt,c ≡ {yt+∆t,j | (∆t, j)∈c}. That is, yt,c is the set of variables in the unrolled version

of clique index c at time t.

Now we can formally define DCRFs:

Definition 3.1. Let C be a set of clique indices, F = {fk(yt,c,x, t)} be a set of feature

functions and Λ = {λk} be a set of real-valued weights. Then the distribution p is a

dynamic conditional random field if and only if

p(y|x) =
1

Z(x)

∏
t

∏
c∈C

exp

(∑
k

λkfk(yt,c,x, t)

)
(3.1)

where Z(x) =
∑

y

∏
t

∏
c∈C exp (

∑
k λkfk(yt,c,x, t)) is the partition function.

Although we define a DCRF has having the same set of features for all the cliques,

in practice we choose feature functions fk so that they are non-zero except on cliques

with some index ck. Thus, we will sometimes think of each clique index has having

its own set of features and weights, and speak of fk and λk as having an associated

clique index ck.

DCRFs generalize not only linear-chain CRFs, but more complicated structures

as well. For example, in this chapter, we use a factorial CRF (FCRF), which has

linear chains of labels, with connections between cotemporal labels. We name these

after factorial HMMs [39]. Figure 3.1(b) shows an unrolled factorial CRF. Consider

an FCRF with L chains, where Y`,t is the variable in chain ` at time t. The clique

indices for this DCRF are of the form {(0, `), (1, `)} for each of the within-chain edges

and {(0, `), (0, ` + 1)} for each of the between-chain edges. The FCRF G defines a

distribution over hidden states as:

p(y|x) =
1

Z(x)

(
T−1∏
t=1

L∏
`=1

Φ`(y`,t, y`,t+1,x, t)

)(
T∏
t=1

L−1∏
`=1

Ψ`(y`,t, y`+1,t,x, t)

)
, (3.2)
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where {Φ`} are the potentials over the within-chain edges, {Ψ`} are the potentials

over the between-chain edges, and Z(x) is the partition function. The potentials

factorize according to the features {fk} and weights {λk} of G as:

Φ`(y`,t, y`,t+1,x, t) = exp

{∑
k

λkfk(y`,t, y`,t+1,x, t)

}

Ψ`(y`,t, y`+1,t,x, t) = exp

{∑
k

λkfk(y`,t, y`+1,t,x, t)

}

More complicated structures are also possible, such as second-order CRFs, and

hierarchical CRFs, which are moralized versions of the hierarchical HMMs of Fine

et al. [31].1 As in DBNs, this factorized structure can use many fewer parameters

than the cross-product state space: even the two-level FCRF we discuss below uses

less than an eighth of the parameters of the corresponding cross-product CRF.

3.1.2 Inference in DCRFs

Inference in a DCRF can be done using any inference algorithm for undirected

models. For an unlabeled sequence x, we typically wish to solve two inference prob-

lems: (a) computing the marginals p(yt,c|x) over all cliques yt,c, and (b) computing

the Viterbi decoding y∗ = arg maxy p(y|x). The Viterbi decoding can be used to

label a new sequence, and marginal computation is used for parameter estimation.

If the number of states is not large, the simplest approach is to form a linear

chain whose output space is the cross-product of the original DCRF outputs, and

then perform forward-backward. In other words, a DCRF can always be viewed as

a linear-chain CRF whose feature functions take a special form, analogous to the

relationship between generative DBNs and HMMs. The cross-product space is often

very large, however, in which case this approach is infeasible. Alternatively, one

1Hierarchical HMMs were shown to be DBNs by Murphy and Paskin [83].
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can perform exact inference by applying the junction tree algorithm to the unrolled

DCRF, or by using the special-purpose inference algorithms that have been designed

for DBNs [84], which can avoid storing the full unrolled graph.

In complex DCRFs, though, exact inference can still be expensive, so that approx-

imate methods are necessary. Furthermore, because marginal computation is needed

during training, inference must be efficient so that we can use large training sets even

if there are many labels. The largest experiment reported here required comput-

ing pairwise marginals in 866,792 different graphical models: one for each training

example in each iteration of a convex optimization algorithm.

We focus on approximate inference using loopy belief propagation, which was

described in Section 2.1.4. In the experiments here, we pay special attention to

the order in which messages are propagated. At each iteration of belief propagation,

messages can be sent in any order, and choosing a good schedule can affect how quickly

the algorithm converges. We describe two schedules for belief propagation: tree-based

and random. The tree-based schedule, also known as tree reparameterization (TRP)

[137, 139], propagates messages along a set of cross-cutting spanning trees of the

original graph. At each iteration of TRP, a spanning tree T (i) ∈ Υ is selected, and

messages are sent in both directions along every edge in T (i), which amounts to exact

inference on T (i). Many possible sets of spanning trees can be imagined, but here we

select trees randomly, except that edges that have never been used in any previous

iteration are selected first.

The random schedule simply sends messages across all edges in random order. To

improve convergence, we arbitrarily order each edge ei = (si, ti) and send all messages

msi
(ti) before any messages mti(si). Note that for a graph with V nodes and E edges,

TRP sends O(V ) messages per BP iteration, while the random schedule sends O(E)

messages.
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An alternative schedule is a synchronous schedule, in which conceptually all mes-

sages are sent at the same time. In the tree-based and random schedules, once a

message is updated, its new values are immediately available for other messages. In

the synchronous schedule, on the other hand, when computing a message m
(j)
u (xv) at

iteration j of BP, the previous message values m
(j−1)
t (xu) are always used, even if an

updated value m
(j)
t (xu) has been computed. We do not report results from the syn-

chronous schedule because preliminary experiments indicated that it requires many

more iterations to converge than the other schedules.

3.1.3 Parameter Estimation in DCRFs

Parameter estimation of DCRFs by conditional maximum likelihood follows the

general method explained in Section 2.4.3. Written in the notation of this chapter,

the likelihood is

L(Λ) =
∑
i

log pΛ(y(i) | x(i)). (3.3)

The derivative of this with respect to a parameter λk associated with clique index c

is

∂L
∂λk

=
∑
i

∑
t

fk(y
(i)
t,c ,x

(i), t)

−
∑
i

∑
t

∑
yt,c

pΛ(yt,c | x(i))fk(yt,c,x
(i), t).

(3.4)

where y
(i)
t,c is the assignment to yt,c in y(i), and yt,c ranges over assignments to the

clique c. Observe that it is the factor pΛ(yt,c | x(i)) that requires us to compute

marginal probabilities in the unrolled DCRF. As before, to reduce overfitting, we

define a spherical Gaussian prior p(Λ) over parameters, mean µ = 0 and covariance

matrix Σ = σ2I, so that the gradient becomes

∂p(Λ|D)

∂λk
=

∂L
∂λk
− λk
σ2
.
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In the experiments here, we optimize the gradient using batch limited-memory BFGS.

3.1.4 Approximate Parameter Estimation Using BP

Several additional issues arise when loopy BP is used during training. First, to sim-

plify notation in this section, we will write a DCRF as p(y|x) = Z(x)−1
∏

t

∏
c ψt,c(yt,c),

where each factor in the unrolled DCRF is defined as

ψt,c(yt,c) = exp{λkfk(yt,c,x, t)}. (3.5)

The basic procedure is to optimize the likelihood (3.3) as described in the last

section, but instead of running an exact inference algorithm on each training example

to obtain marginal distributions pΛ(yt,c | x(i)), we run BP on each training instance to

obtain approximate beliefs bt,c(yt,c) for each clique yt,c and approximate node belief

bs(ys) for each output variable s.

Now, although BP provides approximate marginal distributions that allow cal-

culating the gradient, there is still the issue of how to calculate an approximate

likelihood. In particular, we need an approximate objective function whose gradient

is equal to the approximate gradient we have just described. We use the approximate

likelihood

ˆ̀(Λ; {b}) =
∑
i

log

[∏
t

∏
c bt,c(y

(i)
t,c)∏

s bs(y
(i)
s )ds−1

]
, (3.6)

where s ranges over output variables (that is, components of y), and ds is the degree

of s (that is, the number of factors ψc,t that depend on the variable s). In other words,

we approximate the joint likelihood by the product over each clique’s approximate

belief, dividing by the node beliefs to avoid overcounting. In the remainder of this

section, we justify this choice.

BP can be viewed as attempting to solve an optimization problem over possible

choices of marginal distributions, for a particular cost function called the Bethe free

energy. More technically, it has been shown that fixed points of BP are stationary
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points of the Bethe free energy [for more details, see 150], when minimized over

locally-consistent marginal distributions. The Bethe energy is an approximation to

another cost function, which Yedidia et al. call the Helmholtz free energy. Since the

minimum Helmholtz energy is is exactly − logZ(x), we approximate − logZ(x) by

the minimizing value of the Bethe energy, that is:

`Bethe(Λ) =
∑
i

∑
t

∑
c

logψt,c(yt,c) +
∑
i

min
{b}
FBethe(b), (3.7)

where FBethe is the Bethe free energy, which is defined as

FBethe(b) =
∑
t

∑
c

∑
yt,c

bt,c(yt,c) log
bt,c(yt,c)

ψt,c(yt,c)
−
∑
s

(ds − 1)
∑
xs

bs(ys) log bs(ys). (3.8)

So approximate training with BP can be viewed as solving a saddle point problem

of maximizing `Bethe with respect to the model parameters and minimizing with respect

to the beliefs bt,c(xt,c). Approximate training using BP is just coordinate ascent: BP

optimizes `Bethe with respect to b for fixed Λ; and a step along the gradient (3.4)

optimizes `Bethe with respect to Λ for fixed b. Taking the partial derivative of (3.7)

with respect to a weight λk, we obtain the gradient (3.4) with marginal distributions

replaced by beliefs, as desired.

To justify the approximate likelihood (3.6), we note that the Bethe free energy

can be written a dual form, in which the variables are interpreted as log messages

rather than beliefs. Details of this are presented by Minka [78]. Substituting the

Bethe dual problem into (3.7) and simplifying yields (3.6).

3.1.5 Cascaded Parameter Estimation

Joint maximum likelihood training assumes that we have access to data in which

we have observed all of the variables. Sometimes this is not the case. One example

is transfer learning, which is the general problem of using previous learning problems
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that a system has seen to aid its learning of new, related tasks. Usually in transfer

learning, we have one data set labeled with the old task variables and one with the

new task variables, but no data that is jointly labeled. In this section, we describe a

cascaded parameter estimation procedure that can be applied to situations without

fully-labeled data.

For a factorial CRF with N levels, the basic idea is to train each level separately as

if it were a linear-chain CRF, using the single-best prediction of the previous level as

a feature. At the end, each set of individually-trained weights define a pair of factors,

which are simply multiplied together to form the full FCRF. The cascaded procedure

for an N -level FCRF is described formally in Algorithm 3.1. In this description, the

within-level clique template for level ` has features fW
`,k(y

`
t , y

`
t+1,x, t) and weights ΛW

` ;

and the between-level clique template has features fP
`,k(y

`
t , y

`−1
t ,x, t) and weights ΛP

` .

Algorithm 3.1 Cascaded training for Factorial CRFs

1: Train a linear-chain CRF on log p(y0|x), yielding weights ΛW
0 .

2: for all levels ` do
3: Compute Viterbi labeling y∗`−1 = arg maxy`−1

p(y`−1|y∗`−2,x) for each training
instance i.

4: Train a linear-chain CRF to maximize log p(y`|y∗`−1,x), yielding weights ΛW
`

and ΛP
` .

5: end for
6: return factorial CRF defined as

p(y|x) ∝
N∏
`=0

T∏
t=1

ΨW(y`t , y
`
t+1,x, t)Ψ

P(y`t , y
`−1
t ,x, t) (3.9)

where

ΨW(y`t , y
`
t+1,x, t) = exp{

∑
k

λW

k,`f
W

`,k(y
`
t , y

`
t+1,x, t)} (3.10)

ΨP(y`t , y
`−1
t ,x, t) = exp{

∑
k

λP

k,`f
P

`,k(y
`
t , y

`−1
t ,x, t)} (3.11)

For simplicity, we have presented cascaded training for factorial CRFs, but it can

be generalized to other DCRF structures, as long as the DCRF templates can be
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Figure 3.3. Performance of FCRFs and cascaded approaches on noun-phrase chunk-
ing, averaged over five repetitions. The error bars on FCRF and CRF+CRF indicate
the range of the repetitions.

partitioned in a way that respects the available labels. In Section 3.1.6.3, we evaluate

cascaded training on a transfer learning problem.

3.1.6 Experiments

We present experiments comparing factorial CRFs to other approaches on noun-

phrase chunking [107]. Also, we compare different schedules of loopy belief propaga-

tion in factorial CRFs.

3.1.6.1 FCRFs for Noun-Phrase Chunking

Automatically finding the base noun phrases in a sentence can be viewed as

a sequence labeling task by labeling each word as either Begin-Phrase, Inside-

Phrase, or Other [99]. The task is typically performed by an initial pass of part-

of-speech tagging, but then it can be difficult to recover from errors by the tagger.

In this section, we address this problem by performing part-of-speech tagging and

noun-phrase segmentation jointly in a single factorial CRF.

71



Size CRF+CRF Brill+CRF FCRF
223 86.23 93.12
447 90.44 95.43

POS accuracy 670 92.33 N/A 96.34
894 93.56 96.85
2234 96.18 97.87
8936 98.28 98.92
223 81.92 89.19
447 86.58 91.85

Joint accuracy 670 88.68 N/A 92.86
894 90.06 93.60
2234 93.00 94.90
8936 95.56 96.48
223 83.84 86.02 86.03
447 86.87 88.56 88.59

NP F1 670 88.19 89.65 89.64
894 89.21 90.31 90.55
2234 91.07 91.90 92.02
8936 93.10 93.33 93.87

Table 3.1. Performance comparison of cascaded models and FCRFs on simultane-
ous noun-phrase chunking and POS tagging. The column Size lists the number of
sentences used in training. The row CRF+CRF lists results from cascaded CRFs,
and Brill+CRF lists results from a linear-chain CRF given POS tags from the Brill
tagger. The FCRF always outperforms CRF+CRF, and given sufficient training data
outperforms Brill+CRF. With small amounts of training data, Brill+CRF and the
FCRF perform comparably, but the Brill tagger was trained on over 40,000 sentences,
including some in the CoNLL 2000 test set.

Our data comes from the CoNLL 2000 shared task [107], and consists of sentences

from the Wall Street Journal annotated by the Penn Treebank project [66]. We

consider each sentence to be a training instance, with single words as tokens. The

data are divided into a standard training set of 8936 sentences and a test set of 2012

sentences. There are 45 different POS labels, and the three NP labels.

We compare a factorial CRF to two cascaded approaches, which we call CRF+CRF

and Brill+CRF. CRF+CRF uses one linear-chain CRF to predict POS labels, and

another linear-chain CRF to predict NP labels, using as a feature the Viterbi POS

labeling from the first CRF. Brill+CRF predicts NP labels using the POS labels pro-
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wt−δ = w
wt matches [A-Z][a-z]+

wt matches [A-Z]

wt matches [A-Z]+

wt matches [A-Z]+[a-z]+[A-Z]+[a-z]

wt matches .*[0-9].*

wt appears in list of first names,
last names, company names, days,
months, or geographic entities

wt is contained in a lexicon of words
with POS T (from Brill tagger)

Tt = T
qk(x, t+ δ) for all k and δ ∈ [−3, 3]

Table 3.2. Input features qk(x, t) for the CoNLL data. In the above wt is the word
at position t, Tt is the POS tag at position t, w ranges over all words in the training
data, and T ranges over all part-of-speech tags.

vided from the Brill tagger, which we expect to be more accurate than those from our

CRF, because the Brill tagger was trained on over four times more data, including

sentences from the CoNLL 2000 test set.

The factorial CRF uses the graph structure in Figure 3.1(b), with one chain mod-

eling the part-of-speech process and the other modeling the noun-phrase process. We

use L-BFGS to optimize the posterior p(Λ|D), and TRP to compute the marginal

probabilities required by ∂L/∂λk. Based on past experience with linear-chain CRFs,

we use the prior variance σ2 = 10 for all models.

We factorize our features as fk(yt,c, x, t) = pk(yt,c)qk(x, t) where pk(yt,c) is a binary

function on the assignment, and qk(x, t) is a function solely of the input string. Table

3.2 shows the features we use. All three approaches use the same features, with the

obvious exception that the FCRF and the first stage of CRF+CRF do not use the

POS features Tt = T .

Performance on noun-phrase chunking is summarized in Table 3.1. As usual, we

measure performance on chunking by precision, the percentage of returned phrases
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that are correct; recall, the percentage of correct phrases that were returned; and

their harmonic mean F1. In addition, we also report accuracy on POS labels,2 and

joint accuracy on (POS, NP) pairs. Joint accuracy is simply the number of sequence

positions for which all labels were correct.

Each row in Table 3.1 is the average of five different random subsets of the training

data, except for row 8936, which is run on the single official CoNLL training set. All

conditions used the same 2012 sentences in the official test set.

On the full training set, FCRFs perform better on NP chunking than either of

the cascaded approaches, including Brill+POS. The Brill tagger [12] is an established

part-of-speech tagger whose training set is not only over four times bigger than the

CoNLL 2000 data set, but also includes the WSJ corpus from which the CoNLL 2000

test set was derived. The Brill tagger is 97% accurate on the CoNLL data. Also,

note that the FCRF—which predicts both noun-phrase boundaries and POS—is more

accurate than a linear-chain CRF which predicts only part-of-speech. We conjecture

that the NP chain captures long-run dependencies between the POS labels.

On smaller training subsets, the FCRF outperforms CRF+CRF and performs

comparably to Brill+CRF. For all the training subset sizes, the difference between

CRF+CRF and the FCRF is statistically significant by a two-sample t-test (p <

0.002). In fact, there was no subset of the data on which CRF+CRF performed

better than the FCRF. The variation over the randomly selected training subsets

is small—the standard deviation over the five repetitions has mean 0.39—indicating

that the observed improvement is not due to chance. Performance and variance on

noun-phrase chunking is shown in Figure 3.3.

2To simulate the effects of a cascaded architecture, the POS labels in the CoNLL-2000 training
and test sets were automatically generated by the Brill tagger. Thus, POS accuracy measures
agreement with the Brill tagger, not agreement with human judgments.
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Method Time (hr) NP F1 LBFGS iter
µ s µ s µ

Random (3) 15.67 2.90 88.57 0.54 63.6
Tree (3) 13.85 11.6 88.02 0.55 32.6
Tree (∞) 13.57 3.03 88.67 0.57 65.8
Random (∞) 13.25 1.51 88.60 0.53 76.0
Exact 20.49 1.97 88.63 0.53 73.6

Table 3.3. Comparison of F1 performance on the chunking task by inference algo-
rithm. The columns labeled µ give the mean over five repetitions, and s the sample
standard deviation. Approximate inference methods have labeling accuracy very sim-
ilar to exact inference with lower total training time. The differences in training time
between Tree (∞) and Exact and between Random (∞) and Exact are statistically
significant by a paired t-test (df = 4; p < 0.005).

On this data set, several systems are statistically tied for best performance. Kudo

and Matsumoto [55] report an F1 of 94.39 using a combination of voting support

vector machines. Sha and Pereira [112] give a linear-chain CRF that achieves an

F1 of 94.38, using a second-order Markov assumption, and including bigram and

trigram POS tags as features. An FCRF imposes a first-order Markov assumption

over labels, and represents dependencies only between cotemporal POS and NP label,

not POS bigrams or trigrams. Thus, Sha and Pereira’s results suggest that more

richly-structured DCRFs could achieve better performance than an FCRF.

Other DCRF structures can be applied to many different language tasks, including

information extraction. Peshkin and Pfeffer [93] apply a generative DBN to extraction

from seminar announcements, attaining improved results, especially in extracting

locations and speakers, by adding a factor to remember the identity of the last non-

background label.

3.1.6.2 Comparison of Inference Algorithms

Because DCRFs can have rich graphical structure, and require many marginal

computations during training, inference is critical to efficient training with many
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labels and large data sets. In this section, we compare different inference methods

both on training time and labeling accuracy of the final model.

Because exact inference is feasible for a two-chain FCRF, this provides a good

case to test whether the final classification accuracy suffers when approximate meth-

ods are used to calculate the gradient. Also, we can compare different methods for

approximate inference with respect to speed and accuracy.

We train factorial CRFs on the noun-phrase chunking task described in the last

section. We compute the gradient using exact inference and approximate belief prop-

agation using both random and tree-based schedules, as described in Section 3.1.2.

Algorithms are considered to have converged when no message changes by more than

10−3. In these experiments, the approximate BP algorithms always converged, al-

though this is not guaranteed in general. We trained on five random subsets of 5%

of the training data, and the same five subsets were used in each condition. All

experiments were performed on a 2.8 GHz Intel Xeon with 4 GB of memory.

For each message-passing schedule, we compare two termination conditions: ter-

minating on convergence (Random(∞) and Tree(∞) in Table 3.3) and terminating

after three iterations (Random (3) and Tree (3)). Although the early-terminating

BP runs are less accurate, they are faster, which we hypothesized could result in

lower overall training time. If the gradient is too inaccurate, however, then the opti-

mization will require many more iterations, resulting in greater training time overall,

even though the time per gradient computation is lower. Another hazard is that no

maximizing step may be possible along the approximate gradient, even if one is pos-

sible along the true gradient. In this case, the gradient descent algorithm terminates

prematurely, leading to decreased performance.

Table 3.3 shows the average F1 score and total training times of DCRFs trained

by the different inference methods. Unexpectedly, letting the belief propagation al-

gorithms run to convergence led to lower training time than the early cutoff. For
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example, even though Random(3) averaged 427 sec per gradient computation com-

pared to 571 sec for Random(∞), Random(∞) took less total time to train, because

Random(∞) needed an average of 83.6 gradient computations per training run, com-

pared to 133.2 for Random(3).

As for final classification performance, the various approximate methods and exact

inference perform similarly, except that Tree(3) has lower final performance because

maximization ended prematurely, averaging only 32.6 maximizer iterations. The vari-

ance in F1 over the subsets, although not large, is much larger than the F1 difference

between the inference algorithms.

In all cases, the messages were initialized to uniform messages. One might think

to take advantage of the fact that BP is embedded in a gradient-based optimizer, by

initializing the BP iterations at the final messages from the previous gradient step.

In preliminary experiments, this did not appreciably help early stopping.

Previous work [137] has shown that TRP converges faster than synchronous belief

propagation, that is, with Jacobi updates. Both the schedules discussed in section

3.1.2 use asynchronous Gauss-Seidel updates. We emphasize that the graphical mod-

els in these experiments are always pairs of coupled chains. On more complicated

models, or with a different choice of spanning trees, tree-based updates could out-

perform random asynchronous updates. Also, in complex models, the difference in

classification accuracy between exact and approximate inference could be larger, al-

though in such cases exact inference is likely to be intractable.

In summary, we draw three conclusions about belief propagation on this particular

model. First, using approximate inference instead of exact inference leads to lower

overall training time with no loss in accuracy. Indeed, the two-level FCRFs that

we consider here appear to have been particularly easy cases for BP, because we

observed little difficulty with convergence. Second, there is little difference between

a random tree schedule and a completely random schedule for belief propagation.
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wt = w
wt matches [A-Z][a-z]+
wt matches [A-Z][A-Z]+
wt matches [A-Z]
wt matches [A-Z]+
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]
wt appears in list of first names,

last names, honorifics, etc.
wt appears to be part of a time followed by a dash
wt appears to be part of a time preceded by a dash
wt appears to be part of a date
qk(x, t+ δ) for all k and δ ∈ [−4, 4]

Table 3.4. Input features qk(x, t) for the seminars data. In the above wt is the word
at position t, Tt is the POS tag at position t, w ranges over all words in the training
data, and T ranges over all Penn Treebank part-of-speech tags. The “appears to be”
features are based on hand-designed regular expressions that can span several tokens.

Third, running belief propagation to convergence leads both to increased classification

accuracy and lower overall training time than an early cutoff.

3.1.6.3 Cascaded Training for Transfer Learning

In this section, we consider an application of DCRFs to transfer learning, both as

an additional application of DCRFs, and as an evaluation of the cascaded training

procedure described in Section 3.1.5. The task is to extract the details of an academic

seminar—including its starting time, ending time, location, and speaker—from an

email announcement. The data is a collection of 485 e-mail messages announcing

seminars at Carnegie Mellon University, gathered by Freitag [35], and has been the

subject of much previous work using a wide variety of learning methods. Despite all

this work, however, the best reported systems have precision and recall on speaker

names and locations of only about 75%—too low to use in a practical system. This

task is so challenging because the messages are written by many different people, who

each have different ways of presenting the announcement information.
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System stime etime location speaker overall

WHISK Soderland [115] 92.6 86.1 66.6 18.3 65.9
SRV Freitag [35] 98.5 77.9 72.7 56.3 76.4
HMM Frietag and McCallum [36] 98.5 62.1 78.6 76.6 78.9
RAPIER Califf and Mooney [16] 95.9 94.6 73.4 53.1 79.3
SNOW-IE Roth and Wen-tau Yih [105] 99.6 96.3 75.2 73.8 86.2
(LP)2 Ciravegna [20] 99.0 95.5 75.0 77.6 86.8
CRF (no transfer) This chapter 99.1 97.3 81.0 73.7 87.8
FCRF (cascaded) This chapter 99.2 96.0 84.3 74.2 88.4
FCRF (joint) This chapter 99.1 96.0 85.3 76.3 89.2

Table 3.5. Comparison of F1 performance on the seminars data. Joint decoding
performs significantly better than cascaded decoding. The overall column is the
mean of the other four. (This table was adapted from Peshkin and Pfeffer [93].)

Figure 3.4. Learning curves for the seminars data set on the speaker field, aver-
aged over 10-fold cross validation. Joint training performs equivalently to cascaded
decoding with 25% more data.
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Because the task includes finding locations and person names, the output of a

named-entity tagger is a useful feature. It is not a perfectly indicative feature, how-

ever, because many other kinds of person names appear in seminar announcements—

for example, names of faculty hosts, departmental secretaries, and sponsors of lecture

series. For example, the token Host: indicates strongly both that what follows is a

person name, but that person is not the seminars’ speaker.

Even so, named-entity predictions do improve performance on this task. There-

fore, we wish to transfer learning from the named-entity task to the seminar announce-

ment task. To do this, we define an FCRF that predicts both named-entity labels and

seminar labels, training it using cascaded training (Section 3.1.5). Although on the

noun-phrase chunking data, cascaded training performs worse than cascaded training

and decoding (Section 3.1.6.1), here we do not have a single data set that is labeled

for both tasks. Performing joint inference over both chains is therefore impossible

during training; at test time, however, we can still perform joint inference over both

chains. We call this procedure joint decoding, as opposed to the cascaded procedure

of using the single-best named-entity label in the seminar predictor. Joint decoding

might be expected to perform better because of helpful feedback between the tasks:

Information from the seminar-field predictions can improve named-entity predictions,

which in turn improve the seminar-field predictions. Therefore, we present two com-

parisons: (a) between the FCRF trained to incorporate transfer and a comparable

linear-chain CRF, and (b) at test time, between cascaded decoding or joint decoding.

We use the predictions from a CRF named-entity tagger that we train on the stan-

dard CoNLL 2003 English data set. The CoNLL 2003 data set consists of newswire

articles from Reuters labeled as either people, locations, organizations, or miscella-

neous entities. It is much larger than the seminar announcements data set. While the

named-entity data contains 203,621 tokens for training, the seminar announcements

data set contains only slightly over 60,000 training tokens.
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Previous work on the seminars data has used a one-field-per-document evaluation.

That is, for each field, the CRF selects a single field value from its Viterbi path,

and this extraction is counted as correct if it exactly matches any of the true field

mentions in the document. We compute precision and recall following this convention,

and report their harmonic mean F1. As in the previous work, we use 10-fold cross

validation with a 50/50 training/test split. We use a spherical Gaussian prior on

parameters with variance σ2 = 0.5.

We evaluate whether joint decoding with cascaded training performs better than

cascaded training and decoding. Table 3.5 compares cascaded and joint decoding for

CRFs with other previous results from the literature.3 The features we use are listed

in Table 3.4. Although previous work has used very different feature sets, we include

a no-transfer CRF baseline to assess the impact of transfer from the CoNLL data set.

All the CRF runs used exactly the same features.

On the most challenging fields, location and speaker, cascaded transfer is more

accurate than no transfer at all, and joint decoding is more accurate than cascaded

decoding. In particular, for speaker, we see an error reduction of 8% by using joint

decoding over cascaded. The difference in F1 between cascaded and joint decoding

is statistically significant for speaker (paired t-test; p = 0.017) but only marginally

significant for location (p = 0.067). Our results are competitive with previous work;

for example, on location, the CRF is more accurate than any of the existing systems,

and the CRF has the highest overall performance, that is, averaged over all fields,

than the previously reported systems.

Figure 3.4 shows the difference in performance between joint and cascaded decod-

ing as a function of training set size. Cascaded decoding with the full training set of

3We omit one relevant paper [93] because its evaluation method differs from all the other previous
work.
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242 emails performs equivalently to joint decoding on only 181 training instances, a

25% reduction in the training set.

Examining the trained models, we can observe errors made by the general-purpose

named entity tagger, and how they can be corrected by considering the seminars

labels. In newswire text, long runs of capitalized words are rare, often indicating the

name of an entity. In email announcements, runs of capitalized words are common in

formatted text blocks like:

Location: Baker Hall

Host: Michael Erdmann

In this type of situation, the general named entity tagger often mistakes Host: for

the name of an entity, especially because the word preceding Host is also capitalized.

On one of the cross-validated testing sets, of 80 occurrences of the word Host:, the

named-entity tagger labels 52 as some kind of entity. When joint decoding is used,

however, only 20 occurrences are labeled as entities. Recall that in both of these

settings, training is performed in exactly the same way; the only difference is that

joint decoding takes into account information about the seminar labels when choosing

named-entity labels. This is an example of how domain-specific information from the

main task can improve performance on a more standard, general-purpose subtask.

3.1.7 Related Work

Since the original work on conditional random fields [58], there has been much

interest in training discriminative models with more general graphical structures. One

of the first such applications was relational Markov networks [128], which were first

applied to collective classification of Web pages. There has also been interest in grid-

structured loopy CRFs for computer vision [46, 57], in which jointly-trained Markov

random fields are a classical technique. Another type of structured problem which has

seen some attention in the literature is discriminative learning of distributions over
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context-free parse trees, in which training has done done using max-margin methods

[74, 130] and perceptron-like methods [135].

Currently, the most popular alternative approaches to training structured discrim-

inative models are maximum-margin training [3, 129], and perceptron training [22],

which has been especially popular in NLP because of its ease of implementation.

The factorial CRF that we present here should not be confused with the factorial

Markov random fields that have been proposed in the computer vision community

[52]. In that model, each of the factors is a grid, rather than a chain, and they interact

through a directed model, as in a factorial HMM.

Finally, some results presented here have appeared in earlier conference versions,

in particular the results on noun-phrase chunking [125] and transfer learning [120].

3.2 Skip-chain CRFs

Another type of long-range dependence that arises in information extraction oc-

curs occurs on repeated mentions of the same field. When the same entity is men-

tioned more than once in a document, such as Robert Booth, in many cases all men-

tions have the same label, such as Seminar-Speaker. We can take advantage of

this fact by favoring labelings that treat repeated words identically, and by combining

features from all occurrences so that the extraction decision can be made based on

global information. Furthermore, identifying all mentions of an entity can be useful

in itself, because each mention might contain different useful information. However,

most extraction systems, whether probabilistic or not, do not take advantage of this

dependency, instead treating the separate mentions independently.

To perform collective labeling, we need to represent dependencies between distant

terms in the input. But this reveals a general limitation of sequence models, whether

generatively or discriminatively trained. Sequence models make a Markov assumption

among labels, that is, that any label yt is independent of all previous labels given
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Figure 3.5. Graphical representation of a skip-chain CRF. Identical words are con-
nected because they are likely to have the same label.

its immediate predecessors yt−k . . . yt−1. This represents dependence only between

nearby nodes—for example, between bigrams and trigrams—and cannot represent

the higher-order dependencies that arise when identical words occur throughout a

document.

To relax this assumption, we introduce the skip-chain CRF, a conditional model

that collectively segments a document into mentions and classifies the mentions by

entity type, while taking into account probabilistic dependencies between distant

mentions. These dependencies are represented in a skip-chain model by augmenting

a linear-chain CRF with factors that depend on the labels of distant but similar words.

This is shown graphically in Figure 3.5.

Even though the limitations of n-gram models have been widely recognized within

the natural language processing community, long-distance dependencies are difficult

to represent in generative models, because full n-gram models have too many param-

eters if n is large. We avoid this problem by selecting which skip edges to include

based on the input string. This kind of input-specific dependence is difficult to repre-

sent in a generative model, because it makes generating the input more complicated.

In other words, conditional models have been popular because of their flexibility in

allowing overlapping features; skip-chain CRFs take advantage of their flexibility in

allowing input-specific model structure.
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3.2.1 Model

The skip-chain CRF is essentially a linear-chain CRF with additional long-distance

edges between similar words. We call these additional edges skip edges. The features

on skip edges can incorporate information from the context of both endpoints, so that

strong evidence at one endpoint can influence the label at the other endpoint.

When applying the skip-chain model, we must choose which skip edges to include.

The simplest choice is to connect all pairs of identical words, but more generally we

can connect any pair of words that we believe to be similar, for example, pairs of

words that belong to the same stem class, or have small edit distance. In addition,

we must be careful not to include too many skip edges, because this could result

in a graph that makes approximate inference difficult. So we need to use similarity

metrics that result in a sufficiently sparse graph. In the experiments below, we focus

on named-entity recognition, so we connect pairs of identical capitalized words.

Formally, the skip-chain CRF is defined as a general CRF with two clique tem-

plates: one for the linear-chain portion, and one for the skip edges. For an sentence

x, let I = {(u, v)} be the set of all pairs of sequence positions for which there are

skip edges. For example, in the experiments reported here, I is the set of indices of

all pairs of identical capitalized words. Then the probability of a label sequence y

given an input x is modeled as

pθ(y|x) =
1

Z(x)

T∏
t=1

Ψt(yt, yt−1,x)
∏

(u,v)∈I

Ψuv(yu, yv,x), (3.12)

where Ψt are the factors for linear-chain edges, and Ψuv are the factors over skip

edges. These factors are defined as
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Ψt(yt, yt−1,x) = exp

{∑
k

λ1kf1k(yt, yt−1,x, t)

}
(3.13)

Ψuv(yu, yv,x) = exp

{∑
k

λ2kf2k(yu, yv,x, u, v)

}
, (3.14)

where θ1 = {λ1k}K1
k=1 are the parameters of the linear-chain template, and θ2 =

{λ2k}K2
k=1 are the parameters of the skip template. The full set of model parameters

are θ = {θ1, θ2}.

As described in Section 2.4.6, both the linear-chain features and skip-chain features

are factorized into indicator functions of the outputs and observation functions, as in

(2.83). In general the observation functions qk(x, t) can depend on arbitrary positions

of the input string. For example, a useful feature for NER is qk(x, t) = 1 if and only

if xt+1 is a capitalized word.

The observation functions for the skip edges are chosen to combine the observa-

tions from each endpoint. Formally, we define the feature functions for the skip edges

to factorize as:

f ′k(yu, yv,x, u, v) = 1{yu=ỹu}1{yv=ỹv}q
′
k(x, u, v) (3.15)

This choice allows the observation functions q′k(x, u, v) to combine information from

the neighborhood of yu and yv. For example, one useful feature is q′k(x, u, v) = 1 if

and only if xu = xv = “Booth” and xv−1 = “Speaker:”. This can be a useful feature if

the context around xu, such as “Robert Booth is manager of control engineering. . . ,”

may not make clear whether or not Robert Booth is presenting a talk, but the context

around xv is clear, such as “Speaker: Robert Booth.” 4

4This example is taken from an actual error made by a linear-chain CRF on the seminars data
set. We present results from this data set in Section 3.2.3.
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System stime etime location speaker overall
BIEN [93] 96.0 98.8 87.1 76.9 89.7
Linear-chain CRF 97.5 97.5 88.3 77.3 90.2
Skip-chain CRF 96.7 97.2 88.1 80.4 90.6

Table 3.6. Comparison of F1 performance on the seminars data. The top line gives
a dynamic Bayes net that has been previously used on this data set. The skip-chain
CRF beats the previous systems in overall F1 and on the speaker field, which has
proved to be the hardest field of the four. Overall F1 is the average of the F1 scores
for the four fields.

Field Linear-chain Skip-chain
stime 12.6 17
etime 3.2 5.2
location 6.4 0.6
speaker 30.2 4.8

Table 3.7. Number of inconsistently mislabeled tokens, that is, tokens that are
mislabeled even though the same token is labeled correctly elsewhere in the document.
Learning long-distance dependencies reduces this kind of error in the speaker and
location fields. Numbers are averaged over 5 folds.

3.2.2 Parameter Estimation

Because the loops in a skip-chain CRF can be long and overlapping, exact infer-

ence, and hence maximum likelihood, is intractable for the models considered here.

The running time required by exact inference is exponential in the size of the largest

clique in the graph’s junction tree. In junction trees created from the seminars data,

29 of the 485 instances have a maximum clique size of 10 or greater, and 11 have

a maximum clique size of 14 or greater. (The worst instance has a clique with 61

nodes.) These cliques are far too large to perform inference exactly. For reference,

representing a single factor that depends on 14 variables requires more memory than

can be addressed in a 32-bit architecture.

Instead, we perform approximate inference using loopy belief propagation, which

was described in Section 2.4.4. As with the FCRFs in Section 3.1, inference uses the
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TRP schedule with random spanning trees. Parameters are selected to maximize the

Bethe likelihood (3.6) using limited-memory BFGS. As discussed in Section 3.1.4, the

gradient of this objective is identical to that of the true likelihood, except that where

the true gradient uses the true marginal distributions of the model, the gradient of

the Bethe likelihood uses the beliefs resulting from BP.

It is important to carefully choose the initial parameter setting for the optimiza-

tion procedure. At first, this may seem surprising, because the likelihood is a concave

function of the parameters, and so gradient-based optimization should find the global

optimum from any starting point. In fact, initialization does matter, for two reasons.

First, even though the true likelihood is convex, the BP approximation to the likeli-

hood is not, so it is possible to find a local maximum that is not globally optimal. If

this happens, it means that the final parameter setting has a zero BP gradient with

respect to one fixed point, but not with respect to other fixed points.

A second explanation, and perhaps more relevant, is that many parameter settings

have likelihoods that are numerically very close to optimal, but perform differently on

unseen data. In the models considered in this thesis, the features are often rich enough

that it is possible to fit the training data arbitrarily closely. Furthermore, because

the features are linearly dependent, there are many different lines in parameter space

that approach the empirical expectations from different directions. The numerical

optimization algorithm terminates when the difference in value or gradient becomes

too small, so approaching the maximum from different directions can still lead to

different parameter setting. As a concrete example, consider the two-level DCRF

of the previous section. Using only the within-chain features, it is possible to find

solutions with likelihood only slightly worse than the full model, which uses both

within-chain and between-chain factors. But we saw in the experimental results

that using the between-chain factors improves accuracy on unseen data. So this

is case where a poor initialization of the optimization procedure, namely, one that
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encouraged the within-chain factors to be given too much weight, can significantly

degrade accuracy.

In the experiments reported in the next section, the skip-chain CRF is initialized

from a linear-chain CRF. That is, the linear-chain factors of the model are initialized

from the weights of a fully-trained linear-chain CRF, and the long-distance factors

are initialized to uniform. If we instead start at the uniform distribution—that is, by

initializing all parameters to 0—not only does loopy BP training take much longer,

but testing performance is much worse, because the convex optimization procedure

has difficulty with noisier gradients. With uniform initialization, loopy BP does not

converge for all training instances, especially at early iterations of training. That is,

carefully initializing the parameters avoids regions of parameter space in which BP

performs poorly.

3.2.3 Results

We evaluate skip-chain CRFs on the seminar announcements data set discussed

in Section 3.1.6.3. The messages are annotated with the seminar’s starting time,

ending time, location, and speaker. Often the fields are listed multiple times in the

message. For example, the speaker name might be included both near the beginning

and later on, in a sentence like “If you would like to meet with Professor Smith. . . ”

As mentioned earlier, it can be useful to find both such mentions, because different

information can occur in the surrounding context of each mention: for example, the

first mention might be near an institutional affiliation, while the second mentions that

Smith is a professor.

We evaluate a skip-chain CRF with skip edges between identical capitalized words.

The motivation for this is that the hardest aspect of this data set is identifying

speakers and locations, and capitalized words that occur multiple times in a seminar

announcement are likely to be either speakers or locations.
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Table 3.4 shows the list of input features we used. For a skip edge (u, v), the input

features we used were the disjunction of the input features at u and v, that is,

q′k(x, u, v) = qk(x, u)⊕ qk(x, v) (3.16)

where ⊕ is binary or. All of our results are averaged over 5-fold cross-validation with

an 80/20 split of the data. We report results from both a linear-chain CRF and a

skip-chain CRF with the same set of input features.

We calculate precision and recall as5

P =
# tokens extracted correctly

# tokens extracted

R =
# tokens extracted correctly

# true tokens of field

As usual, we report F1 = (2PR)/(P +R).

Table 3.6 compares a skip-chain CRF to a linear-chain CRF and to a dynamic

Bayes net used in previous work [93]. The skip-chain CRF performs much better

than all the other systems on the Speaker field, which is the field for which the skip

edges would be expected to make the most difference. On the other fields, however,

the skip-chain CRF does slightly worse (less than 1% absolute F1).

We expected that the skip-chain CRF would do especially well on the speaker

field, because speaker names tend to appear multiple times in a document, and a

skip-chain CRF can learn to label the multiple occurrences consistently. To test this

hypothesis, we measure the number of inconsistently mislabeled tokens, that is, tokens

5Previous work on this data set has traditionally reported precision and recall only at the docu-
ment level, that is, from each document the system extracts only one field of each type. Because the
goal of the skip-chain CRF is to extract all mentions in a document, these metrics are inappropriate,
so we cannot compare with this previous work. Peshkin and Pfeffer [93] do use the per-token metric
(personal communication), so our comparison is fair in that respect.
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that are mislabeled even though the same token is classified correctly elsewhere in

the document. Table 3.7 compares the number of inconsistently mislabeled tokens in

the test set between linear-chain and skip-chain CRFs. For the linear-chain CRF, on

average 30.2 true speaker tokens are inconsistently mislabeled. Because the linear-

chain CRF mislabels 121.6 true speaker tokens, this situation includes 24.7% of the

missed speaker tokens.

The skip-chain CRF shows a dramatic decrease in inconsistently mislabeled tokens

on the speaker field, from 30.2 tokens to 4.8. Consequently, the skip-chain CRF also

has much better recall on speaker tokens than the linear-chain CRF (70.0 R linear

chain, 76.8 R skip chain). This explains the increase in F1 from linear-chain to skip-

chain CRFs, because the two have similar precision (86.5 P linear chain, 85.1 skip

chain). These results support the original hypothesis that treating repeated tokens

consistently especially benefits recall on the Speaker field.

On the Location field, on the other hand, where we might also expect skip-chain

CRFs to perform better, there is no benefit. We explain this by observing in Table 3.7

that inconsistent misclassification occurs much less frequently in this field.

3.2.4 Related Work

Bunescu and Mooney [14] have used a relational Markov network to collectively

classify the mentions in a document, achieving increased accuracy by learning de-

pendencies between similar mentions. In their work, candidate phrases are extracted

heuristically, which can introduce errors if a true entity is not selected as a candidate

phrase. Our model performs collective segmentation and labeling simultaneously, so

that the system can take into account dependencies between the two tasks.

After we first presented the skip-chain CRF [118], several other authors have

introduced interesting extensions. As one extension, Finkel et al. [32] augment the

skip-chain model with richer kinds of long-distance factors than just over pairs of
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words. These factors are useful for modeling exceptions to the assumption that similar

words tend to have similar labels. For example, in named-entity recognition, the word

China is as a place name when it appears alone, but when it occurs within the phrase

The China Daily, it should be labeled as a organization. Because this model is more

complex than the original skip-chain model, Finkel et al. estimate its parameters in

two stages, first training the linear-chain component as a separate CRF, and then

heuristically selecting parameters for the long-distance factors. Finkel et al. report

improved results both on the seminars data set that we consider in this chapter, and

on several other standard information extraction data sets.

An alternative to the skip-chain CRF, Rosenberg et al. [104] propose an MEMM

with long-distance edges. This results in some nodes having many parents, so in

order to reduce the number of parameters, every conditional probability table that

has multiple parents is assumed to be a mixture of CPTs involving single parents.

This mixture-of-parents assumption is similar to the restriction to pairwise factors in

the skip-chain CRF. The potential advantage of such a model is that training is much

simpler and more computationally efficient than the skip-chain CRF. The potential

disadvantage is label bias, that is, that observations late in the sequence have no

effect on earlier labels.

3.3 Summary

In this chapter, I have presented two simple loopy extensions to linear-chain CRFs:

dynamic CRFs and skip-chain CRFs. Dynamic CRFs are conditionally-trained undi-

rected sequence models with repeated graphical structure and tied parameters. They

combine the best of both conditional random fields and the widely successful dy-

namic Bayesian networks (DBNs). DCRFs address difficulties of DBNs, by easily

incorporating arbitrary overlapping input features, and of previous conditional mod-

els, by allowing more complex dependence between labels. Inference in DCRFs can be
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done using approximate methods, and training can be done by maximum a posteriori

estimation.

Empirically, we have shown that factorial CRFs can be used to jointly perform

several labeling tasks at once, sharing information between them. Such a joint model

performs better than a model that does the individual labeling tasks sequentially, and

has potentially many practical implications, because cascaded models are ubiquitous

in NLP.

The skip-chain CRF segments a sequence while modeling long-distance dependen-

cies between similar tokens. The skip-chain CRF can also be viewed as performing

extraction while taking into account a simple form of coreference information, since

the reason that identical words are likely to have similar tags is that they are likely

to be coreferent. Thus, the skip-chain CRF, like the FCRF, can be viewed as a step

toward joint probabilistic models for extraction and data mining as advocated by

McCallum and Jensen [69].

93



CHAPTER 4

PIECEWISE TRAINING

This chapter begins our investigation of approximate methods for training CRFs.

One attractive family of approximate training methods is local training methods, by

which I mean methods that depend on sums of local functions of only a few factors,

such as the conditional probability of a node given its Markov blanket, rather than on

global functions of the entire graph, such the likelihood. The best-known example of

a local training method is Besag’s pseudolikelihood [8], which is a product of per-node

conditional probabilities.

In this chapter, I present a novel local training method called piecewise training, in

which the model’s factors are divided into possibly overlapping sets of pieces, which

are each trained separately. At test time, the resulting weights are used just as if

they had been trained using maximum likelihood, that is, on the unseen data they

are used to predict the labels using a standard approximate inference algorithm, such

as max-product BP. When using piecewise training, the modeler must decide how to

split the model into pieces before training. In this thesis most of the experiments use

the factor-as-piece approximation, in which each factor of the model is placed in a

separate piece.

This training procedure can be viewed in two ways. First, separate training of

each piece can be accomplished by numerically maximizing an approximation to the

likelihood. This approximate likelihood can be seen as the true likelihood on a trans-

formation of the original graph, which I call the node-split graph, in which each of

the pieces is an isolated component. The second view is based on belief propagation;
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namely, the objective function of piecewise training is the same as the BP approx-

imate likelihood (3.6) with uniform messages, as if BP has been stopped after zero

iterations. I call this the pseudomarginal view of piecewise training, for reasons ex-

plained in Section 4.4. These two viewpoints will prove useful both for understanding

these algorithms, and for designing the extensions in this chapter and the next.

In this chapter, I define piecewise training (Section 4.1), explaining it from both

the local graph and the pseudomarginal perspectives. I apply the factor-as-piece

approximation to several natural-language data sets. The model resulting from the

piecewise approximation has better accuracy than pseudolikelihood and is sometimes

comparable to exact maximum likelihood (Section 4.3). Then I consider several exten-

sions to the basic method. First, I consider an extension called reweighted piecewise

training, based on a connection between piecewise training and the upper bounds of

Wainwright et al. [140], but unfortunately the results here are negative: reweighted

piecewise training has worse accuracy than standard piecewise on our data. A more

interesting family of extensions is based on the connection to standard belief propa-

gation. To develop these, I introduce three views of approximate training algorithms,

which I call the neighborhood graph view, the pseudomarginal view, and the belief

view (Section 4.4). This development motivates two different extensions of piecewise

training, namely shared-unary piecewise (Section 4.5.1) and one-step cutout (Sec-

tion 4.5.3). Just as standard piecewise corresponds to zero iterations of BP, shared-

unary corresponds to 1 iteration and one-step cutout to 2 iterations. Simulated data

provides illuminating insight into when shared-unary piecewise and one-step cutout

may be more appropriate than standard piecewise (Section 4.5.5).

4.1 Definition

In this section, I present piecewise training, explaining how it maximizes a loose

lower bound on the likelihood. The motivation is that in some applications, the
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local information in each factor alone, without performing inference, is enough to

do fairly well at predicting the outputs, but some amount of global information can

help. Therefore, to reduce training time, it makes sense to perform less inference

at training time than at test time, because at training time we loop through the

examples repeatedly, whereas at test time we only need to make each prediction

once. For example, suppose we want to train a loopy pairwise MRF. In piecewise

estimation, what we will do is to train the parameters of each edge independently,

as if each edge were a separate two-node MRF of its own. Finally, on test data, the

parameters resulting from this local training become the parameters used to perform

global inference, using some standard approximate inference algorithm.

Now I define the piecewise estimator more generally. Let the distribution p(y) be

defined by a factor graph, where Ψa(ya, θ) has the exponential form (2.3), and suppose

that we wish to estimate θ. (To simplify notation, I describe piecewise estimation

for generative models; the conditional case is exactly analogous.) I assume that the

model’s factors are divided into a set P = {R0, R1 . . .} of pieces; each piece R ∈ P

is a set of factors R = {Ψa}. The pieces need not be disjoint. For example, in a

grid-shaped MRF with unary and pairwise factors, we might isolate each factor in its

own piece, or alternatively we might choose one piece for each row and each column

of the MRF, in which case each unary factor would be shared between its row piece

and its column piece.

To train the pieces separately, each piece R has a local likelihood

`R(θ) =
∑
a∈R

K∑
k=1

θakfak(ya)− AR(θ). (4.1)

where AR(θ) is the local log partition function for the piece, that is,

AR(θ) = log
∑
yR

exp{
∑
a∈R

K∑
k=1

θakfak(ya)}, (4.2)
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where yR is the vector of variables used anywhere in piece R. This is the likelihood

for the piece R if it were a completely separate graphical model. If the pieces are

disjoint, and no parameters are shared between distinct factors, then we could train

each piece by separately computing parameters θRPW = maxθR
`R(θR). But in fact we

would like to handle both parameter tying and overlapping pieces. To do this, we

instead perform a single optimization, maximizing the sum of all of the single-piece

likelihoods. So for a set P of pieces, the piecewise likelihood becomes

`pw(θ) =
∑
R∈P

∑
a∈R

θaφa(ya)−
∑
R∈P

AR(θ). (4.3)

For example, consider the special case of per-edge pieces in a pairwise MRF with no

tied parameters. Then, for an edge (s, t), we have Ast(θ) = log
∑

ys,yt
Ψ(ys, yt), so

that the piecewise estimator corresponds exactly to training independent probabilistic

classifiers on each edge.

Now let us compare the approximate likelihood (4.3) to the exact likelihood. Recall

that the true likelihood is

`(θ) =
∑
k

θkφk(yk)− A(θ)

A(θ) = log
∑
y

exp{
∑
k

θkφk(yk)}.

Notice that the first summation contains exactly the same terms as in the exact like-

lihood. The only difference between the piecewise objective and the exact likelihood

is in the second summation of (4.3). So APW(θ) =
∑

RAR(θ) can be viewed as an

approximation of the log partition function.

A choice of pieces to which I devote particular attention is the factor-as-piece

approximation, in which each factor in the model is assigned to its own piece. There

is a potential ambiguity in this choice, because recall that the factors take the form
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Ψa(ya) = exp{
∑
k

θakfak(ya)},

so that each factor has multiple parameters and sufficient statistics. But we could

just as well place each sufficient statistic in a factor all to itself, that is,

Ψak(ya) = exp{θakfak(ya)}, (4.4)

and define the pieces at that level of granularity. Such a fine-grained choice of pieces

could be useful. For example, in a linear-chain model, we might choose to view the

model as a weighted finite-state machine, and partition the state-transition diagram

into pieces. For the purposes of this thesis, however, when I use the factor-as-piece

approximation, I will not use the fine-grained factorization of (4.4), that is, I will

assume that the graph has been constructed so that no two factors share exactly the

same support.

Apart from its intuitive plausibility, another rationale for the piecewise estimator

is provided by the following proposition:

Proposition 4.1. For any set P of pieces, the piecewise partition function is an

upper bound on the true partition function:

A(θ) ≤
∑
R∈P

AR(θ). (4.5)

Proof. The bound is immediate upon expansion of A(θ).
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A(θ) = log
∑
x

exp

{∑
a

θaφa(xa)

}
(4.6)

= log
∑
x

∏
R∈P

exp

{∑
a∈R

θaφa(xa)

}
(4.7)

≤ log
∏
R∈P

∑
xR

exp

{∑
a∈R

θaφa(xa)

}
(4.8)

=
∑
R∈P

AR(θ). (4.9)

The bound from (4.7) to (4.8) is justified by considering the expansion of the product

in (4.8). The expansion contains every term of the summation in (4.7), and all terms

are nonnegative.

Therefore, the piecewise likelihood is a lower bound on the true likelihood. If the

graph is connected, however, then the bound is nowhere tight.

Although so far I have been using the notation of generative models for simplic-

ity, estimation is especially well-suited for conditional random fields. As mentioned

earlier, standard maximum-likelihood training for CRFs can require evaluating the

instance-specific partition function Z(x) for each training instance for each iteration

of an optimization algorithm, which can be expensive even for linear chains. By using

piecewise training, we need to compute only local normalization over small cliques,

which for loopy graphs is potentially much more efficient.

4.1.1 The Node-split Graph

The piecewise likelihood (4.3) can be viewed as the exact likelihood in a trans-

formation of the original graph. In the transformed graph, we split the variables,

adding one copy of each variable for each factor that it participates in, as pictured in

Figure 4.1. We call the transformed graph the node-split graph.

Formally, the splitting transformation is as follows. Given a factor graph G, create

a new graph G′ with variables {yas}, where a ranges over all factors in G and s over
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Figure 4.1. Example of node splitting. Left is the original model, right is the version
trained by piecewise. In this example, there are no unary factors.

all variables in a. For any factor a, let πa map variables in G to their copy in G′, that

is, πa(ys) = yas for any variable s in G. Finally, for each factor Ψa(ya, θ) in G, add a

factor Ψ′a to G′ as

Ψ′a(πa(ya), θ) = Ψa(ya, θ). (4.10)

If we wish to use pieces that are larger than a single factor, then the definition of the

node-split graph can be modified accordingly.

Clearly, piecewise training in the original graph is equivalent to exact maximum

likelihood training in the node-split graph. This view of piecewise training will prove

useful in the extensions presented in Section 4.5 and in Chapter 5.

4.1.2 The Belief Propagation Viewpoint

Another way of understanding piecewise training arises from belief propagation.

Let M = {mai(yi)} be a set of BP messages, not necessarily converged. We view

all of a factor’s outgoing messages as approximating it, that is, we define Ψ̃a =∏
i∈amai. Recall from Section 2.1.4 that the dual energy of belief propagation yields

an approximate partition function

ZBP(θ,M) =
∏
a

(∑
ya

Ψa(ya, θ)

Ψ̃a(ya)
q(ya)

)∏
i

(∑
yi

q(yi)

)1−di

, (4.11)

where q denotes the unnormalized beliefs
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q(y) =
∏
a

Ψ̃a(ya) =
∏
a

∏
i

mai(yi), (4.12)

with q(ya) =
∑

y\ya
q(y) and q(yi) =

∑
y\yi

q(y).

Now, let M0 be the uniform message setting, that is, mai = 1 for all a and i. This

is a common initialization for BP. Then the unnormalized beliefs are q(y) = 1 for all

y, and the approximate partition function is

ZBP(θ,M0) =
∏
a

(
Ca
∑
ya

Ψa(ya, θ)

)∏
i

C1−di
i , (4.13)

where Ca and Ci are constants that do not depend on θ. This approximate partition

function is the same as that used by piecewise training with one factor per piece, up

to a multiplicative constant that does not change the gradient. So another view is

that piecewise training approximates the likelihood using belief propagation, except

that we cut off BP after 0 iterations. This view informs the training methods that I

introduce in Section 4.5 and in Chapter 6.

4.1.3 Pseudo-Moment Matching Viewpoint

Piecewise training is based on the intuition that if all of the local factors fit the data

well, then the resulting global distribution is likely to be reasonable. An interesting

way of formalizing this idea is by way of the pseudo-moment matching estimator of

Wainwright et al. [142]. In this section, I show that there is a sense in which piecewise

training can be viewed as an extension of the pseudo-moment matching estimator.

First, consider the case in which p(y) factorizes according to a graph G with

fully-parameterized tables, that is,

Ψa(ya) = exp{
∑
y′a

θ(y′a)1{ya=y′a}} (4.14)

Let p̃(y) be the empirical distribution, that is, p̃(y) ∝
∑

i 1{y=y(i)}.
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The pseudo-moment matching estimator chooses parameters that maximize the

BP likelihood (3.6) without actually computing any of the message updates. This

estimator is

θ̂a(ya) = log
p̃(ya)∏
s∈a p̃(ys)

θ̂s(ys) = log p̃(ys).

(4.15)

For these parameters, there exists a set of messages that (a) are a fixed-point of BP,

and (b) the resulting beliefs qa and qs equal the empirical marginals. This can be

seen using the reparameterization perspective of BP [141] described in Section 2.1.4,

because with those parameters the belief-based updates of (2.26) yield a fixed point

immediately.

In this thesis, however, we are interested in estimating the parameters of condi-

tional distributions p(y|x). A simple generalization is to require for all inputs x with

p̃(x) > 0 that

Ψa(ya,x) =
p̃(ya|x)∏
s∈A p̃(ys|x)

Ψs(ys,x) = p̃(ys|x).

(4.16)

However, we can no longer expect to find parameters that satisfy these equations in

closed form. This is because the factor values of Ψa(·,x) ho not have an independent

degree of freedom for each input value x. Instead, to promote generalization across

different inputs, the factors Ψa have some complex parameterization, such as the

linear form (2.3), in which parameters are tied across different input values. A more

useful generalization is to treat the equations (4.16) as a nonlinear set of equations

to be solved. To do this, we optimize the objective function

min
θ

∑
a

D(Ψa‖p̃a) +
∑
s

D(Ψs‖p̃s), (4.17)
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where D(·‖·) is a divergence measure. By a divergence measure D(p‖q), I simply

mean a nonnegative function that is 0 if and only if p = q. Then if a parameter

setting θ exists such that the divergence is zero, then the equations have been solved

exactly, and θ optimizes the BP likelihood.

This provides another view of piecewise training, because choosing using KL(p̃a‖Ψa)

for the divergence in (4.17) yields an equivalent optimization problem to the piecewise

likelihood (4.3). This provides a justification of the intuition that fitting locally can

lead to a reasonable global solution: it is not the case that fitting factors locally causes

the true marginals to be matched to the empirical distribution, but it does cause the

BP approximation to the marginals to be matched to the empirical distribution.

4.2 Reweighted Piecewise Training

In this section, I sketch another proof of Proposition 4.1, deriving it from the tree-

reweighted bounds of Wainwright, Jaakkola, and Willsky [140], a connection which

suggests generalizations of the simple piecewise training procedure. To simplify the

exposition, in this section I assume the factor-as-piece approximation, but the ideas

extend readily to more general disjoint pieces.

4.2.1 Tree-Reweighted Upper Bounds

Wainwright, Jaakkola, and Willsky [140] introduce a class of upper bounds on A(θ)

that arise immediately from its convexity. The basic idea is to write the parameter

vector θ as a mixture of parameter vectors of tractable distributions, and then apply

Jensen’s inequality.

Let T = {TR} be a set of tractable subgraphs of G. For concreteness, think of

T as the set of all spanning trees of G; this is in fact the case to which Wainwright,

Jaakkola, and Willsky devote their attention. For each tractable graph TR, let θ(TR)

be an exponential parameter vector that has the same dimensionality as θ, but respects
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the structure of TR. More formally, this means that the entries of θ(TR) must be zero

for factors that do not appear in TR. Except for this, θ(TR) is arbitrary; there is no

requirement that on its own, it matches θ in any way.

Suppose we also have a distribution µ = {µR|TR ∈ T } over the tractable sub-

graphs, such that the original parameter vector θ can be written as a combination of

the per-tree parameter vectors:

θ =
∑
TR∈T

µRθ(TR). (4.18)

In other words, we have written the original parameters θ as a mixture of parameters

on tractable subgraphs.

Then the upper bound on the log partition function A(θ) arises directly from

Jensen’s inequality:

A(θ) = A

(∑
TR∈T

µRθ(TR)

)
≤
∑
TR∈T

µRA(θ(TR)). (4.19)

Because we have required that each graph T be tractable, each term on the right-

hand side of (4.19) can be computed efficiently. If the size of T is large, however,

then computing the sum is still intractable. We deal with this issue next.

A natural question about this bound is how to select θ so as to get the tightest

upper bound possible. For fixed µ, the optimization over θ can be cast as a convex

optimization problem:

min
θ

∑
TR∈T

µRA(θ(TR)) (4.20)

s.t. θ =
∑
TR∈T

µRθ(TR). (4.21)

But this optimization problem can have astronomically many parameters, especially

if T is the set of all spanning trees. The number of constraints, however, is much
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smaller, because the constraints are just one equality constraint for each element of θ.

To collapse the dimensionality of the optimization problem, therefore, Wainwright,

Jaakkola, and Willsky use the Lagrange dual of (4.20), which can then be optimized

using either standard optimization techniques, or a message passing algorithm similar

to to BP. For our present purposes, however, it suffices to consider only the primal

problem in (4.20), which we use in the next section as a alternative derivation of

piecewise bounds.

4.2.2 Application to Piecewise Upper Bounds

Now we discuss how the tree-reweighted upper bounds can be applied to piecewise

training. As in the previous section, we will obtain an upper bound by writing the

original parameters θ as a mixture of tractable parameter vectors θ(T ). Consider the

set T of tractable subgraphs induced by single edges of G. Precisely, for each factor

fa in G, we add a (non-spanning) tree TR which contains only the factor fa and its

associated variables. With each tree TR we associate an exponential parameter vector

θ(TR).

Let µ be a strictly positive probability distribution over factors. To use Jensen’s

inequality, we will need to have the constraint

θ =
∑
R

µRθ(TR). (4.22)

Now, each parameter θi corresponds to exactly one factor of G, which appears in only

one of the TR. Therefore, only one choice of subgraph parameter vectors {θ(TR)}

meets the constraint (4.22), namely:

θ(TR) =
θ|r
µR

, (4.23)

where θ|R is the restriction of θ to R; that is, θ|R has the same entries and dimen-

sionality as θ, but with zeros in all entries that are not included in the piece R.
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Method Overall F1
Piecewise 91.2

Pseudolikelihood 84.7
Per-edge PL 89.7

Exact 90.6

Table 4.1. Comparison of piecewise training to exact and pseudolikehood training on
a linear-chain CRF for named-entity recognition. On this tractable model, piecewise
methods are more accurate than pseudolikelihood, and just as accurate as exact
training.

Therefore, using Jensen’s inequality, we immediately have the bound

A(θ) ≤
∑
R

µRA

(
θ|R
µR

)
. (4.24)

This reweighted piecewise bound is clearly related to the basic piecewise bound

in (4.5), because A(θ|R) differs from AR(θ) only by an additive constant which is

independent of θ. In fact, a version of Proposition 4.1 can be derived by considering

the limit of (4.24) as µ approaches a point mass on an arbitrary single piece R∗.

The connection to the Wainwright et al. work suggests at least two generalizations

of the basic piecewise method. The first is that the reweighted piecewise bound

in (4.24) can itself be minimized as an approximation to A(θ), yielding a variation of

the basic piecewise method.

The second is that this line of analysis can naturally handle the case when pieces

overlap. For example, in an MRF with both node and edge factors, we might choose

each piece to be an edge factor with its corresponding node factors, hoping that this

overlap will allow limited communication between the pieces which could improve the

approximation. As long as there is a value of µ for which the constraint in (4.23)

holds, then (4.24) provides a bound we can minimize in an overlapping piecewise

approximation.
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Method Noun-phrase F1
Piecewise 88.1

Pseudolikelihood 84.9
Per-edge PL 86.5

BP 86.0

Table 4.2. Comparison of piecewise training to other methods on a two-level factorial
CRF for joint part-of-speech tagging and noun-phrase segmentation.

Method Token F1
location speaker

Piecewise 87.7 75.4
Pseudolikelihood 67.1 25.5

Per-edge PL 76.9 69.3
BP 86.6 78.2

Table 4.3. Comparison of piecewise training to other methods on a skip-chain CRF
for seminar announcements.

4.3 Experiments

The bound in (4.5) is not tight. Because the bound does not necessarily touch the

true likelihood at any point, maximizing it is not guaranteed to maximize the true

likelihood. We turn to experiments to compare the accuracy of piecewise training both

to exact estimation, and to other approximate estimators. A particularly interesting

comparison is to pseudolikelihood, because it is a related local estimation method.

On three real-world natural language tasks, we compare piecewise training to

exact ML training, to approximate ML training using belief propagation, and to

pseudolikelihood training. To be as fair as possible, we compare to two variations

of pseudolikelihood, one based on nodes and a structured version based on edges.

Pseudolikelihood in a generative model is normally defined as [8]:

`pl(θ) = log
∏
s

p(ys|yN(s)), (4.25)
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where N(s) are the set of variables that neighbor variable s. This per-variable pseudo-

likelihood function does not work well for sequence labeling, because it does not take

into account strong interactions between neighboring sequence positions. In order to

have a stronger baseline, we also compare to a per-edge version of pseudolikelihood:

`epl(θ) = log
∏
st

p(ys, yt|yN(s,t)), (4.26)

that is, instead of using the conditional distribution of each node, we use each edge,

hoping to take more of the sequential interactions into account.

We evaluate piecewise training on three models: a linear-chain CRF (Section 2.3),

a factorial CRF (Section 3.1), and a skip-chain CRF (Section 3.2). All of these

models use a large number of input features such as word identity, part-of-speech

tags, capitalization, and membership in domain-specific lexicons.

In all the experiments below, we optimize `pw using limited-memory BFGS. We

use a Gaussian prior on weights to avoid overfitting. In previous work, the prior

parameter had been tuned on each data set for belief propagation, and for the local

models we used the same prior parameter without change. At test time, decoding is

always performed using max-product belief propagation.

4.3.1 Linear-Chain CRF

First, we evaluate the accuracy of piecewise training on a tractable model, so that

we can compare the accuracy to exact maximum-likelihood training. The task is

named-entity recognition, that is, to find proper nouns in text. We use the CoNLL

2003 data set, consisting of 14,987 newswire sentences annotated with names of peo-

ple, organizations, locations, and miscellaneous entities. We test on the standard

development set of 3,466 sentences. Evaluation is done using precision and recall on

the extracted chunks, and we report F1 = 2PR/P + R. We use a linear-chain CRF,

whose features are described in Table 4.4.
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wt = w
wt matches [A-Z][a-z]+
wt matches [A-Z][A-Z]+
wt matches [A-Z]
wt matches [A-Z]+
wt contains a dash
wt matches [A-Z]+[a-z]+[A-Z]+[a-z]
The character sequence c0 . . . cn is a prefix of wt (where n ∈ [0, 4])
The character sequence c0 . . . cn is a suffix of wt (where n ∈ [0, 4])
The character sequence c0 . . . cn occurs in wt (where n ∈ [0, 4])
wt appears in list of first names,

last names, countries, locations, honorifics, etc.
qk(x, t+ δ) for all k and δ ∈ [−2, 2]

Table 4.4. Input features qk(x, t) for the CoNLL named-entity data. In the above
wt is the word at position t, Tt is the POS tag at position t, w ranges over all words
in the training data, and T ranges over all Penn Treebank part-of-speech tags. The
“appears to be” features are based on hand-designed regular expressions that can
span several tokens.

Piecewise training performs better than either of the pseudolikelihood methods.

Even though it is a completely local training methods, piecewise training performs

comparably to exact CRF training.

Now, in a linear-chain model, piecewise training has the same computational com-

plexity as exact CRF training, so I do not mean to advocate the piecewise approx-

imation for linear-chain graphs. Rather, that the piecewise approximation loses no

accuracy on the linear-chain model is encouraging when we turn to loopy models,

which we do next.

4.3.2 Factorial CRF

The first loopy model we consider is the factorial CRF introduced in Section 3.1.

As in Chapter 3, we consider here the task of jointly predicting part-of-speech tags

and segmenting noun phrases on the CoNLL 2000 data set. We report results here on

subsets of 223 training sentences, and the standard test set of 2012 sentences. Results

are averaged over 5 different random subsets. There are 45 different POS labels, and
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the three NP labels. We report F1 on noun-phrase chunks. The features used are

described in Table 3.2.

In previous work, this model was optimized by approximating the partition func-

tion using belief optimization, but this was quite expensive. Training on the full data

set of 8936 sentences required about 12 days of CPU time.1

Results on this loopy data set are presented in Table 4.2. Again, the piece-

wise estimator performs better both than either version of pseudolikelihood and than

maximum-likelihood estimation using belief propagation. On this small subset, ap-

proximate ML training with BP requires 1.8 h, but piecewise training is still twice as

fast, using 0.83 h.

4.3.3 Skip-chain CRF

Finally, we consider a model with many irregular loops, which is the skip chain

model introduced in Section 3.2. This model incorporates certain long-distance de-

pendencies between word labels into a linear-chain model for information extraction.

We use the seminar extraction data set described in that section. Consistently with

the previous work on this data set, we use 10-fold cross validation with a 50/50 train-

ing/test split. We report per-token F1 on the speaker and location fields, the most

difficult of the four fields. The features used are described in Table 3.4. Most docu-

ments contain many crossing skip-edges, so that exact maximum-likelihood training

using junction tree is completely infeasible, so instead we compare to approximate

training using loopy belief propagation.

1This number should be taken with some skepticism, however, because it results from experiments
using hardware and JVMs from 3 years ago, which are several times slower than those of today. Also,
I have been developing the inference code continuously since then, so it is quite possible that the
speed of my implementation has improved since then as well.
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Figure 4.2. Schematic factor-graph depiction of the difference between pseudolikeli-
hood (top) and piecewise training (bottom). Each term in pseudolikelihood normal-
izes the product of many factors (as circled), while piecewise training normalizes over
one factor at a time.

Results on this model are given in Table 4.3. Pseudolikelihood performs partic-

ularly poorly on this model. Piecewise estimation performs much better, but worse

than approximate training using BP.

Piecewise training is faster than loopy BP: in our implementation piecewise train-

ing used on average 3.5 hr, while loopy BP used 6.8 hr. To get these loopy BP

results, however, we must carefully initialize the training procedure, as discussed in

Section 3.2.2. For example, if instead we initialize the model to the uniform distri-

bution, not only does loopy BP training take much longer, over 10 hours, but testing

performance is much worse, because the convex optimization procedure has difficulty

with noisier gradients. With uniform initialization, loopy BP does not converge for

all training instances, especially at early iterations of training. Carefully initializing

the model parameters seems to alleviate these issues, but this model-specific tweaking

was unnecessary for piecewise training.
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Model Basic Reweighted
Linear-chain 91.2 90.4

FCRF 88.1 86.4
Skip-chain (location) 87.7 75.5
Skip-chain (speaker) 75.4 69.2

Table 4.5. Comparison of basic piecewise training to reweighted piecewise bound
with uniform µ.

4.3.4 Reweighted Piecewise Training

We also evaluate a reweighted piecewise training, a modification to the basic

piecewise estimator discussed in Section 4.2, in which the pieces are weighted by a

convex combination. The performance of reweighted piecewise training with uniform

µR is presented in Table 4.5. In all cases, the reweighted piecewise method performs

worse than the basic piecewise method. What seems be happening is that in each of

these models, there are several hundred edges, so that the weight µR for each region

is rather small, perhaps around 0.01. For each piece R, reweighted bound includes

a term A (θ|R/µR). If µR is around 0.01, then this means that we multiply the log

factor values by 100 before evaluating A. This multiplier is so extreme that the term

A (θ|R/µR) is dominated by maximum-value weight in θ|R.

4.4 Three Views of Approximate Training Algorithms

In this section,2 we explain the subgraph and BP viewpoints on local training

algorithms. First, many local training algorithms are straightforwardly viewed as

performing exact inference on a transformed graph that cuts the global dependencies

in the model. For example, standard piecewise performs maximum-likelihood training

in a node-split graph in which variables are duplicated so that each factor is in its own

2This section and the next originally appeared as the technical report Sutton and Minka [124],
as explained in the Acknowledgments at the end of the chapter.
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connected component. We refer to this viewpoint as the neighborhood graph view of

a training algorithm.

Second, many local training algorithms can be interpreted as approximating logZ

by the Bethe energy logZBP at a particular message setting. We call this the pseudo-

marginal view, because under this view, the estimated parameters are chosen to match

the pseudomarginals to the empirical marginals. For any approximate partition func-

tion Z̃, the pseudomarginals are the derivatives ∂ log Z̃/∂θak. To explain the termi-

nology, suppose that the unary factors have the form Ψi(yi) = exp{
∑

y′i
θi,y′i1{yi=y′i}}.

Then the derivative ∂ logZ/∂θi(yi) of the true partition function yields the marginal

distribution, so the corresponding derivative of log Z̃ is called a pseudomarginal.

As a third viewpoint, any approximate inference algorithm can be used to per-

form approximate ML training, by substituting the approximate beliefs for the exact

marginals in the ML gradient. We call this the belief view of an approximate train-

ing algorithm. For example, this is the standard way of implementing approximate

training using BP. Interestingly, although every approximate likelihood yields ap-

proximate gradients through the pseudomarginals, not all approximate gradients can

themselves be obtained as the exact gradient of any single approximate objective

function. An example of an approximate gradient that has no objective function is

the one-step cutout method (Section 4.5.3). Recently, training methods that have a

pseudomarginal interpretation—that is, those that can be described as numerically

optimizing an objective function—have received much attention, but it is not clear if

training methods that have a pseudomarginal interpretation should be preferred over

ones that do not.

The pseudomarginal and belief viewpoints are distinct. To explain this, we need

to make a distinction that is not always clear in the literature, between beliefs and

pseudomarginals. By the belief of a node i, we mean its normalized product of

messages, which is proportial to q(yi). By pseudomarginal, on the other hand, we
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mean the derivative of log Z̃ with respect to θi. These quantities are distinct. For

example, in standard piecewise, the pseudomarginal ∂ logZPW/∂θi(yi) equals pi(yi),

but the belief is proportional to q(yi) =
∑

y\yi
q(yi) = 1.

This point may be confusing for several reasons. First, when the messages m are a

fixed point of BP, then the pseudomarginal always equals the belief. But this does not

hold before convergence, and we shall be mainly concerned with intermediate message

settings, before BP has converged. A second potential confusion arises because we

define ZBP using the dual Bethe energy [81] rather than the primal. In the primal

Bethe energy [150], the pseudomarginal equals the belief at all message settings, but

this is not true of the dual energy. We use the dual energy rather than the primal

not only because it helps in interpreting local training algorithms, but also because

at intermediate message settings it tends to be a better approximation to logZ.

When calculating pseudomarginals ∂ log Z̃/∂θi, we must recognize that the mes-

sage setting is often itself a function of θ. For example, suppose we stop BP after one

iteration, that is, we take Z̃(θ) = ZBP(θ,m(1)(θ)), where m(1) are the messages after

one BP iteration. Then, because the message setting is clearly a function of θ, we

need to take ∂m(1)/∂θi into account when computing the pseudomarginals of Z̃.

4.5 Extensions from BP Early Stopping

If piecewise training can be seen as running zero iterations of BP, it is natural

to ask whether one or two iterations of BP might perform better. This leads to the

algorithms that we explore in this section, namely shared-unary piecewise and one-

step cutout. In this section, I assume that all factors are weakly canonical form, by

which I mean that every variable i has a unary factor Ψi(yi,x, θ), and for every non-

unary factor a and variable i ∈ a, the sum
∑

ya\yi
Ψa(ya,x, θ) is uniform over yi. For

fixed x, this transformation is always possible, and it means intuitively that none of

the unary information is hidden within higher-way factors. Note that this is a weaker
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condition than the canonical form used in the Hammersley-Clifford theorem [7], in

that we allow k-way factors (k > 2) to contain (k− 1)-way information; for example,

a three-way factor may contain two-way information. I also assume that the unary

factors are parameterized as

Ψi(yi,x, θ) = exp{θi(yi)}. (4.27)

4.5.1 Shared-Unary Piecewise

One idea for improving the piecewise estimate of the unary gradient is to duplicate

the unary factors over every non-unary piece that they neighbor. This yields a new

approximate training method, that I call shared-unary piecewise. Recall that the

standard piecewise ZPW arises from ZBP when all Ψ̃a = 1. In shared-unary piecewise,

rather than approximating the unary factors by Ψ̃i = 1, we incorporate them exactly,

that is, we take Ψ̃i(yi) = Ψi(yi,x, θ) for the unary factors, and Ψ̃a = 1 otherwise.

These messages are the result of one parallel BP iteration from uniform messages, so

I call them parallel BP(1) messages. These messages yield the approximate partition

function:

ZPWU =
∏
a∈NU

(∑
ya

Ψa(ya,x, θ)
∏
i∈a

Ψi(yi,x, θ)

)∏
i

(∑
yi

Ψi(yi,x, θ)

)2−di

, (4.28)

where NU is the set of nonunary factors in the model. We can distribute terms in

ZPWU to yield a form similar to standard piecewise. First, we define a normalized

version of the unary factors as

pi(yi) =
Ψi(yi,x, θ)∑
y′i

Ψi(y′i,x, θ)
. (4.29)

Then we can distribute terms in (4.28) to obtain
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Iterations

0 Ψ̃a = 1 for all a

1 Ψ̃a = 1 for nonunary a; Ψ̃i = Ψi for variables i

2 Ψ̃a =
∏

i∈am
(2)
ai (yi), where

m
(2)
ai (yi) =

∑
y\yi

Ψa(ya,x, θ)
∏

j∈N(a)\i Ψj(yj,x, θ)

Table 4.6. Message settings after zero, one, and two parallel iterations of BP. Recall
that the nonunary factors are assumed to be weakly canonical.

ZPWU =
∏
a∈NU

∑
ya

Ψa(ya,x, θ)
∏

i∈N(a)

pi(yi)

∏
i

∑
yi

Ψi(yi,x, θ). (4.30)

So shared-unary piecewise is the same as regular piecewise, except that we share

normalized unary factors among all of the higher-way pieces that they neighbor. By

normalizing the unary factors before spreading them across all the pieces, intuitively

we avoid overcounting their sum.

4.5.2 Shared-Unary Pseudomarginals

In this section, we derive the pseudomarginals for shared-unary piecewise. Taking

the derivative of logZPWU yields

∂ logZPWU

∂θi(y′)
=

∑
a∈NU(i)

∑
ya

Ψa(ya,x, θ)
(∏

j∈N(a)\i pj(yj)
)
· ∂pi(yi)
∂θi(y′)∑

ya
Ψa(ya,x, θ)

(∏
j∈N(a) pj(yj)

) + pi(y
′), (4.31)

where NU(i) is set of all nonunary factors that neighbor variable i. Then substituting

in

∂pi(yi)

∂θi(y′)
= p(yi)[1{y′=yi} − pi(y′)] (4.32)

yields
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Standard piecewise
Neighborhood graph node-split graph (Section 4.1.1)
Pseudomarginal view Messages at zero iterations
Belief view ba(ya) ∝ Ψa(ya,x, θ)
Shared-unary piecewise
Neighborhood graph node-split graph with pieces Ψi for each variable

i, and {Ψa} ∪ {pi | i ∈ a} for each nonunary a
Pseudomarginal view Messages after one parallel iteration
Belief view Summation-hack approximation to BP beliefs af-

ter two parallel iterations.
Cutout (one-step)
Neighborhood graph node-split graph with pieces Ga for each factor a,

where Ga defined as in (4.37)
Pseudomarginal view none
Belief view BP beliefs after two parallel iterations

Table 4.7. Viewpoints on local training algorithms discussed in this note. For each
method, “Neighborhood graph” means the graph on which the method can be viewed
as performing exact maximum likelihood training. “Pseudomarginal view” lists the
message setting with which the method approximates logZ by logZBP. “Belief view”
gives the beliefs with which the method can be viewed as approximating the gradient
of the true likelihood. For reference, the BP messages after zero, one, and two parallel
iterations are given in Table 4.6.
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∂ logZPWU

∂θi(y′)
= pi(y

′) +

 ∑
a∈NU(i)

∑
ya\y′ Ψa(ya,x, θ)

(∏
j∈N(a) pj(yj)

)
∑

ya
Ψa(ya,x, θ)

(∏
j∈N(a) pj(yj)

) − pi(y′)

(4.33)

= pi(y
′)

1 +

 ∑
a∈NU(i)

Cam
(2)
ai (y′)− 1

 , (4.34)

where m
(2)
ai are the unnormalized BP messages after two parallel updates. We in-

troduce the notation Ca to represent the denominator in (4.33), which is not the

normalizing constant of m
(2)
ai .

4.5.3 Cutout Method

The cutout method approximates the true gradient by performing exact inference

on a subgraph. Each parameter is assigned a its own subgraph, but the subgraphs

are allowed to overlap. Given a subgraph Ga for each factor a, we define the subgraph

likelihood `a as the exact likelihood over the graph Ga. Let A be the set of factors in

Ga and FA =
∏

b∈A Ψb. Then the subgraph likelihood can be written

`a(θa) =
FA(ya,x, θ)∑
y′a
FA(y′a,x, θ)

=
FA(ya,x, θ)

ZA
. (4.35)

Then the parameter vector θ is selected to solve the system of equations ∂`a/∂θa = 0

for all a. In general, there does not exist a single objective function `(θ) whose

partial derivatives match all of the ∂`a/∂θa, because the vector field defined by

∂`a/∂θa has nonzero curl. In two dimensions, the curl of a vector field H(x1, x2) =

[f1(x1, x2) f2(x1, x2)] is given by

curlH =
∂f2

∂x1

− ∂f1

∂x2

. (4.36)

It is a standard theorem of vector calculus that a piecewise continuous vector field over

Rn is the gradient of a function if and only if it has zero curl. To see this, observe that
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if H has nonzero curl, it is the gradient of a function f only if ∂f/∂x1x2 6= ∂f/∂x2x1,

which is impossible. The cutout vector field has nonzero curl essentialy because each

θa is used in many `b, but only one `a is used to compute its approximate gradient.

Here I focus on a special case of the cutout method, the one-step cutout method.

In one-step cutout, we choose Ga to be all of the neighboring factors of fa, plus their

unaries. That is, Ga is a factor graph with factors

A = {Ψb | factor Ψb is distance 2 or less from factor Ψa}. (4.37)

(When counting distance between factors, we do not count variables, so that a path

a− i−b in the factor graph counts as one step.) In many situations, the cutout graph

Ga is a tree, even when the original graph G is not, for example when G is a grid. If

Ga is a tree, then we can compute ∂`a/∂θa exactly using two parallel iterations of BP

on the original graph G. To see this, observe that because Ga is a tree of diameter

4, we can exactly compute ZA by performing two parallel BP iterations on Ga. But

the two-iteration messages on Ga are the same as the two-iteration messages on the

original graph, which are given in Table 4.6.

The beliefs at the parallel BP(2) message setting are

b(2)
a (ya) ∝ Ψa(ya,x, θ)

∏
i∈N(i)

m
(2)
ai (yi). (4.38)

So from the belief viewpoint, one-step cutout approximates the ML gradient by sub-

stituting the beliefs (4.38) for the marginal probabilities.

4.5.4 Shared Unary as an Approximation to Cutout

Shared-unary piecewise can be viewed as an approximation to the cutout method.

A general way of approximating a product of terms is the “summation hack”:
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∏
i

εi =
∏
i

1 + (εi − 1) ≈ 1 +

(∑
i

εi − 1

)
, (4.39)

where the approximation arises from a first-order Taylor expansion around ε = 1.

Applying the summation hack to the one-step cutout beliefs (4.38), we obtain

b
(2)
i (yi) ∝ Ψi(yi,x, θ)

∏
a∈NU(i)

Cam
(2)
ai (yi) (4.40)

≈ Ψi(yi,x, θ)

1 +

 ∑
a∈NU(i)

Cam
(2)
ai (yi)− 1

 , (4.41)

which are the same as the pseudomarginals (4.34) of ZPWU, up to the proportional-

ity constant of pi. So we can view the shared-unary pseudomarginals either as the

pseudomarginals after one BP iteration, or as an approximation to the beliefs after

two iterations. This leads us to expect two sources of error in shared-unary piece-

wise: error may arise either from the summation hack, or because the model has

long-distance interactions that cannot be propagated in two parallel BP iterations.

4.5.5 Simulations

These intuitions can be validated by simulation on a simple network. This data

is generated from a three-node network of binary variables with pairwise factors

Ψa(ya) =

 1 e−s

e−s 1

 (4.42)

and unary factors Ψi(yi) = [1 e−u]. We transform the pairwise factors into a three-

variable exclusive-or factor times a unary factor, so that from the perspective of the

learning algorithm, all the factors are unary. We focus on how the approximations

to logZ and its derivatives change as a function of the model parameters. This

is useful to study because the log likelihood equals logZ plus a linear function of
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Figure 4.3. Comparison of piecewise and shared-unary piecewise approximations as
a function of the equality strength s. Top, approximation to logZ; bottom, approxi-
mation to its derivative.
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Figure 4.4. Approximation to log Z by piecewise and shared-unary piecewise as a
function of the unary strength u. Top, approximation to logZ; bottom, approxima-
tion to its derivative.
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the parameters, so examining logZ alone gives insight into how the approximation

performs for any data set [127].

First, we look at single-dimensional plots of the approximate gradients, in which

all of the unary parameters are tied, and we vary either the unary strength u or

the equality strength s. As we vary the equality strength, for a fixed, strong unary

strength of e−u = 0.2, then shared-unary piecewise provides a much better approxima-

tion to logZ as a function of the equality strength s (Figure 4.3). As s approaches 0,

the pairwise factors drop out, so that both the piecewise approximations are exact. In

both Figures 4.3 and 4.4, we subtract logZ(0) from logZPW. Without that correction,

ZPW is an upper bound but a strong overestimate. Also, in both figures, the plotted

derivative is the negative of the pseudomarginal, because of the parameterization we

use.

When we vary the unary strengths, on the other hand, shared unary has less de-

sirable behavior (Figure 4.4). This figure shows the approximations to logZ and its

derivative for a fixed equality strength e−s = 0.2. Of course, as u approaches 0, the

unary factors drop out, so that shared unary becomes equivalent to standard piece-

wise. Elsewhere, however, we see that shared-unary piecewise is no longer convex,

because of the per-node normalization, and in fact we see a large regime where ZPWU

is increasing while the true Z is decreasing. Consequently, the derivative of ZPWU

crosses zero at several points when the exact objective does not, which is undesirable

in an approximation. In other words, the piecewise pseudomarginal is sometimes

negative.

We can get a more precise sense of when the piecewise approximations break down

by examining their approximation error as a function of the incoming messages from

the rest of the network. To do this, we use a four-node Potts network of the form

above, which is easier to interpret because there are no odd-length cycles. Also, it is

helpful to leave the unary parameters untied, so that the model has five parameters
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[s, u1, u2, u3, u4]. We generate models by sampling uniformly over all parameter values

in the range [−4, 4]. We measure the error in the pseudomarginal of y1 for both

standard and shared-unary piecewise. We plot the error in the pseudomarginal as a

function of the message strengths m21 and m41 of the incoming messages to y1 from

its neighbors y2 and y4. By message strength, we mean the log ratio of the message

value at 0 over the message value at 1.

For standard piecewise (Figure 4.5), we see as expected that the approximation

error is greatest when the incoming messages are both strong and in disagreement

with the local unary parameter. For shared unary, on the other hand, we report the

difference in gradient error between shared-unary and standard piecewise (Figure 4.6).

First, shared unary improves greatly over standard piecewise in the areas where piece-

wise performs worst, that is, when the incoming messages disagree strongly with the

local unary. But shared unary is not always better than standard piecewise, especially

when the messages are weak. This may be surprising because shared-unary performs

an extra iteration of BP. However, the BP view of shared unary suggests two possible

sources of error. First, one BP iteration can actually be worse than zero iterations,

if nearby potentials contradict stronger factors elsewhere in the network. Second,

shared unary may be a bad approximation to the two-iteration BP beliefs because of

the summation hack.

We can isolate these two sources of error. First, to see where one iteration of BP

might actually hurt, we look at the derivative of p(y1), the exact marginal probability

of variable y1, taken with respect to u3, the unary parameter opposite y1 in the graph.

If this derivative has large magnitude, then we expect that the parameter u3 has a

large impact on the marginal p(y1), so that one iteration can make the beliefs worse

if y2 and y4 have an effect in the opposite direction as y3. In Figure 4.7, we show

the error difference between shared-unary and standard piecewise as a function of

|∂p(y1)/∂u3|. As this argument predicts, when this derivative has large magnitude,
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then the information from u3, which neither method considers, is most important, so

that neither method dominates. When this derivative has small magnitude, then the

local information is more important, so shared-unary piecewise dominates.

Second, we can examine the effects of the summation hack by plotting the dif-

ference in gradient error between shared unary and cutout. The summation hack is

accurate near the axes, so if both messages are strong, we expect shared unary to

have high error. In Figure 4.8 it can be seen that shared unary performs worse than

one-step cutout at exactly the places where the summation hack predicts.

An interesting observation here is that the cutout method is itself not always

better than shared-unary piecewise, even though cutout performs an extra iteration

of BP. This happens in cases when u3 has large magnitude, so neither method can

do well. In these cases, it can happen that the summation hack error pushes the

shared-unary marginal in the direction of the correct marginal, so that shared unary

performs better.

In summary, we have seen that in many situtions, shared-unary piecewise provides

a better approximation to logZ and its derivatives than standard piecewise. The

occasions when standard piecewise performs better than shared unary occur when

there is strong influence from outside the pieces, in which case neither piecewise

method is probably advisable. We have also demonstrated in simulation two potential

sources of error in shared-unary piecewise: strong iteractions from outside the piece,

and the summation hack. A potentially serious drawback to shared-unary piecewise,

however, it is not convex in the parameters. Indeed, an important limitation of these

simulations is that we have looked only at error in the gradient, not error in the

optimal parameter settings, so we cannot assess to what extent the loss of convexity

makes it harder to find good parameters.

127



4.6 Related Work

Because the piecewise estimator is such an intuitively appealing method, it has

been used in several scattered places in the literature, for tasks such as informa-

tion extraction [147], collective classification [44], and computer vision [34]. In these

papers, the piecewise method is reported as a successful heuristic for training large

models, but its performance is not compared against other training methods. We are

unaware of previous work systematically studying this procedure in its own right.

As mentioned earlier, the most closely related procedure that has been studied

statistically is pseudolikelihood [8, 9]. The main difference is that piecewise training

does not condition on neighboring nodes, but ignores them altogether during training.

This is depicted schematically by the factor graphs in Figure 4.2. In pseudolikelihood,

each locally-normalized term for a variable or edge in pseudolikelihood includes con-

tributions from a number of factors that connect to the neighbors whose observed

values are taken from labeled training data. All these factors are circled in the top

section of Figure 4.2. In piecewise training, each factor becomes an independently,

locally-normalized term in the objective function.

Also, in statistics there has been work on general families of surrogate likelihoods,

called composite likelihoods, which are sums of marginal or conditional log likelihoods

[63]. Such composite likelihoods are consistent and asymptotically normal under rela-

tively general assumptions. An example of using a composite likelihood on structured

models for natural-language data is Kakade et al. [51]. But these are designed for a

different situation than ours, namely when the joint likelihoods are difficult to com-

pute but marginal likelihoods are easier to work with. An example of this situation is

the multivariate Gaussian. In our context, marginal likelihoods are difficult to com-

pute, so composite likelihoods are not as useful. Piecewise estimation is not a type of

composite likelihood, because in the likelihood of each piece, the contribution of the

rest of the model is ignored, not marginalized out.
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Independently, Choi et al. [18] present a node-splitting technique for upper bounds

during inference, which is closely related to the technique in this chapter used for

learning.

4.7 Conclusion

This chapter has presented piecewise training, an intuitively appealing procedure

that separately trains factor subsets, called pieces, of a loopy graph. We show that

this procedure can be justified as maximizing a loose bound on the log likelihood. On

three real-world language tasks with different model structures, piecewise training

outperforms several versions of pseudolikelihood, a traditional local training method.

On two of the data sets, in fact, piecewise training is more accurate than global

training using belief propagation.

Many properties of piecewise training remain to be explored. Our results indicate

that in some situations piecewise training should replace pseudolikelihood as the local

training method of choice. In particular, the experiments here all used conditional

training, which make local training easier because of the large amount of informa-

tion in the conditioning variables. In the data sets here, the local features, such as

the word identity, provide almost. In generative training, there may be much less

local information, making piecewise training much less effective. On the other hand,

from the exponential family perspective, piecewise training does still match expected

statistics of a subgraph to the empirical distribution, which still seems intuitively

appealing. For this reason, it is hard to give a definitive characterization of when

piecewise training is expected to work well or poorly.

A possible explanation for the performance of piecewise training is that it acts as

a form of additional regularization, in that the objective function disfavors parameter

settings that obtain good joint likelihood by using long-distance effects of weights.

129



For this reason, connections to generalization bound for feature selection, some of

which take into account the amount of computation, may be interesting.
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CHAPTER 5

PIECEWISE PSEUDOLIKELIHOOD

Piecewise training can be an effective training method when the model structure

is intractable. If the variables have large cardinality, however, training can be com-

putationally demanding even when the model structure is tractable. For example,

consider a series of processing steps of a natural-language sentence [33, 125], which

might begin with part-of-speech tagging, continue with more detailed syntactic pro-

cessing, and finish with some kind of semantic analysis, such as relation extraction or

semantic entailment. This series of steps might be modeled as a simple linear chain,

but each variable has an enormous number of outcomes, such as the number of parses

of a sentence. In such cases, even training using forward-backward is infeasible, be-

cause it is quadratic in the variable cardinality. Thus, we desire approximate training

algorithms not only that are sub exponential in the model’s treewidth, but also that

scale well in the variable cardinality.

Pseudolikelihood (PL) [8] is a classical training method that addresses both of

these issues, both because it requires no propagation and also because its running time

is linear in the variable cardinality. Although in some situations pseudolikelihood can

be very effective [90, 134], in other applications, its accuracy can be poor.

An alternative that has been employed occasionally throughout the literature is

to divide the factors in the model into a set of pieces, and train each piece separately,

in its own graphical model. In Chapter 4, I presented this piecewise estimation

method, finding that it performs well when the local features are highly informative,

as can be true in a lexicalized NLP model with thousands of features. As we saw,
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piecewise performs better than pseudolikelihood on certain types of data, sometimes

by a very large amount. So piecewise training can have good accuracy, however,

unlike pseudolikelihood it does not scale well in the variable cardinality.

In this chapter, I introduce and analyze a hybrid method, called piecewise pseu-

dolikelihood (PWPL), that combines the advantages of both approaches. Essentially,

while pseudolikelihood conditions each variable on all of its neighbors, PWPL condi-

tions only on those neighbors within the same piece of the model, for example, that

share the same factor. This is illustrated in Figure 5.2. Remarkably, although PWPL

has the same computational complexity as pseudolikelihood, on real-world NLP data,

its accuracy is significantly better. In other words, in testing accuracy PWPL be-

haves more like piecewise than like pseudolikelihood. The training speed-up of PWPL

can be significant even in linear-chain CRFs, because forward-backward training is

quadratic in the variable cardinality.

The chapter proceeds as follows. In Section 5.2.1, I describe PWPL in terms of

the node-split graph, which was presented previously in Section 4.1.1. This viewpoint

allows us to show that under certain conditions, PWPL converges to the piecewise

solution in the asymptotic limit of infinite data (Section 5.2.2). In addition, it provides

some insight into when PWPL may be expected to do well and to do poorly, an insight

that we verify on synthetic data (Section 5.3.1). Finally, I evaluate PWPL on several

real-world NLP data sets (Section 5.3.2), finding that it performs often comparably

to piecewise training and to maximum likelihood, and on all of our data sets PWPL

has higher accuracy than pseudolikelihood. Furthermore, PWPL can be as much as

ten times faster than batch CRF training.
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Figure 5.1. Example of node splitting. Left is the original model, right is the version
trained by piecewise. In this example, there are no unary factors.

Figure 5.2. Illustration of the difference between piecewise pseudolikelihood
(PWPL) and standard pseudolikelihood. In standard PL, at left, the local term
for a variable ys is conditioned on its entire Markov blanket. In PWPL, at right, each
local term conditions only on the neighbors within a single factor.

5.1 Piecewise Training

5.1.1 Background

In this section, I make a few observations about pseudolikelihood and piecewise

training that will be useful. As in the previous chapters, we are interested in estimat-

ing the parameters of a conditional random field p(y|x) of the form

p(y|x) =
1

Z(x)

A∏
a=1

Ψa(ya,xa), (5.1)

where the factors have the exponential form

Ψa(ya,xa) = exp{
K∑
k=1

θakfa(ya,xa)}, (5.2)
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Recall from Chapter 4 that pseudolikelihood is a classical approximation that simulta-

neously classifies each node given its neighbors in the graph. For a variable s, let N(s)

be the set of all of its neighbors, not including s itself. Then the pseudolikelihood is

defined as

`pl(Λ) =
∑
s

log p(ys|yN(s),x),

where the conditional distributions are

p(ys|yN(s),x) =

∏
a3i Ψa(ys, yN(s),xa)∑

y′s

∏
a3s Ψa(y′s, yN(s),xa)

. (5.3)

where a 3 s means the set of all factors a that depend on the variable s. In other

words, this is a sum of conditional log likelihoods, where for each variable we condition

on the true values of its neighbors in the training data.

It is a well-known result that if the model family includes the true distribution,

then pseudolikelihood converges to the true parameter setting in the limit of infinite

data [41, 48]. One way to see this is that pseudolikelihood is attempting to match

all of model conditional distributions to the data. If it succeeds in matching them

all exactly, then a Gibbs sampler run on the model distribution will have the same

invariant distribution as a Gibbs sampler run on the true data distribution.

In the previous chapter, I also presented piecewise training, based on the intuition

that if each factor Ψ(ya,xa) can on its own accurately predict ya from xa, then

the prediction of the global factor graph will also be accurate. Formally, piecewise

training maximizes the objective function

`PW(Λ) =
∑
a

log
Ψa(ya,xa)∑
y′a

Ψa(y′a,xa)
. (5.4)

The explanation for the name piecewise is that each term in (5.4) corresponds to a

“piece” of the graph, in this case a single factor, and that term would be the exact
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likelihood of the piece if the rest of the graph were omitted. An important observation

is that the denominator of (5.3) sums over assignments to a single variable, whereas

the denominator of (5.4) sums over assignments to an entire factor, which may be

a much larger set. This is why pseudolikelihood can be much more computationally

efficient than piecewise when the variable cardinality is large.

5.2 Piecewise Pseudolikelihood

In this section, I define piecewise pseudolikelihood (Section 5.2.1), and describe its

asymptotic behavior using well-known results about pseudolikelihood (Section 5.2.2).

5.2.1 Definition

The main motivation of piecewise training is computational efficiency, but in fact

piecewise does not always provide a large gain in training time over other approximate

methods. In particular, the time required to evaluate the piecewise likelihood at one

parameter setting is the same as is required to run one iteration of belief propagation

(BP). More precisely, piecewise training uses O(mK) time, where m is the maximum

number of assignments to a single variable ys and K is the size of the largest factor.

Belief propagation also uses O(mK) time per iteration; thus, the only computational

savings over BP is a factor of the number of BP iterations required. In tree-structured

graphs, piecewise training is no more efficient than forward-backward.

To address this problem, we propose piecewise pseudolikelihood. Piecewise pseu-

dolikelihood (PWPL) is defined as:

`pwpl(Θ; x,y) =
∑
a

∑
s∈a

log pLCL(ys|ya\s,x, θa), (5.5)

where (x,y) are an observed data point, the index a ranges over all factors in the

model, the set a\s means all of the variables in the domain of factor a except for s,
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and pLCL is a locally-normalized score similar to a conditional probability and defined

below.

In other words, the piecewise pseudolikelihood is a sum of local conditional log-

probabilities. Each variable s participates as the domain of a conditional once for each

factor that it neighbors. As in piecewise training, the local conditional probabilities

pLCL are not the true probabilities according to the model, but are a quantity computed

locally from a single piece (in this case, a single factor). The local probabilities pLCL

are defined as

pLCL(ys|ya\s,x, θa) =
Ψa(ys,ya\s,xa)∑
y′s

Ψa(y′s,ya\s,xa)
. (5.6)

Then given a data set D = {(x(i),y(i))}, we select the parameter setting that maxi-

mizes

Opwpl(θ;D) =
∑
i

`pwpl(θ; x
(i),y(i))−

∑
a

‖θa‖2

2σ2
, (5.7)

where the second term is a Gaussian prior on the parameters to reduce overfitting.

The piecewise pseudolikelihood is convex as a function of θ, and so its maximum can

be found by standard techniques. In the experiments below, we use limited-memory

BFGS [89].

For simplicity, we have presented PWPL for the case in which each piece contains

exactly one factor. If larger pieces are desired, then simply take the summation over

a in (5.5) to be over pieces rather than over factors, and generalize the definition of

pLCL appropriately.

Compared to standard piecewise, the main advantage of PWPL is that training

requires only O(m) time rather than O(mK). Compared to pseudolikelihood, the

difference is that whereas in pseudolikelihood each local term conditions on the entire

Markov blanket, in PWPL each local term conditions only on a variable’s neighbors

within a single factor. For this reason, the local terms in PWPL are not true con-

ditional distributions according to the model. The difference between PWPL and
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pseudolikelihood is illustrated in Figure 5.2. In the next section, we discuss why in

some situations this can cause PWPL to have better accuracy than pseudolikelihood.

5.2.2 Analysis

PWPL can be readily understood from the node-split viewpoint. In particular,

the piecewise pseudolikelihood is simply the standard pseudolikelihood applied to

the node-split graph. In this section, we use the asymptotic consistency of standard

pseudolikelihood to gain insight into the performance of PWPL.

Let p∗(y) be the true distribution of the data, after the node splitting transforma-

tion has been applied. Both PWPL and standard piecewise cannot distinguish this

distribution from the distribution pNS on the node-split graph that is defined by the

product of marginals

pNS(y) =
∏
a∈G′

p∗(ya), (5.8)

where G′ is the node-split graph, and p∗(ya) is the marginal distribution of the vari-

ables in factor a according to the true distribution. By that we mean that the piece-

wise likelihood of any parameter setting θ when the data distribution is exactly the

true distribution p∗ is equal to the piecewise likelihood of θ when the data distribution

equals the distribution pNS, and similarly for PWPL.

So equivalently, we suppose that we are given an infinite data set drawn from

the distribution pNS. Now, the standard consistency result for pseudolikelihood is

that if the model class contains the generating distribution, then the pseudolikeli-

hood estimate converges asymptotically to the true distribution. In this setting, that

implies the following statement. If the model family defined by G′ contains pNS, then

piecewise pseudolikelihood converges in the limit to the same parameter setting as

standard piecewise.

Because this is an asymptotic statement, it provides no guarantee about how

PWPL will perform on real data. Even so, it has several interesting consequences that
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provide insight into the method. First, it may impact what sort of model is conducive

to PWPL. For example, consider a Potts model with unary factors Ψ(ys) = [1 eθs ]>

for each variable s, and pairwise factors

Ψ(ys, yt) =

eθst 1

1 1.

 , (5.9)

for each edge (s, t), so that the model parameters are {θs} ∪ {θst}. Then the above

condition for PWPL to converge in the infinite data limit will never be satisfied,

because the pairwise piece cannot represent the marginal distribution of its variables.

In this case, PWPL may be a bad choice, or it may be useful to consider pieces that

contain more than one factor. In particular, shared-unary piecewise (see Section 4.5.1)

may be appropriate.

Second, this analysis provides intuition about the differences between piecewise

pseudolikelihood and standard pseudolikelihood. For each variable s with neighbor-

hood N(s), standard pseudolikelihood approximates the model marginal p(yN(s)) over

the neighborhood by the empirical marginal p̃(yN(s)). We expect this approximation

to work well when the model is a good fit, and the data is ample.

In PWPL, we perform the node-splitting transformation on the graph prior to

maximizing the pseudolikelihood. The effect of this is to reduce each variable’s neigh-

borhood size, that is, the cardinality of N(s).

This has two potential advantages. First, because the neighborhood size is small,

PWPL may converge to piecewise faster than pseudolikelihood converges to the exact

solution. Of course, the exact solution should be better than piecewise, so whether

to prefer standard PL or piecewise PL depends on precisely how much faster the con-

vergence is. Second, the node-split model may be able to exactly model the marginal

of its neighborhood in cases where the original graph may not be able to model its

larger neighborhood. Because the neighborhood is smaller, the pseudolikelihood con-
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Figure 5.3. Comparison of piecewise to pseudolikelihood on synthetic data. Pseudo-
likelihood has slightly better accuracy on training instances than piecewise. (Piece-
wise and PWPL perform exactly the same; this is not shown.)

vergence condition may hold in the node-split model when it does not in the original

model. In other words, standard pseudolikelihood requires that the original model is

a good fit to the full distribution. In contrast, we expect piecewise pseudolikelihood

to be a good approximation to piecewise when each individual piece fits the empirical

distribution well. The performance of piecewise pseudolikelihood need not require

the node-split model to represent the distribution across pieces.

Finally, this analysis suggests that we might expect piecewise pseudolikelihood

to perform poorly in two regimes: First, if so much data is available that pseudo-

likelihood has asymptotically converged, then it makes sense to use pseudolikelihood

rather than piecewise pseudolikelihood. Second, if features of the local factors cannot

fit the training data well, then we expect the node-split model to fit the data quite

poorly, and piecewise pseudolikelihood cannot possibly do well.

5.3 Experiments

5.3.1 Synthetic Data

In the previous section, we argued intuitively that PWPL may perform better on

small data sets, and pseudolikelihood on larger ones. In this section we verify this in-
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Figure 5.4. Learning curves for PWPL and pseudolikelihood. For smaller amounts
of training data PWPL performs better than pseudolikelihood, but for larger data
sets, the situation is reversed.

tuition in experiments on synthetic data. The general setup is replicated from Lafferty

et al. We generate data from a second-order HMM with transition probabilities

pα(yt|yt−1, yt−2) = αp2(yt|yt−1, yt−2) + (1− α)p1(yt|yt−1) (5.10)

and emission probabilities

pα(xt|yt, xt−1) = αp2(xt|yt, xt−1) + (1− α)p1(xt|yt). (5.11)

Thus, for α = 0, the generating distribution pα is a first-order HMM, and for α = 1, it

is an autoregressive second-order HMM. We compare different approximate methods

for training a first-order CRF. Therefore higher values of α make the learning problem

more difficult, because the model family does not contain second-order dependencies.

We use five states and 26 possible observation values. For each setting of α, we

sample 25 different generating distributions. From each generating distribution we

sample 1,000 training instances of length 25, and 1,000 testing instances. We use

α ∈ {0, 0.1, 0.25, 0.5, 0.75, 1.0}, for 150 synthetic generating models in all.
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ML PL PW PWPL

POS

Accuracy 94.4 94.4 94.2 94.4

Time (s) 33846 6705 23537 3911

Chunking

Chunk F1 91.4 90.3 91.7 91.4

Time (s) 24288 1534 5708 766

Named-entity

Chunk F1 90.5 85.1 90.5 90.3

Time (s) 52396 8651 6311 4780

Table 5.1. Comparison of piecewise pseudolikelihood to standard piecewise and to
pseudolikelihood on real-world NLP tasks. Piecewise pseudolikelihood is in all cases
comparable to piecewise, and on two of the data sets superior to pseudolikelihood.

First, we find that piecewise pseudolikelihood performs almost identically to stan-

dard piecewise training. Averaged over the 150 data sets, the mean difference in

testing error between piecewise pseudolikelihood and piecewise is 0.002, and the cor-

relation is 0.999.

Second, we compare piecewise to traditional pseudolikelihood. On this data, pseu-

dolikelihood performs slightly better overall, but the difference is not statistically

BP PL PW PWPL

Start-Time 96.5 82.2 97.1 94.1

End-Time 95.9 73.4 96.5 90.4

Location 85.8 73.0 88.1 85.3

Speaker 74.5 27.9 72.7 65.0

Table 5.2. F1 performance of PWPL, piecewise, and pseudolikelihood on informa-
tion extraction from seminar announcements. Both standard piecewise and piecewise
pseudolikelihood outperform pseudolikelihood.
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significant (paired t-test; p > 0.1). However, when we examine the accuracy as a

function of training set size (Figure 5.4), we notice an interesting two-regime behav-

ior. Both PWPL and pseudolikelihood seem to be converging to a limit, and the

eventual pseudolikelihood limit is higher than PWPL, but PWPL converges to its

limit faster. This is exactly the behavior intuitively predicted by the argument in

Section 5.2.2: that PWPL can converge to the piecewise solution in less training data

than pseudolikelihood to its (potentially better) solution.

Of course, the training set sizes considered in Figure 5.4 are fairly small, but this

is exactly the case we are interested in, because on natural language tasks, even when

hundreds of thousands of words of labeled data are available, this is still a small

amount of data compared to the number of useful features.

5.3.2 Real-World Data

Now, we evaluate piecewise pseudolikelihood on four real-world NLP tasks: part-

of-speech tagging, named-entity recognition, noun-phrase chunking, and information

extraction.

For part-of-speech tagging (POS), we report results on the WSJ Penn Treebank

data set. Results are averaged over five different random subsets of 1911 sentences,

sampled from Sections 0–18 of the Treebank. Results are reported from the standard

development set of Sections 19–21 of the Treebank. We use a first-order linear chain

CRF. There are 45 part-of-speech labels.

For the task of noun-phrase chunking (chunking), we use a loopy model, the fac-

torial CRF introduced in Section 3.1. As in that section, we consider here the task

of jointly predicting part-of-speech tags and segmenting noun phrases in newswire

text. Thus, the FCRF we use has a two-level grid structure. We report results here

on subsets of 223 training sentences, and the standard test set of 2012 sentences.

Results are averaged over 5 different random subsets. There are 45 different POS
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labels, and the three NP labels. We use the same features and experimental setup as

previous work [119]. We report joint accuracy on (NP, POS) pairs; other evaluation

metrics show similar trends.

In named-entity recognition, the task is to find proper nouns in text. We use

the CoNLL 2003 data set, consisting of 14,987 newswire sentences annotated with

names of people, organizations, locations, and miscellaneous entities. We test on the

standard development set of 3,466 sentences. Evaluation is done using precision and

recall on the extracted chunks, and we report F1 = 2PR/P+R. We use a linear-chain

CRF, whose features are described in Table 4.4.

Finally, for the task of information extraction, we consider a model with many

irregular loops, which is the skip chain model introduced in Section 3.2. As i that

section, the task is to extract information about seminars from email announcements

from a standard data set [35]. We use the same features and test/training split as

the previous work. The data is labeled with four fields—Start-Time, End-Time,

Location, and Speaker—and we report token-level F1 on each field separately.

For all the data sets, we compare to pseudolikelihood, piecewise training, and con-

ditional maximum likelihood with belief propagation. All of these objective functions

are maximized using limited-memory BFGS. We use a Gaussian prior with variance

σ2 = 10.

Stochastic gradient techniques, such as stochastic meta-descent [110], would be

likely to converge faster than the baselines we report here, because all our current

results use batch optimization. However, stochastic gradient can be used with PWPL

just as with standard maximum likelihood. Thus, although the training time of our

baseline could likely be improved considerably, the same is true of our new approach,

so that our comparison is fair.
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5.3.3 Results

For the first three tasks—part-of-speech tagging, chunking, and NER—piecewise

pseudolikelihood and standard piecewise training have equivalent accuracy both to

each other and to maximum likelihood (Table 5.1). Despite this, piecewise pseudo-

likelihood is much more efficient than standard piecewise (Table 5.1). On the named-

entity data, which has the fewest labels, PWPL uses 75% of the time of standard

piecewise, a modest improvement. On the data sets with more labels, the difference

is more dramatic: on the POS data, PWPL uses 16% of the time of piecewise and on

the chunking data, PWPL needs only 13%. Similarly, PWPL is also between is 5 to

10 times faster than maximum likelihood.

The training times of the baseline methods may appear relatively modest. If so,

this is because for both the chunking and POS data sets, we use relatively small

subsets of the full training data, to make running this comparison more convenient.

This makes the absolute difference in training time even more meaningful than it may

appear at first. Also, it may appear from Table 5.1 that PWPL is faster than standard

pseudolikelihood, but the apparent difference is due to low-level inefficiencies in our

implementation. In fact the two algorithms have similar complexity.

On the skip chain data (Table 5.2), standard piecewise performs worse than ex-

act training using BP, and piecewise pseudolikelihood performs worse than standard

piecewise. Both piecewise methods, however, perform better than pseudolikelihood.

As predicted in Section 5.2.2, pseudolikelihood is indeed a better approximation

on the node-split graph. In Table 5.1, PL performs much worse than ML, but PWPL

performs only slightly worse than PW. In Table 5.2, the difference between PWPL

and PW is larger, but still less than the difference between PL and ML.
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5.4 Discussion and Related Work

Piecewise training and piecewise pseudolikelihood can both be considered types of

local training methods, that avoid propagation throughout the graph. Such training

methods have recently been the subject of much interest [1, 94, 134]. Of course, the

local training method most closely connected to the current work is pseudolikelihood

itself. We are unaware of previous variants of pseudolikelihood that condition on less

than the full Markov blanket.

An interesting connection exists between piecewise pseudolikelihood and maxi-

mum entropy Markov models (MEMMs) [72, 100]. In a linear chain with variables

y1 . . . yT , we can rewrite the piecewise pseudolikelihood as

`pwpl(θ) =
T∑
t=1

log pLCL(yt|yt−1,x)pLCL(yt−1|yt,x). (5.12)

The first part of (5.12) is exactly the likelihood for an MEMM, and the second part

is the likelihood of a backward MEMM. Interestingly, MEMMs crucially depend on

normalizing the factors at both training and test time. To include local normalization

at training time but not test time performs very poorly. But by adding the backward

terms, in PWPL we are able to drop normalization at test time, and therefore PWPL

does not suffer from label bias.

The current work also has an interesting connection to search-based learning meth-

ods [28]. Such methods learn a model to predict the next state of a local search

procedure from a current state. Typically, training is viewed as classification, where

the correct next states are positive examples, and alternative next states are negative

examples. One view of the current work is that it incorporates backward training

examples, that attempt to predict the previous search state given the current state.

Finally, stochastic gradient methods, which make gradient steps based on sub-

sets of the data, have recently been shown to converge significantly faster for CRF
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training than batch methods, which evaluate the gradient of the entire data set be-

fore updating the parameters [136]. Stochastic gradient methods are currently the

method of choice for training linear-chain CRFs, especially when the data set is large

and redundant. However, as mentioned above, stochastic gradient methods can also

be applied to piecewise pseudolikelihood. Also, in some cases, such as in relational

learning problems, the data are not iid, and the model includes explicit dependencies

between the training instances. For such a model, it is unclear how to apply stochas-

tic gradient, but piecewise pseudolikelihood may still be useful. Finally, stochastic

gradient methods do not address cases in which the variables have large cardinality,

or when the graphical structure of a single training instance is intractable.

5.5 Summary

This chapter has presented piecewise pseudolikelihood (PWPL), a local training

method that is especially attractive when the variables in the model have large cardi-

nality. Because PWPL conditions on fewer variables, it can have better accuracy than

standard pseudolikelihood, and is dramatically more efficient than standard piecewise,

requiring as little as 13% of the training time.
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CHAPTER 6

BELIEF PROPAGATION

Previously we have seen that many local training methods can be interpreted

as approximate training using BP with early stopping. This raises the question of

whether early stopping after larger numbers of iterations is generally useful. But we

have also seen that early stopping interacts poorly with second-order optimization

algorithms (Section 3.1.6.2), which are particularly useful when there are a large

number of parameters. In this chapter, I try to make early stopping more useful by

exploring the schedules used to prioritize messages. The hope is that early stopping

may be most effective if we can get as much work as possible out of the messages that

we have time to send.

Many popular approximate inference methods, such as belief propagation, its gen-

eralizations EP [77] and GBP [148], and structured mean-field methods [50], consist

of a set of equations which are iterated to find a fixed point. The fixed-point updates

are not usually guaranteed to converge. The schedule for propagating the updates can

make a crucial difference both to how long the updates take to converge, and even

whether they converge at all. Recently, dynamic schedules—in which the message

values during inference are used to determine which update to perform next—have

been shown to converge much faster on hard networks than static schedules [30]. In

this chapter, I explore dynamic schedules both for inference and for learning.

First, I propose a new dynamic schedule the inference problem, which I call resid-

ual BP with lookahead zero (RBP0L) (Section 6.1). The idea behind the new schedule

is to compute each message’s priority cheaply, by the sum of how much its antecedents
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have changed. It can be shown, using arguments of Ihler et al. [49], that this priority

is an upper bound on how much the message would change if the update were to

be computed. On a natural-language data set, our schedule is more computationally

efficient than the schedule presented previously by Elidan et al. [30].

Second, I present a first step toward the goal of using dynamic schedules to perform

inference and learning in the same system of equations (Section 6.2). Combining

both problems into a single system potentially allows for very flexible scheduling.

The idea is that certain areas of parameter space should be easier for approximate

inference than others, so we should run BP for longer in areas that are more difficult.

Furthermore, inference in certain parts of the model may converge faster than others,

so we should focus parameter updates on the parts that have not yet converged. On

synthetic data, this yields a significant decrease in training time.

6.1 Dynamic Schedules for Inference

In this section, I introduce an efficient dynamic schedule for BP message updates.

Previously, Elidan et al. proposed a schedule that propagates the message whose value

has changed the most. I call this schedule residual BP with lookahead one (RBP1L).

Although this schedule was shown to be often more effective than static schedules,

it has the difficulty that it determines a message’s priority by actually computing it,

which means that many message updates are “wasted”, that is, they are computed

solely for the purpose of computing their priority, and are never actually performed.

A significant fraction of messages computed by RBP1L are wasted in this way. The

main idea is that rather than computing the residual of each pending message update,

it is far more efficient to approximate it. Recent work [49] has examined how a message

error can be estimated as a function of its incoming errors. In our situation, the error

arises because the incoming messages have been recomputed. The arguments from

Ihler et al. apply also to the message residual, which leads to effective method for
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estimating the residual of a message, and to a dynamic schedule that is dramatically

more efficient than RBP1L.

In this section, I first describe how the message residual can be upper-bounded by

the residuals of its incoming messages (Section 6.1.2). I also describe a method for es-

timating the message residual when the factors themselves change (for example, from

parameter updates), which leads to an intuitive method for initializing the residual

estimates. Then I introduce a novel message schedule, called residual BP with looka-

head zero (RBP0L) (Section 6.1.3). On several synthetic and real-world data sets, we

show that RBP0L is as much as five times faster than RBP1L but still finds the same

solution (Section 6.1.4). Finally, I examine how to what extent the distance that a

message changes in a single update predicts its distance to its final converged value

(Section 6.1.4.3). I measure distance in several different ways, including the dynamic

range of the error and the Bethe energy. Surprisingly, the difference in Bethe energy

has almost no predictive value for whether a message update is nearing convergence.

6.1.1 Background

In this section, I focus on generative models, so that we have a distribution p(y)

factorize according to an undirected factor graph G with factors {Ψa(ya)}Aa=1. This

choice is simply to lighten notation, and the inference algorithms of this section apply

readily to conditional models as well. I use the indices a and b to denote factors of G,

and the indices s and t to denote variables. By {s ∈ a} I mean the set of all variables

s in the domain of the factor Ψa, and conversely by {b 3 s}, I mean the set of all

factors Ψb that have variable s in their domain.

Recall from Section 2.1.4 that belief propagation updates are given by

m
(k+1)
ai (ys)← κ

∑
ya\ys

Ψa(ya)
∏
{t∈a}\i

m
(k)
ja (yt)

m
(k+1)
ia (ys)← κ

∏
{b3t}\a

m
(k)
bi (ys),

(6.1)
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which are iterated until a fixed point is reached. In the above, κ is a normalization

constant to ensure the message sums to 1. The initial messages m(0) are set to some

arbitrary value, typically a uniform distribution.

These message updates can be written in a generic fashion as

m
(k+1)
cd (ycd)← κ

∑
yc\ycd

Ψa(yc)
∏

{b∈N(c)}\d

m
(k)
bc (yc), (6.2)

where c and d may be either factors or variables, as long as they are neighbors, N(c)

means the set of neighbors of c, and Ψa(yc) is understood to be the identity if c is a

variable. This notation abstracts over whether a message is being sent from a factor

or from a variable, which is convenient for describing message schedules.

In general, these updates may have multiple fixed points, and they are not guar-

anteed to converge. Convergent methods for optimizing the Bethe energy have been

developed [145, 151], but they are not used in practice both because they tend to be

slower than iterating the messages (6.1), and because when the BP updates do not

converge, it has been observed that the Bethe approximation is bad anyway.

Now we describe in more detail how the iterations are actually performed in a BP

implementation. This level of detail will prove useful in the next section for under-

standing the behavior of dynamic BP schedules. A vector m = {mcd} is maintained

of all the messages, which is initialized to uniform. Then until the messages are

converged, we iterate: A message mcd is selected according to the message update

schedule. The new value m′cd is computed from its dependent messages in m, accord-

ing to (6.1). Finally, the old message (c, d) in m is replaced with the newly computed

value m′cd.

The important part of this description is the distinction between when a mes-

sage update is computed and when it is performed. When a message is computed,

this means that its new value is calculated according to (6.1). When a message is

performed, this means that the current message vector m is updated with the new
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value. Synchronous BP implementations compute all of the updates first, and then

perform them all at once. Asynchronous BP implementations almost always perform

an update as soon as it is computed, but it is possible to compute an update solely

in order to determine its priority, and not perform the update until later. As we

describe below, this is exactly the technique used by the Elidan et al. [30] schedule.

6.1.2 Estimating Message Residuals

In this section, I describe how to compute an upper bound on the error of a

message, which will be used as a priority for scheduling messages. I define the error

ecd(ycd) of a message m
(k+1)
cd (ycd) as its multiplicative distance from its previous value

m
(k)
cd (ycd) , so that

m
(k+1)
cd (ycd) = ecd(ycd)m

(k)
cd (ycd). (6.3)

I define the residual of a message m
(k+1)
cd (ycd) as the worst error over all assignments,

that is,

r(m
(k+1)
cd ) = max

ycd

|log ecd(ycd)| = max
ycd

∣∣∣∣∣log
m

(k+1)
cd (ycd)

m
(k)
cd (ycd)

∣∣∣∣∣ . (6.4)

This corresponds to using the infinity norm to measure the distance between log

message vectors, that is, ‖ logm
(k+1)
cd − logm

(k)
cd ‖∞.

An alternative error measure is the dynamic range of the error, which has been

studied by Ihler et al. [49]. This is

d(m
(k+1)
cd ) = max

ycd,y
′
cd

log
ecd(ycd)

ecd(y′cd)
(6.5)

Later we compare the residual and the dynamic error range as priority functions for

message scheduling.

In the rest of this section, we show how to upper-bound the message errors in two

different situations: when the values of a message’s dependents change, and when the

factors of the model change.
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First, suppose that we have available a previously-computed message value for

m
(k)
cd (yd), so that

m
(k)
cd (yd) = κ

∑
ycd

Ψc(yc)
∏

{b∈N(c)}\d

m
(k)
bc (yc), (6.6)

and that now new messages {m(k+1)
bc } are available for the dependents. We wish

to upper bound the residual r(m
(k+1)
cd ) without actually repeating the update (6.6).

Then the residual can be upper-bounded simply by the following:

r(m
(k+1)
cd ) ≤

∑
{b∈N(c)}

r(m
(k+1)
bc ). (6.7)

Proof. We show that the residual is both subadditive and contracts under the mes-

sage update, following [49]. To show subadditivity, define the message product

M
(k+1)
bc (yc) =

∏
{b∈N(c)}\dm

(k+1)
bc (yc), and define M

(k)
bc similarly. Also, define the resid-

ual r(M
(k+1)
bc ) as

r(M
(k+1)
bc ) = max

yc

∣∣∣∣∣log
M

(k+1)
bc (yc)

M
(k)
bc (yc)

∣∣∣∣∣ (6.8)

Then we have

r(M
(k+1)
bc ) = max

yc

∣∣∣∣∣∑
b

log
m

(k+1)
bc (yc)

m
(k)
bc (yc)

∣∣∣∣∣
≤
∑
b

max
yc

∣∣∣∣∣log
m

(k+1)
bc (yc)

m
(k)
bc (yc)

∣∣∣∣∣ =
∑
b

r(m
(k+1)
bc ),

which follows from the subadditivity of absolute value, and an increase in the degrees

of freedom of the maximization.

To show contraction under the message update, we apply the fact that

f1 + f2

g1 + g2

≤ max

{
f1

g1

,
f2

g2

}
. (6.9)
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This directly yields

r(m
(k+1)
cd ) = max

ycd

∣∣∣∣∣log

∑
yc\ycd

Ψc(yc)M
(k+1)
bc∑

yc\ycd
Ψc(yc)M

(k)
bc

∣∣∣∣∣ (6.10)

≤ max
ycd

∣∣∣∣∣log max
yc\ycd

Ψc(yc)M
(k+1)
bc

Ψc(yc)M
(k)
bc

∣∣∣∣∣ (6.11)

≤ max
ycd

max
yc\ycd

∣∣∣∣∣log
M

(k+1)
bc (yc)

M
(k)
bc (yc)

∣∣∣∣∣ (6.12)

= r(M
(k+1)
bc ). (6.13)

Now consider the second situation, when a factor Ψa changes. Define ea to be the

multiplicative error in the factor, so that

Ψ(k+1)
a (ya) = ea(ya)Ψ

(k)
a (ya). (6.14)

Suppose we have already computed a message m
(k)
cd , so that in the current message

vector

m
(k)
cd (yd) =

∑
ycd

t(k)
c (yc)

∏
{b∈N(c)}\d

m
(k)
bc (yc), (6.15)

and as before we wish to upper bound r(m
(k+1)
cd ). Then substitution into (6.4) yields

r(m
(k+1)
cd ) ≤ max

ya

Ψ
(k+1)
a (ya)

Ψ
(k)
a (ya)

. (6.16)

6.1.3 Dynamic BP Schedules

In this section, I describe the previously proposed schedule (RBP0L) and our new

schedule (RBP1L).
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Algorithm 6.2 RBP1L [30]

function Rbp1l ()

1: m← uniform message array
2: q ← InitialPq()
3: repeat
4: mbc ← DeQueue(q)
5: m|bc ← mbc {Perform update.}
6: for all d in {d ∈ N(c)}\b do
7: Compute update mcd

8: Remove any pending update m
(k)
cd from q

9: Add mcd to q with priority r(mcd)
10: end for
11: until messages converged

function InitialPq ()

1: q ← empty priority queue
2: for all messages (c, d) do {Initialize q}
3: Compute update mcd

4: Add mcd to q with priority r(mcd)
5: end for
6: return q

6.1.3.1 Residual BP with Lookahead (RBP1L)

Elidan et al. [30] call their algorithm residual belief propagation, but in the next

section we introduce a different BP schedule that also depends on the message resid-

ual. Therefore, to avoid confusion we refer to the Elidan et al. algorithm by the more

specific name of residual BP with lookahead one (RBP1L).

The basic idea in RBP1L (Algorithm 6.2) is that whenever a message mcd is

pending for an update, the message is computed and placed on a priority queue to

be performed. The priority of the message is the distance between its current value

and its newly-computed value: the exact distance measure is not specified by Elidan

et al., although they assume that it is based on a norm ‖mcd − m
(k)
cd ‖ between the

difference in message values. We use the residual (6.4) between log message values.

The problem with this schedule can be seen in Lines 7–9 of Algorithm 6.2. When

an update mbc is performed, each of its dependents mcd is recomputed and placed in
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Algorithm 6.3 RBP0L

function Rbp0l ()

1: m← uniform message array
2: T ← total residuals; initialized to 0
3: q ← InitialPq()
4: repeat
5: mbc ← DeQueue(q)
6: Compute update mbc and residual r = r(mbc)
7: m|bc ← mbc {Perform update.}
8: For all ab, do T (ab, bc)← 0
9: For all cd, do T (bc, cd)← T (bc, cd) + r

10: for all d in {d ∈ N(c)}\b do
11: v ←

∑
a T (ac, cd)

12: Remove any pending update (c, d) from q
13: Add mcd to q with priority v
14: end for
15: until messages converged

function InitialPq ()

1: q ← empty priority queue
2: for all messages (c, d) do {Initialize q}
3: Compute update mcd

4: v ← maxyc |Yc|
∣∣log Ψc(yc)

∣∣
5: Add mcd to q with priority v
6: end for
7: return q

the queue. If a previous update m
(k)
cd was already pending in the queue, then that

message is discarded. I refer to this as a “wasted” update. In Section 6.1.4, we see

that this is a relatively common occurrence in RBP1L, so preventing this can yield

significant gains in convergence speed.

6.1.3.2 Avoiding Lookahead (RBP0L)

In this section we present our dynamic schedule, residual BP with lookahead zero

(RBP0L). In Section 6.1.2 we saw that a residual can be upper-bounded by its sum

of incoming residuals. The idea behind RBP0L is to use that upper bound as the

message’s priority, so that an update is never computed unless it will actually be

performed. The full algorithm is given in Algorithm 6.3.
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There are three fine points here. The first question is how to update the residual

estimate when a message mbc(yc) is updated twice before one of its dependents mcd(yd)

is updated even once. In the most general case, each dependent may have actually

seen a different version of mbc when it was last updated. Naively applying the bound

(6.7) would suggest that we retain the version of mbc as it was when each of its

dependents last saw it. But this becomes somewhat expensive in terms of memory.

Instead, for each pair of messages (b, c) and (c, d) we maintain a total residual T (bc, cd)

of how much the message mbc has changed since mcd was last updated. Estimates

of the priority of mcd are always computed using the total residual, rather than the

single-update residual. (This preserves the upper-bound property of the residual

estimates.)

The second question is how to initialize the residual estimates. Recall that the

messages m are initialized to uniform. Imagine that those initial messages were

obtained by starting with a factor graph in which all factors Ψa are uniform, running

BP to convergence, and then modifying the factors to match those in the actual graph.

From this viewpoint, the argument in Section 6.1.2 shows that an upper bound on

the residual from uniform messages is

r(mcd) ≤ max
yc

∣∣∣∣log
Ψc(yc)

uc(yc)

∣∣∣∣ , (6.17)

where uc is a normalized uniform factor over the variables in yc. Therefore, we use

this upper bound as the initial priority of each update.

Finally, we need a way to approximate the residuals if damping is used. The

important point here is that when a message mbc is sent with damping, even after

the update is performed, the residual mbc is nonzero, because the full update has not

been taken. To handle this, whenever a damped message mcd is sent, the residual

r(mbc) is computed exactly and mbc is added to the queue with that priority. (For

simplicity, this is not shown in Algorithm 6.3.)
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6.1.3.3 Application to Non-inference Domains

RBP1L has the advantage of being more general: it can readily be applied to any

set of fixed-point equations, potentially ones that are very different than those used

in approximate inference. On the other hand, RBP0L appears to be more specific

to BP, because the residual bounds assume that BP updates are being used. For

similar algorithms, such as max-product BP and GBP, it is likely that the same

scheme would be effective. For a completely different set of fixed-point equations,

applying RBP0L would require both designing a new method for approximating the

update residuals, and designing an efficient way for initializing the residual updates.

That said, our residual estimation procedure, which simply sums up the antecedent

residuals, is fairly generic, and thus likely to perform well in a variety of domains.

6.1.4 Experiments

In this section, we compare the convergence speed of RBP0L and RBP1L on both

synthetic and real-world graphs.

6.1.4.1 Synthetic Data

We randomly generate N×N grids of binary variables with pairwise Potts factors.

Each pairwise factor has the form

Ψij(ys, yt) =

 1 e−αij

e−αij 1

 , (6.18)

where the equality strength α is sampled uniformly from [−C,C]. Higher values of C

make inference more difficult. The unary factors have the form Ψs(ys) = [1 e−us ],

where us is sampled uniformly from [−C,C]. We generate 50 distributions for C = 5.

For smaller values of C, inference becomes so easy that all schedules performed equally

well. For larger values of C, the same trend holds, but the the convergence rates are
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Figure 6.1. Convergence of RBP0L and RBP1L on synthetic 10 × 10 grids with
C = 5. The x-axis is number of messages computed. RBP0L converges faster.

much lower. We use the grid size N = 10 so that exact inference is still feasible. We

measure running time by the number of message updates computed. This measure

closely matches the CPU time. Both algorithms are considered to have converged

when no pending update has a residual of greater than 10−3. The algorithms are

considered to have diverged if they have not converged after the equivalent of 1000

complete sweeps of the graph.

The rate of convergence of the different schedules are shown in Figure 6.1. We see

that RBP0L converges much more rapidly than RBP1L, although both eventually

converge on the same percentage of networks.

Figure 6.2 shows the number of messages required for convergence for each sampled

model. Each integer on the x-axis represents a different randomly-generated model,

sorted by the number of messages required by RBP1L. Thus, the model at x-index

0 is the easiest model for RBP1L, and so on. Each curve is the number of messages
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Messages sent Accuracy

TRP 3 079 570 97.6

RBP0L 839 250 97.4

RBP1L 2 685 702 97.3

Table 6.1. Performance of BP schedules on skip-chain test data.

required, as a function of this rank. The horizontal line is the number-of-messages

cutoff, so points that exceed that line represent models for which BP did not converge.

The y-axis is logarithmic.

RBP0L computes on average half as many messages as RBP1L. RBP0L uses

fewer messages than RBP1L in 46 of the 50 sampled models. In three of the sampled

models, RBP1L converges but RBP0L does not, which appear in Figure 6.2 as the

peaks where the RBP0L curve is the only one that touches the horizontal line. In

three other models, RBP0L converges but RBP1L does not, which appear as the

valleys where RBP0L does not touch the horizontal line, but the other curves do.

The dashed curve in the figure shows the number of updates actually performed by

RBP1L. On average, 38% of the updates computed by RBP1L are never performed.

Surprisingly, RBP0L performs fewer updates than RBP1L performs; that is, it is

more efficient even if wasted updates are not counted against RBP1L. This may be a

beneficial effect of our choice of initial residual estimates.

Finally, we measure the accuracy of the marginals for RBP0L and RBP1L. For

both schedules, we measure the average per-variable KL from the exact distribution

to the BP belief. When both schedules converge, the average per-variable KL is

nearly identical: the mean absolute difference, averaged over the 50 random models,

is 0.0038.
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6.1.4.2 Natural-Language Data

Finally, we consider a model with many irregular loops, which is the skip chain

conditional random field introduced in Section 3.2. This model incorporates certain

long-distance dependencies between word labels into a linear-chain model for infor-

mation extraction. The resulting networks contain many loops of varying sizes, and

exact inference using a generic junction-tree solver is intractable. We evaluate on

the seminars data set described in that section. The emails on average contain 273.1

tokens, but the maximum is 3062 tokens. The messages have an average of 23.5

skip edges, but the maximum is 2260, indicating that some networks are connected

densely.

We generate networks as follows. Using ten-fold cross-validation with a 50/50

train/test split, we train a skip-chain CRF using TRP until the model parameters

converge. Then we evaluate the RBP0L, RBP1L, and TRP on the test data, mea-

suring the number of messages sent, the running time, and the accuracy on the test

data. As in the last section, RBP0L and RBP1L are considered to have converged

if no pending update has a residual of more than 10−3. TRP is considered to have

converged if no update performed on the previous iteration resulted in a residual of

greater than 10−3. In all cases, the trained model parameters are exactly the same;

the inference algorithms are varied only at test time, not at training time.

Table 6.1 shows the performance of each of the message schedules, averaged over

the 10 folds. RBP0L uses one-third of the messages as RBP1L, and one-fifth of the

CPU time, but has essentially the same accuracy. Also, RBL0L uses 27% of the

messages used by TRP.

In our implementation, the CPU time required per message update is much higher

for the RBP schedules than for TRP. The total running time for RBP0L is 66s,

compared to 110s for TRP and 321s for RBP1L. This is partially because of the

overhead in maintaining the priority queues and residual estimates, but also this
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Figure 6.3. Comparison of error metrics in predicting the distance to convergence.
(See text for explanation.)

is because our TRP implementation is a highly optimized one that we have used in

much previous work, whereas our RBP implementations have more room for low-level

optimization.

6.1.4.3 Error Estimates

The message residual is an intuitive error measure to use for scheduling, but

there are many others that are conceivable. In this section, I compare different error

measures to evaluate how reliable they are at predicting the next message to send.

Ideally, we would evaluate a priority function for messages by whether higher priority

messages actually reduces the computation time required for convergence. But it
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is extremely difficult to compute this, so we instead measure the distance to the

converged message values, as follows.

We generate a synthetic grid as in Section 6.1.4.1. (The graphs here are from

a single sampled model, but different samples result in qualitatively similar results.)

Then, we run RBP0L on the grid to convergence, yielding a set of converged messages

m∗. Finally, we run RBP0L again on the same grid, without making use of m∗. After

each message update of RBP0L m
(k)
cd 7→ m

(k+1)
cd , we measure:

a. The residual of the errors e(m
(k)
cd ,m

(k+1)
cd ), e(m

(k)
cd ,m

∗
cd), and e(m

(k+1)
cd ,m∗cd)

b. The dynamic range of the same errors

c. The KL divergences KL(m
(k)
cd ‖m

(k+1)
cd ), KL(m

(k)
cd ‖m∗cd), and KL(m

(k+1)
cd ‖m∗cd);

d. The change in Bethe energy logZBP(m(k+1))− logZBP(m(k)).

Thus we can measure how well each of the error metrics predicts the distance to

convergence r(e(m
(k+1)
cd ,m∗cd))−r(e(m

(k)
cd ,m

∗
cd)). This is shown in Figure 6.3. Each plot

in that figure shows a different distance measure between messages: from top left, they

are message residual, error dynamic range, KL divergence, and difference in Bethe

energy. Each point in the figures represents a single message update. In all figures,

the x-axis shows the distance between the message m
(k)
cd at the previous iteration and

the value m
(k+1)
cd at the current iteration. The y-axis shows the change in distance

to the converged messages, that is, how much closer the update at k + 1 brought

the message to its converged value. We measure this as the difference between the

residuals e(m
(k+1)
cd ,m∗cd) and e(m

(k)
cd ,m

∗
cd). Negative values of this measure are better,

because they mean that the distance to the converged messages has decreased due to

the update. An ideal graph would be a line with negative slope.

Both the message residual and the dynamic error range display a clear upper-

bounding property on the absolute value. Also, the points are somewhat clustered
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along the diagonal, indicating some kind of a linear relationship between the single-

message distance and the distance to convergence. The single-message distance does

not seem to do well, however, at predicting in which direction the message will change,

that is, closer or farther from its converged value. Qualitatively, the residual and the

error range seem to perform similarly at predicting the distance to the converged

messages, but in preliminary experiments, using the error range in a one-lookahead

schedule seemed to converge slightly slower than using the residual.

The message KL also seems to do a poor job of predicting the distance to the

converged message. More surprisingly, the difference in Bethe energy is almost com-

pletely uninformative about the distance to converged messages. This suggests an

intriguing explanation of the slow converge of gradient methods for optimizing the

Bethe energy: perhaps the objective function itself is simply not good at measuring

what we care about. It is possible that the Bethe approximation may be accurate

at convergence but still not be accurate outside of the constraint set, that is, when

the messages are not locally consistent. This is precisely the situation that occurs

during message scheduling. For this reason, it may be more revealing to look at the

Lagrangian of the Bethe energy rather than the objective function itself.

6.2 Dynamic Schedules for Inference and Learning

In this section, I describe dynamic schedules for the combined inference and learn-

ing problem. Learning algorithms for structured models—such as maximum likeli-

hood, max-margin methods [25, 129], and search-based approaches [28]—all require

inference across a set of labeled training examples, which is then repeated for many

settings of the model parameters. This repeated inference is intractable for general

models and can be expensive even for tractable models when the training set is large.

Most practical methods for learning structured models can be abstractly described

as follows. The object is to optimize some loss function `(θ) with respect to the model
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parameters θ. The parameters are updated iteratively, so that at iteration t, we take

the current parameter setting θ(t) and based on the training data, compute an update

direction ∆θ, and set θ(t+1) ← θ(t) + α∆θ, where α is some step size. For example,

in maximum likelihood training, ` is the likelihood, and ∆θ the likelihood gradient

with respect to θ. Often, computing ∆θ will be intractable in general, so some

approximation is used, such as a variational approximation for the likelihood, or a

best-first search for a max-margin method.

This leads to two observations. First, not only is the parameter estimation al-

gorithm iterative, but often the inference algorithm is iterative as well. Iterative

inference algorithms include variational methods such as mean field and belief propa-

gation, and search algorithms such as simulated annealing. The second observation is

that some areas of the model may be more difficult than others for training or infer-

ence. If a certain area of the model is easy to train, we could save time by “locking”

its parameters and focusing computational effort on the more difficult areas of the

model.

In this section, we exploit both of these observations by defining a single set of

fixed-point updates that integrate inference and learning. We focus on the case of

training loopy Markov random fields using belief propagation (BP). We view the BP

message updates and the likelihood gradient updates as a single set of fixed point

equations, which we are free to iterate according to any schedule. Ordinarily, these

are scheduled by running the belief equations to convergence, using those beliefs

to compute an approximate gradient, and taking a step in that direction. But more

efficient schedules are possible. In particular, dynamic schedules provide an especially

great amount of flexibility:

• First, a dynamic scheduler can choose to make gradient updates before the

inference updates have converged, thus providing a way to perform training

using early stopping of BP.
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• Second, just as a schedule can prioritize a message if its incoming messages

change greatly, it can also prioritize a message whose local factor has changed

greatly due to a parameter update. Thus, inference can focus on the areas of

the model in which the parameters are changing most rapidly. In particular, a

dynamic schedule is free to ignore regions of the model for which training has

essentially converged.

• Finally, if the training set consists of iid examples, it can be presented to the

scheduler as a single, disconnected graphical model. This means that when

the scheduler is choosing which area of the model to perform inference in, it

is also choosing which training instance to perform inference in. Because gra-

dient updates occur can before performing inference on the entire training set,

the resulting method is similar to stochastic gradient descent, except that the

scheduler chooses the batch compositions automatically.

Also, Teh and Welling [132] have previously proposed an algorithm that integrates

message updates and updates from iterative scaling. Since iterative scaling can also

be used for parameter estimation in Markov random fields, their technique is in the

same spirit as ours. Iterative scaling has repeatedly been shown to converge much

slower than gradient updates for parameter estimation [65, 79, 112, 143], so a method

that uses gradient updates has the potential to be a significant improvement.

In this section, I present an integrated system of equations for gradient and BP

updates of Markov random fields (Section 6.2.1), and we describe how the updates

may be iterated using a dynamic schedule. Then, we show that the integrated sched-

ule converges significantly faster than running BP to convergence (Section 6.2.2),

resulting in an almost three-fold decrease in training time with equivalent likelihood.
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6.2.1 Combining Inference and Learning

Let p(y) factorize according to a factor graph with factors {Ψa}, where as usual

each Ψa has the exponential form Ψa(ya) = exp{
∑

k θakfak(ya)}. We wish to estimate

the parameters given data with empirical distribution p̃. In Section 3.1.4, we saw that

the gradient of the BP likelihood is

∂`BP

∂θa

def
= ga(ya) =

∑
ya

p̃(ya)fa(ya)−
∑
ya

qa(ya)fa(ya), (6.19)

Also, we have seen that the beliefs are computed by finding fixed-points of the system

of equations

mas(ys)←
∑
ya\ys

Ψa(ya)
∏

t∈N(a)\s

mta(yt), (6.20)

msa(ys)←
∏

b∈N(s)\a

mbs(ys) (6.21)

upon which the beliefs are calculated as

qa(ya) = Ψa(ya)
∏
s∈a

msa(ys) (6.22)

Thus, inference and learning can be viewed as attempting to find a fixed point of

a single system of equations. This system is

mas(ys)←
∑
ya\ys

Ψa(ya)
∏

t∈N(a)\s

mta(yt)

msa(ys)←
∏

b∈N(s)\a

mbs(ys)

qa(ya)← Ψa(ya)
∏
s∈a

msa(ys)

θa ← θa + αga(θa)

(6.23)

where α is a step size, and ga is the approximate gradient (6.19).
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Algorithm 6.4 IRBP

function Irbp (G)

1: q ← InitialPq(G)
2: repeat
3: vlhs ← DeQueue(q)
4: Perform update indicated by vlhs
5: for all equations e that depend on vlhs do
6: Add(q, e)
7: end for
8: until updates converged

function InitialPq (G)

1: q ← empty priority queue
2: Add(q,msa) ∀(s, a) ∈ G
3: Add(q,mas) ∀(s, a) ∈ G
4: Add(q,Ψa) ∀a ∈ G
5: return q

function Add (q, vlhs)

1: m← Current value of variable vlhs
2: m′ ← Compute new value of vlhs from its associated equation
3: Add vlhs to q with priority ‖m′ −m‖

This is a system of fixed-point equations, in which the variables are V = {mas} ∪

{msa(ys)}∪{qa(ya)}∪{θa}. In general, a fixed point of this system can be computed

using a dynamic propagation schedule, by maintaining a priority queue of pending

updates, and performing message updates that would cause the greatest residual. Let

vlhs denote some variable on the left-hand side of one of the update equations (6.23).

Let v
(t)
lhs be the value of some variable v ∈ V at some iteration t. Then we define the

residual of the update at iteration t as the vector ‖v(t+1)
lhs −v

(t)
lhs‖, where ‖ ·‖ is a norm.

We use the infinity norm, so that the residual is the maximum absolute value.

However, the equations (6.23) are in fact not amenable to dynamic scheduling.

The reason for this is that the gradient update on θ does not decrease its residual.

Once a set of messages are fixed, the gradient update is linear in θ, and so has no

maximum. There is nothing to stop an uniformed schedule from iterating the gradient

update infinitely.
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We can avoid this problem in two ways. First, adding regularization to the ob-

jective penalizes large parameter values directly. Second, we can cast the gradient

update by in a different way. A descent step along the gradient (6.19) can be viewed

as updating each factor Ψa by:

Ψa(·; θa)← Ψa(·; θa + αga(θa) (6.24)

= Ψa

(
·; θa + α(

∑
ya

p̃(ya)− qa(ya))

)
(6.25)

This leads to the system of equations

mas(ys)←
∑
ya\ys

Ψa(ya)
∏

t∈N(a)\s

mta(yt)

msa(ys)←
∏

b∈N(s)\a

mbs(ys)

Ψa(·; θa)← Ψa

(
·; θa + α

[∑
ya

p̃(ya)−Ψa(ya)
∏
s∈a

msa(ys)

])
.

(6.26)

The main advantage to this viewpoint is that whenever two gradient updates are

made in a row, then factor resulting from the new parameters are used to recompute

the belief. This breaks the self-loop, because now altering Ψa causes qa to better

match the empirical belief, and thus the gradient to decrease. This also helps to

prevent the factor updates from being selected too often.

Now this system of equations (6.26) can be iterated to find a fixed point. Any

fixed point corresponds to a saddlepoint of the BP likelihood. In fact, this system

of equations generalizes a typical method of training using loopy BP. Typically [e.g.,

128], we iterate the BP iterations to convergence, then take a gradient step using a

second-order method, and continue until convergence; this can be seen as a particular

schedule for solving the system (6.26). Running BP to convergence may be wasteful,

however, over several gradient steps, the beliefs may remain stable in some areas of
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the model, meaning that running BP to convergence in those parts of the model is

wasteful. An alternative idea is to allow taking gradient steps before the BP steps

have converged; that is, to schedule the equations (6.26) as a single set of fixed-point

updates, in which the scheduler makes no distinction between gradient updates and

BP updates. This is the approach that we take here.

Running BP to convergence is one schedule for propagating the updates (6.26),

but other schedules may be more efficient. Recently, it has been shown that dynamic

schedules for belief propagation—in particular, residual belief propagation (RBP),

which propagates messages with the largest residual first—can lead to a great im-

provement in inference time [30]. But this technique can be applied to any system

of fixed-point equations, and here we apply it to the integrated inference/estimation

system of equations (6.26). The potential advantage of this schedule is that the num-

ber of inference updates and gradient updates can be varied in different portions of

the model, and in different regions of parameter space. We call this method integrated

residual belief/gradient propagation (IRBP). It is described in detail in Algorithm 6.4.

6.2.2 Experiments

In this section, we compare the convergence speed of IRBP to a gradient update

in which BP is run to convergence. We randomly generate N × N grids of binary

variables with pairwise Potts factors. Each pairwise factor has the form

Ψij(ys, yt) =

 1 e−αij

e−αij 1

 , (6.27)

where the equality strength α is sampled uniformly from [−C,C]. Higher values of

C mean that the constraints are stronger on average. The unary factors have the

form Ψs(ys) = [1 e−us ], where us is sampled uniformly from [−C,C]. I generate 50

distributions using C = 4. I use the grid size N = 10. For each sampled model, we
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Figure 6.4. Approximate likelihood of final IRBP parameters compared to
BFGS/TRP on generative synthetic model. The red line is y = x.

generate 100 training examples. I use a Gaussian prior on parameters with variance

σ2 = 10.

I compare the IRBP schedule to parameter estimation using BFGS, with the

marginals computed by running TRP to convergence (BFGS/TRP). TRP has previ-

ously been shown to outperform synchronous and naive asynchronous BP schedules

[30, 139]. IRBP converges dramatically faster than BFGS/TRP. Figure 6.5 shows

the running time measured by floating point operations for each sampled model: on

average BFGS/TRP requires 8 times as many floating point operations. The y-axis

in Figure 6.5 shows the ratio of BFGS/TRP flops to IRBP flops. Figure 6.6 shows the

CPU time used for each sampled model. Here the y axis shows the ration of running

times of BFGS/TRP to IRBP. On average, IRBP uses 2.75 times less CPU time than

BFGS/TRP. It is interesting that the speed difference is much more pronounced when

measured in floating-point operations than wall-clock time. This indicates that the

overhead of maintaining the update queue and the residuals is a significant portion of
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Figure 6.5. Running time of IRBP parameters and BFGS/TRP on generative syn-
thetic model, measured in number of floating-point operations (flops). The red line
is y = 1, which occurs when the two are equally fast.

the IRBP running time. (Our TRP algorithm has had significant amount of low-level

optimization applied, while our IRBP implementation has not.)

In Figure 6.4, we show the training likelihood of the final parameter settings

found by IRBP and BFGS/TRP. Because both schedules use BP, in both cases we

approximate the likelihood using the Bethe energy. Both methods find equally good

parameter settings.

Now, previous work has shown that a residual-based schedule for BP can greatly

outperform TRP [30]. So it may be objected that the observed decrease in training

time is due to using a better BP schedule, rather than interleaving the BP and gradient

updates. To ensure that this is not the case, we measure the training time for simple

gradient descent, where the gradient is approximated by running RBP to convergence

(GD/RBP). To be clear, in GD/RBP, we use the residual schedule for the BP updates

only, and never for the gradient updates. This schedule runs significantly slower than
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Figure 6.6. Running time of IRBP parameters and BFGS/TRP on generative syn-
thetic model, measured in CPU time (s).

IRBP: the average training time for GD/RBP is 28.2s, while the average for IRBP is

10.4s.

6.2.3 Related Work

The closest work to ours is the unified propagation and scaling algorithm [132],

which was introduced as a method for minimizing KL divergence from a reference

distribution to an approximating family, which is generalization of the maximum

likelihood problem. That algorithm is essentially a schedule for BP updates on the

messages and iterative scaling updates on the model parameters. Thus, it can be

seen as a kind of integrated inference and learning. However, it is well known that

iterative scaling updates converge much slower than gradient updates for undirected

parameter estimation [65, 79, 112, 143].

Bayesian methods, of course, make no distinction between inference and learning.

Although theoretically attractive, integrating over the parameters becomes very diffi-

cult when the other variables in the model have complex connections of their own. For
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this reason, there has been very little work in Bayesian training of Markov random

fields. Exceptions include Murray and Ghahramani [85] and Qi et al. [95].

For the fully-observed generative models that we consider here, parameters that

maximize the BP likelihood may be found more quickly by pseudo-moment matching

[142]. This does not make our techniques obsolete, however. The pseudo-moment

matching estimator is unavailable when there are latent variables, or when the factors

have a restricted form, such if they are restricted to a continuous exponential family,

or if some parameters are tied. These situations often arise in practical models, so

learning methods that compute the BP updates are still relevant.

6.3 Conclusion

In this chapter, I have explored dynamic schedules for message updates, both for

the inference-only problem and the combined inference-and-learning problem. For

the inference-only problem, I have presented RBP0L, a new dynamic schedule for

belief propagation that schedules messages based on a upper-bound on their residual.

On both synthetic and real-world data, RBP0L converges faster than both RBP1L,

a recently-proposed dynamic schedule, and than TRP, with comparable accuracy. It

would be interesting to explore whether the residual estimation technique in RBP0L

is equally effective for other inference algorithms, such as EP, GBP, or whether the

residual estimation technique would require significant adaptation. In continuous

spaces, it may be that the message residual itself is not a good measure for schedul-

ing, because it gives equal weight to all areas of the domain, even those with low

probability. The KL divergence may be more appropriate.

For the inference-only problem, I have presented suggestive results that combin-

ing inference and learning into a single system of equations can lead to significant

speed-ups in training time for undirected models, resulting in an almost three-fold

improvement in training time with no loss in likelihood. Typically, training is per-
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formed by running an approximate inference algorithm such as BP to convergence,

then using the resulting approximate marginals to approximate the gradient. But this

is only one schedule for a more general system of equations, and I show that residual-

based schedules can perform significantly faster. Of course, this leaves open whether

this schedule would work as well on larger-scale networks, such as conditional ran-

dom fields. Unfortunately, the heavy parameter tying that is typical in CRFs makes

application of IRBP difficult.
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CHAPTER 7

FUTURE DIRECTIONS

In this chapter, I mention some research directions in the area of approximate

CRF training that may be useful for future work.

7.1 Bigger Pieces

A natural question is how readily the methods here extend to the case where

pieces are treated as regions that are larger than a single factor. The difficulty seems

to lie in how to handle the overlaps among larger pieces. But the connection to the

Bethe energy is illuminating here. Just as the factor-as-piece likelihood arises from

the dual Bethe energy with uniform messages, larger pieces can potentially be handled

by using uniform messages in a more general free energy, such as region graph free

energies [150]. That said, I do not believe that the models introduced in this thesis

are complex enough to benefit from larger pieces.

Another question then becomes how to choose the pieces when they are larger

than a single factor. Quite possibly the application itself would suggest a choice of

pieces. There are also a few minimal consistency criteria that have been proposed—in

particular, maxent-normality [150] and non-singularity [146]—but these, while useful,

are fairly general, and do not place severe constraints on the region choice. Finally,

there is a least one method in the literature for choosing regions in generalized BP

[144]; however, this method chooses the regions based on properties of the entire

distribution, that is, on the model parameters. It seems unwise to use the model

parameters to choose the objective function that they are selected to optimize, so this
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techniques seems inapplicable. There is also a possible connection between methods

for selecting pieces and feature selection methods.

7.2 Pseudolikelihood

Recall from Chapters 4 and 5 that pseudolikelihood [8] is defined as

`PL(θ) =
∑
s

log p(ys|yN(s),x) (7.1)

=

∏
a3i Ψa(ys,yN(s),xa)∑

y′s

∏
a3i Ψa(y′s,yN(s),xa)

. (7.2)

Although on simple synthetic data sets, pseudolikelihood tends to perform well [90],

on our benchmark NLP data it performs fairly poorly. This phenomenon warrants

an explanation.

There exists a simple class of data sets in which pseudolikelihood performs patho-

logically. As an example, consider a two-node Boltzmann machine with binary vari-

ables. That is, each variable has a unary factor

Ψs(ys) = [1 e−θs ] (7.3)

and there is one binary factor

Ψ(y0, y1) =

 1 eαij

eαij 1.

 (7.4)

Assume the data set contains two observations: (0, 0) and (1, 1). Then the maximum

pseudolikelihood estimate becomes senseless: maximizing it will attempt to make the

conditional distributions deterministic, with complete disregard for the per-variable

marginals p(y0) and p(y1).
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One way to understand this is that pseudolikelihood attempts to match the con-

ditional distributions of the model to the conditional distributions of the data. But

the conditional distributions given by the data need not determine a unique joint dis-

tribution; they do so only if the Gibbs sampler that they define is ergodic. This is not

the case in the example above. It is unlikely, however, that this phenomenon explains

the results that we see on the real-world data, however, because although pseudo-

likelihood performs significantly worse than piecewise ond maximum likelihood, it

does not appear to be as pathologically bad as it would if this phenomenon were the

culprit.

A different potential explanation is that pseudolikelihood may perform poorly in

the presence of data sparsity, by which I mean that because there are a large number

of input features, and the cardinality of the output variables is large, each input-

output combination is observed only a few times, if at all. Sparsity is a ubiquitous

feature of NLP applications, even when hundreds of thousands of words of labeled

data are available. The reason this situation may be bad for pseudolikelihood is that

if a neighborhood configuration (ys,yN(s)) never occurs in the training data, then the

objective function makes no attempt to set the model marginal of that configuration

to 0.

One way to address this problem is to add a penalty to the pseudolikelihood that

attempts to force such configurations to have zero probability. This is potentially a

very fruitful approach in practice.

Another potential set of techniques to address this problem results from the fol-

lowing viewpoint. The pseudolikelihood gradient is given by

∂`PL

∂θak
=
∑

Ψa∈G

da
∑
k

fak(ya,xa)−
∑

Ψa∈G

∑
k

∑
s∈a

∑
y′s

fak(ỹa,xa)p(y
′
s|yN(s),x)p̃(yN(s)|x)

(7.5)
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where da is the degree of factor a, that is, the number of variables in its domain; and

p̃ is the empirical distribution. This can be actually be seen as an approximation to

the exact likelihood gradient as follows:

∂`

∂θak
=
∑

Ψa∈G

∑
k

fak(ya,xa)−
∑

Ψa∈G

∑
k

∑
y′a

fak(y
′
a,xa)p(ỹa|x) (7.6)

=
∑

Ψa∈G

∑
k

fak(ya,xa)−
1

da

∑
Ψa∈G

∑
k

∑
y′a

∑
s∈a

fak(y
′
a,xa)p(y

′
s|y′N(s),x)p(y′N(s)|x)

(7.7)

≈
∑

Ψa∈G

∑
k

fak(ya,xa)−
1

da

∑
Ψa∈G

∑
k

∑
y′a

∑
s∈a

fak(y
′
a,xa)p(y

′
s|y′N(s),x)p̃(y′N(s)|x),

(7.8)

which is equivalent to the pseudolikelihood gradient. Thus, pseudolikelihood can be

seen as approximating the model’s neighborhood marginal p(yN(s)) by the empirical

marginal p̃(yN(s)). Therefore, a potential way to improve pseudolikelihood to choose a

different approximation for the neighborhood marginal, for example, using smoothing.

Indeed, any approximate inference method may be used to generate the neighborhood

approximation. Although I find this framework potentially appealing, it allows a wide

range of learning methods, and in order to know what instance of the framework is

most profitable, it would be useful to replicate the data sparsity failures in a synthetic

domain, if indeed this is the culprit.

7.3 Other Directions

Other directions for future work include:

• Online Updates. As I mentioned in Section 1.2, for the exact CRF likelihood,

online gradient updates have been shown to converge faster than second-order

batch updates [42, 136]. Conceptually, there seems to be no obstacle to applying

them to the piecewise likelihoods of this thesis. This is unlikely to present a
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significant research challenge, but verifying that this combination works could

be practically important, because it could result in very fast training times.

• Other applications. In order to evaluate different training methods, I focus on

a small set of benchmark NLP data sets, which are of practical interest, but in

fact they are amenable to existing training methods. But really the point is to

enable training of large, loopy CRFs which have not previously been feasible.

Examples of applications that could benefit from such CRFs include cross-

document information extraction and coreference, joint models for cascades of

NLP tasks, and scoped learning for structured models.

• Latent Variables. Piecewise training and its variants assume fully labeled data,

but models with latent variables are of considerable interest. The naive piece-

wise method is unlikely to work well with latent variables, because if the same

latent variable occurs in multiple pieces, it needs to be constrained to have the

same semantics in each piece, and the naive method does not do this. It is

possible that the connections to BP can be used to devise a method that alter-

nates between regular piecewise and message passing in order to handle latent

variables.

• Max-margin methods. Both likelihood-based methods and max-margin methods

require performing inference during training, so it is natural to wonder whether

the methods in this thesis can be adapted to loopy max-margin models. A

suggestive step in this direction is factorized MIRA [75], in which the margin

constraints are required to hold only over single edges, rather than the entire

prediction. On a dependency parsing task, this method had good accuracy,

but it did not improve training time because the model had special structure

that made it amenable to exact inference. It may be interesting to see whether
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analogs of piecewise methods work well for max-margin training on loopy mod-

els.
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