
Execution Performance Issues in Full-Text
Information Retrieval

Eric W. Brown

Technical Report 95-81

October 1995

Computer Science Department

University of Massachusetts at Amherst

EXECUTION PERFORMANCE ISSUES IN FULL-TEXT

INFORMATION RETRIEVAL

A Dissertation Presented

by

ERIC WILLIAM BROWN

Submitted to the Graduate School of the

University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 1996

Department of Computer Science

c
�

Copyright by Eric William Brown 1996

All Rights Reserved

To Jennifer

iv

ACKNOWLEDGEMENTS

The long road to a Ph.D. is never walked alone. Along the way many people have

offered me encouragement, support, and guidance. To all of them I give my deepest thanks,

especially

My advisor, Bruce Croft, for his insight, direction, perspective, and vision.

Eliot Moss and Tony Hosking, for teaching sound research principles and

instilling a passion for experimental performance evaluation.

Jamie Callan, for tutoring me in information retrieval, fielding countless ques-

tions about INQUERY, and working as my closest colleague throughout this

effort.

The rest of my dissertation committee, Howard Turtle and Graham Gal, for

their comments and suggestions, which have greatly improved this dissertation.

The students and staff of the Object Systems Lab and Center for Intelligent

Information Retrieval who have contributed to the systems used in this research.

My close friends and comrades, for provocative conversation, intellectual stim-

ulation, welcome distraction, and occasional commiseration.

My family, for their understanding and patience.

My wife, Jennifer, who, more than anyone else, made this all possible with her

encouragement, support, and love.

This research has been supported by the National Science Foundation Center for Intel-

ligent Information Retrieval at the University of Massachusetts, Amherst.

v

vi

ABSTRACT

EXECUTION PERFORMANCE ISSUES IN FULL-TEXT

INFORMATION RETRIEVAL

FEBRUARY 1996

ERIC WILLIAM BROWN

B.Sc., UNIVERSITY OF VERMONT

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

The task of an information retrieval system is to identify documents that will satisfy a

user’s information need. Effective fulfillment of this task has long been an active area of

research, leading to sophisticated retrieval models for representing information content in

documents and queries and measuring similarity between the two. The maturity and proven

effectiveness of these systems has resulted in demand for increased capacity, performance,

scalability, and functionality, especially as information retrieval is integrated into more

traditional database management environments.

In this dissertation we explore a number of functionality and performance issues in infor-

mation retrieval. First, we consider creation and modification of the document collection,

concentrating on management of the inverted file index. An inverted file architecture based

on a persistent object store is described and experimental results are presented for inverted

file creation and modification. Our architecture provides performance that scales well with

document collection size and the database features supported by the persistent object store

provide many solutions to issues that arise during integration of information retrieval into

vii

more general database environments. We then turn to query evaluation speed and introduce

a new optimization technique for statistical ranking retrieval systems that support structured

queries. Experimental results from a variety of query sets show that execution time can be

reduced by more than 50% with no noticeable impact on retrieval effectiveness, making

these more complex retrieval models attractive alternatives for environments that demand

high performance.

viii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . v

ABSTRACT . vii

LIST OF TABLES . xiii

LIST OF FIGURES . xv

Chapter

1. INTRODUCTION . 1

1.1 Overview . 2

1.2 Research Summary . 10

1.3 Research Contributions . 14

1.4 Outline of the Dissertation . 15

2. RELATED WORK . 17

2.1 Inverted File Management . 17

2.1.1 Traditional Database Support for IR 17

2.1.2 Custom Inverted List Management 20

2.1.3 Inverted File Alternatives . 21

2.2 Query Optimization . 23

2.2.1 Term Weight Magnitude Ordering 25

2.2.2 Document Based Ordering . 27

2.2.3 Term Based Ordering . 29

3. INDEXING . 33

3.1 Document Inversion . 36

3.1.1 Parsing . 39

3.1.2 Merging . 44

3.2 The Inverted File Manager . 47

ix

3.2.1 Inverted List Characteristics . 50

3.2.2 The Mneme Persistent Object Store 53

3.2.3 The Mneme Solution . 56

3.2.3.1 Inverted List Storage 56

3.2.3.2 Inverted List Lookup 59

3.2.3.3 Document Additions . 62

3.2.3.4 Document Deletions . 66

3.3 Experimental Results . 68

3.3.1 Platform . 69

3.3.2 Test Collection . 69

3.3.3 Bulk Indexing . 71

3.3.4 Incremental Update . 78

3.4 Conclusions . 88

4. QUERY EVALUATION . 93

4.1 Structured Queries . 95

4.1.1 Probabilistic Retrieval . 95

4.1.2 Inference Network-based Retrieval 98

4.1.3 INQUERY . 101

4.2 Structured Query Optimization . 106

4.2.1 Safe . 106

4.2.2 Unsafe . 108

4.3 Implementation . 111

4.4 Performance Evaluation . 114

4.4.1 Platform . 114

4.4.2 Test Collections . 115

4.4.3 Query Sets . 117

4.4.4 Performance Results . 118

4.4.4.1 Safe . 118

4.4.4.2 Unsafe . 121

4.4.5 Retrieval Effectiveness . 126

4.5 Extensions . 132

4.6 Short Unstructured Queries . 144

4.7 Conclusions . 157

5. CONCLUSIONS . 165

x

5.1 Future work . 167

5.1.1 Small updates . 168

5.1.2 Multi-user support . 169

5.1.3 Hardware based optimization . 170

BIBLIOGRAPHY . 173

xi

xii

LIST OF TABLES

Table Page

3.1 TIPSTER document collection file characteristics 70

3.2 TIPSTER file parsing results . 71

3.3 TIPSTER Inverted file object statistics . 74

3.4 Indexing variations for 3.2 GB TIPSTER collection 75

4.1 Test collection statistics . 115

4.2 Inverted file space requirements (MB) . 116

4.3 Number of documents evaluated . 122

4.4 Wall-clock times . 123

4.5 Precision at standard recall pts for Tip1, Query Set 1 127

4.6 Precision at standard recall pts for Tip12, Query Set 1 128

4.7 Precision at standard recall pts for Tip123, Query Set 1 129

4.8 Precision at standard recall pts for Tip1, Query Set 2 130

4.9 Precision at standard recall pts for Tip12, Query Set 2 131

4.10 Precision at standard recall pts for Tip12, Query Set 1, extended 135

4.11 Precision at standard recall pts for Tip12, Query Set 2, extended 136

4.12 Precision at standard recall pts for Tip12, Query Set 1, optimized 140

4.13 Precision at standard recall pts for Tip12, Query Set 2, optimized 143

4.14 Precision at standard recall pts for Tip12, Query Set 3, optimized 147

4.15 Precision at standard recall pts for Tip12, Query Sets 3 and 4 148

4.16 Precision at standard recall pts for Tip12, Query Set 4, optimized 150

4.17 Precision at standard recall pts for Tip12, Query Sets 3 and 4, optimized . . 152

xiii

4.18 Precision at standard recall pts for Tip12, Query Set 5, optimized 155

4.19 Wall-clock time summary for Tip12 (seconds) 156

xiv

LIST OF FIGURES

Figure Page

1.1 Inverted file issues . 7

3.1 Document collection tuples . 37

3.2 Document buffer binary tree . 39

3.3 Batch buffer hash table . 41

3.4 Inverted list size distributions . 50

3.5 Inverted file hash table . 60

3.6 Hash table bucket . 61

3.7 Deletion in a long inverted list . 68

3.8 Bulk indexing times . 73

3.9 Incremental update times . 79

3.10 Parse time comparison . 80

3.11 Inverted file data read per update . 81

3.12 Incremental merge time versus data read 81

3.13 TIPSTER vocabulary growth . 83

3.14 Log of TIPSTER vocabulary growth . 83

3.15 Cumulative merge time comparison . 87

4.1 Inference network for information retrieval 99

4.2 Example query in internal tree form . 102

4.3 Long inverted list structure . 112

4.4 Linked versus Split inverted lists wall-clock time 119

4.5 Query Set 1 wall-clock time breakdown 125

xv

4.6 Query Set 2 wall-clock time breakdown 125

4.7 Recall-Precision curves for Tip1, Query Set 1 127

4.8 Recall-Precision curves for Tip12, Query Set 1 128

4.9 Recall-Precision curves for Tip123, Query Set 1 129

4.10 Recall-Precision curves for Tip1, Query Set 2 130

4.11 Recall-Precision curves for Tip12, Query Set 2 131

4.12 Recall-Precision curves for Tip12, Query Set 1, extended 135

4.13 Recall-Precision curves for Tip12, Query Set 2, extended 136

4.14 Extended optimization wall-clock times for Tip12, Query Set 1 137

4.15 Recall-Precision curves for Tip12, Query Set 1, optimized 140

4.16 Extended optimization wall-clock times for Tip12, Query Set 2 141

4.17 Recall-Precision curves for Tip12, Query Set 2, optimized 143

4.18 Extended optimization wall-clock times for Tip12, Query Set 3 145

4.19 Recall-Precision curves for Tip12, Query Set 3, optimized 147

4.20 Recall-Precision curves for Tip12, Query Sets 3 and 4 148

4.21 Extended optimization wall-clock times for Tip12, Query Set 4 149

4.22 Recall-Precision curves for Tip12, Query Set 4, optimized 150

4.23 Extended optimization wall-clock times for Tip12, Query Sets 3 and 4 . . . 151

4.24 Recall-Precision curves for Tip12, Query Sets 3 and 4, optimized 152

4.25 Extended optimization wall-clock times for Tip12, Query Set 5 153

4.26 Recall-Precision curves for Tip12, Query Set 5, optimized 155

xvi

CHAPTER 1

INTRODUCTION

Documents play a central role in our daily acquisition and distribution of information.

They serve as both a medium and a repository for information, coming in a variety of shapes

and sizes. Newspaper and magazine articles supply us with our daily news. Manuals

instruct us in all sorts of activities. Letters enable us to correspond professionally and

socially. Reports keep us current in the work and business of others. Over the ages people

have produced an enormous wealth of documents. Today we continue to add to this wealth

by perpetually generating new documents. With such an abundance of documents available,

finding a particular document of interest can amount to a Herculean task.

To make this task feasible, information retrieval (IR) systems were developed. The

function of an information retrieval system is to satisfy a user’s information need by

identifying the documents in a collection of documents that contain the desired information.

Since the inception of IR systems over thirty years ago,a great deal of effort has been spent on

improving the ability of IR systems to correctly identify interesting and relevant documents.

In the work presented in this dissertation, we now concentrate on system implementation

issues and, in particular, how to improve the execution performance of these systems so

that their operations can be carried out quickly and efficiently.

In the remainder of this chapter, we provide an overview of the problems considered

in this dissertation and the approaches taken to solving them, summarize the research

conducted and the results achieved, describe the contributions of this work, and outline the

rest of this dissertation.

1

1.1 Overview

A document is any written work that conveys information. Examples include books,

reports, articles, and letters. The fundamental element of any document is text, the written

form of human language. Text is a powerful mechanism for storing information, allowing

us to record anything that can be expressed verbally. This power comes from the endless

variety and flexibility of human language. When creating text, we have a huge vocabulary

of terms at our disposal and infinitely many ways of combining those terms to express what

we wish to communicate.

While this flexibility makes for rich and interesting documents, it has the potential

to impede human understanding of the information stored in a document. Documents

can be long and detailed, requiring careful study before their true information content is

discovered. This situation is acceptable when the set of documents that we must examine is

restricted to those that contain the information we seek. But what if we have a large number

of documents and do not know which ones contain the desired information? Individual

inspection of each document is impractical. Without a method for identifying relevant

documents, a large collection of information-rich documents is useless.

One of the first solutions to this problem appeared nearly four thousand years ago

when catalogues of documents in libraries were created to aid in keeping track of those

documents [44]. A catalogue provides a compact listing of the documents available in

the library. Each document entry in the catalogue includes some number of attributes

for the respective document, such as author, title, or subject. The attributes can be used to

identify potentially interesting documents without actually having to examine the documents

themselves.

More recently, in the 16th century, primitive indexes for documents were created. An

index is a list of certain keywords or topics. Each entry in the list contains pointers into

the documents where descriptions and discussions of the respective keyword or topic may

be found. Unfortunately, deciding what keywords and topics should go into an index and

2

which discussions are worthy of an index pointer is a tedious and subjective human task

prone to omissions. Ultimately, both indexes and catalogues suffer from the restriction

that an information search must be based on a set of limited, predetermined document

characteristics, i.e., the keywords of an index or the attributes of a catalogue.

A different kind of index that avoids this shortcoming is the concordance. A concor-

dance is an alphabetical list of all of the terms that appear in a collection. For each term, the

list gives a pointer to every occurrence of the term in the collection, along with a portion of

the text surrounding the term to suggest the context of the occurrence. The full-text index

provided by a concordance is free from the restrictions of predetermined keywords and can

be used to locate all of the passages that contain the terms of interest. A concordance for

a large document such as the Bible, however, might require a good portion of a lifetime to

construct by hand, and such an effort can take a significant toll on the concordance compiler.

In the case of Alexander Cruden, author of one of the better known Bible concordances [24]

(first published in 1737), the effort involved in compiling the concordance is believed to

have led to his insanity [48].

With the advent of the computer age in the latter half of the 20th century, concordance

construction could be automated, greatly simplifying the task. What used to take years

could now be accomplished in minutes. In spite of being relatively complete and simple

to construct, a concordance still provided a rather unsophisticated solution to our original

problem. Trying to locate information in a large collection of documents using a concor-

dance can be an exercise in frustration, leading to the retrieval of many unrelated documents

that just happen to contain terms that we believe are indicative of the information we seek.

A more intelligent solution to the problem at hand was still needed.

Over thirty years ago, work towards this intelligent solution began with the birth of

information retrieval systems. Information retrieval is the process of identifying and

retrieving relevant documents based on some expressed interest in documents of a particular

nature. The distinguishing characteristic of information retrieval is that the search for

3

interesting documents is based on the information content of the documents, rather than

just the terms, keywords, or attributes associated with the document. To support document

searching based on information content, an information retrieval system consists of three

basic elements: a document representation, a query representation, and a measure of

similarity between queries and documents. The document representation provides a formal

description of the information contained in the documents, the query representation provides

a formal description of the information need, and the similarity measure defines the rules

and procedures for matching the information need with the documents that satisfy that need.

These three elements collectively define a retrieval model. Research in information

retrieval has produced a number of retrieval models, of which the three most prominent

are the Boolean, vector-space, and probabilistic retrieval models. In all of these models,

a document is represented by a set of indexing features that have been assigned to the

document. Indexing features are commonly the terms that occur in the document collection,

although they may also be more semantically meaningful concepts extracted from the text

by sophisticated indexing methods (e.g., citations, phrases). Unless further distinction is

necessary, we will use the word “term” to mean any indexing feature.

In Boolean retrieval, a document is represented as a set of terms dj = ✁ t1, . . . , tk ✂ , where

each ti is a term that appears in document dj. A query is represented as a Boolean expression

of terms using the standard Boolean operators and, or, and not. A document matches the

query if the set of terms associated with the document satisfies the Boolean expression that

represents the query. The result of the query is the set of matching documents.

The vector-space model [73] enhances the document representation of the Boolean

model by assigning a weight to each term that appears in a document. A document can then

be represented as a vector of term weights. The number of dimensions in the vector-space

is equal to the number terms used in the overall document collection, or ✄ T ✄ , where T is

the set of terms used in the collection, commonly referred to as the vocabulary or lexicon.

4

The weight of a term in a document is calculated using a function of the form tf ☎ idf ,

where tf (term frequency weight) is a function of the number of occurrences of the term

within the document, and idf (inverse document frequency weight) is an inverse function of

the total number of documents that contain the term. The first component incorporates the

notion that the ability of a term to describe a document’s content is directly related to the

number of times the term occurs within that document. The second component incorporates

the notion that a term’s discriminatory power weakens as the term appears in more and more

documents.

A query in the vector-space model is treated as if it were just another document, allowing

the same vector representation to be used for queries as for documents. This naturally leads

to the use of the vector inner product as the measure of similarity between the query and

a document. This measure is typically normalized for vector length, such that the actual

similarity measure is the cosine of the angle between the two vectors. After all of the

documents in the collection have been compared to the query, the documents are sorted by

decreasing similarity measure and a ranked listing of documents is returned as the result of

the query.

The probabilistic retrieval model is based on the Probability Ranking Principle, which

states that an information retrieval system is most effective when it responds to an expressed

information need with a list of documents ranked in decreasing order of probability of

relevance, and the probabilities are estimated as accurately as possible given all of the

available information [70]. In this model, the answer to a query is generated by estimating

P(relevant ✄ d) (the probability of the information need being satisfied given document d)

for every document, and ranking the documents according to these estimates. Using Bayes’

theorem, P(relevant ✄ d) can be expressed as a function of the probabilities of the terms in

d appearing in relevant and non-relevant documents. The query gives an estimate for the

probability of a given term appearing in relevant documents, and the document collection

gives an estimate for the probability of a given term appearing in non-relevant documents.

5

This results in a tf ☎ idf style term weighting function, similar to that used in the vector-space

model. The probabilistic version, however, is more formally motivated.

Although these models differ in many of their details, they each incorporate the belief

that a query and its relevant documents will have terms in common. An important query

evaluation step for all of these models is matching query terms with the documents that

contain those terms. Scanning the document collection for occurrences of the query terms

is an unsatisfactory implementation of this step, especially when the document collection

is quite large. Instead, an inverted file index [73, 29, 42] is used to support this process. An

inverted file contains an inverted list for every term that appears in the document collection.

A term’s inverted list identifies all of the documents that contain the corresponding term.

Each document entry in an inverted list may additionally contain a term weight for the

document (often just the number of occurrences of the term within the document) and the

locations of each occurrence of the term within the document.

Using an inverted file, we match query terms to documents by obtaining the inverted

lists for the query terms and processing the document entries in those lists. The particular

retrieval model will dictate exactly what information is stored in the inverted lists and how

that information is used in the query evaluation process. Regardless of how the inverted list

contents are used, the fundamental advantage of an inverted file is that the set of documents

that must be considered during the query evaluation process is constrained to those that

contain at least one of the query terms. Moreover, the documents in this constrained set

do not even need to be accessed during query evaluation. All of the information required

to evaluate a query can be stored in the inverted lists, such that a document need only be

accessed when the user selects it from the query result list for viewing.

The issues of what information to store in an inverted list and how to use that information

to generate a query result are at the heart of the question that most of the IR research to

date has focused on: how to define the elements of a retrieval model for best retrieval

effectiveness. Retrieval effectiveness is a measure of an IR system’s ability to correctly

6

inverted
 file

collections

large

retrieval

effectiveness

sophisticated

retrievalincremental

solutions

dynamic

collections optimization

query

retrieval
speed

general

system
information

conflict: solution: requirements:

Figure 1.1 Inverted file issues

identify the documents that are relevant to a given query. While improving retrieval

effectiveness remains an important area of research, a number of new challenges have

appeared that are rapidly becoming much more pressing. First, IR systems are being asked

to manage larger and larger document collections. Second, the traditional view of document

collections as static and archival is being replaced by the desire for dynamic collections

that can be updated efficiently or built incrementally. Third, information retrieval is being

integrated into more comprehensive information management systems. For this to happen,

IR systems must provide reliable, efficient, multi-user access—features common to more

traditional data management systems.

7

The goal of this dissertation is to provide solutions to the challenges created by large,

dynamic document collections, and to lay the foundation for a solution to the challenges

imposed by a comprehensive information management system. Our approach to solving

these problems is based on the following observation: the speed and functionality of an

information retrieval system are determined to a large extent by the inverted file implemen-

tation. This notion is depicted in Figure 1.1. The figure shows a number of information

retrieval system goals in white boxes. Conflicting goals are connected by solid lines ema-

nating from a black dot. Solutions to these conflicts are shown in shaded boxes, which are

connected to the corresponding conflict by a dashed line. Finally, both solutions and goals

place requirements on the inverted file implementation, shown as dotted lines directed at

the circle in the center of the figure.

Consider first the goal of retrieval effectiveness in the upper right hand corner. For

small document collections, a simple Boolean model might suffice. On large document

collections (shown in the upper left hand corner), however, simple boolean retrieval will

perform poorly [72, 1, 85]. To resolve the conflict between these two goals and provide

better retrieval effectiveness on large document collections, we turn to more sophisticated

retrieval models. Sophisticated retrieval models place additional requirements on the

inverted file implementation, such as storage of term weights and occurrence locations.

Both large document collections and sophisticated retrieval conflict with the goal of fast

document retrieval, shown at the bottom of Figure 1.1. These two conflicts lead to the use of

query optimization techniques to improve retrieval speed. Query optimization techniques

can require alternative inverted file access methods and storage of additional information

in the inverted lists, placing further requirements on the inverted file implementation.

The goal of supporting a dynamic document collection (shown in the lower left hand

corner) conflicts with the goal of supporting a large document collection. If a document

collection is small enough, modifications to the collection can be incorporated into the

inverted file simply by re-indexing the entire document collection from scratch. With

8

larger document collections, this solution is impractical. Instead, incremental solutions are

required that allow in-place modifications of the existing inverted file. The functionality

requirements imposed by a dynamic inverted file introduce a whole new set of issues that

must be considered in the inverted file implementation.

The last goal depicted in Figure 1.1 is the incorporation of information retrieval into

a general information management system, shown in the top middle of the figure. For

example, a traditional database management system (DBMS) provides excellent support

for structured, record based data. However, a DBMS provides only limited support for text

data types and generally lacks the sophisticated full-text search capabilities provided by an

IR system. Combining these two technologies into a single, comprehensive system will

result in a more powerful and useful information management system.

Before this integration can take place, an IR system must meet the data management

standards set by the DBMS. A large part of the functionality provided by a DBMS is support

for consistent, reliable multi-user access and update of the database. This is accomplished

through the use of transactions, concurrency control, and recovery—features typically

absent from an IR system. The incorporation of these mechanisms into an IR system will

have a significant impact on the inverted file implementation, imposing a variety of new

functionality requirements for controlled access and manipulation of the inverted lists.

The above observations lead to a problem solving approach centered on the inverted

file implementation. This dissertation presents a comprehensive solution to managing an

inverted file that either directly satisfies the requirements stated above, or enables other new

strategies to be applied in the problem solving effort. Since we are concerned with execution

performance issues, the solution is fully implemented and evaluated empirically. The

experimental test-bed is provided by INQUERY [12], a full-text probabilistic information

retrieval system based on a Bayesian inference network model [88]. INQUERY was chosen

for the following reasons:

9

✆ INQUERY uses a general inverted file that includes term occurrence locations, al-

lowing exploration of more complex inverted list data structures. This exploration

would not be possible in a system that stores term weights only in its inverted file.✆ The inference network-based retrieval model exemplifies the sophisticated retrieval

solution of Figure 1.1.✆ The inference network-based retrieval model provides a general framework in which

a variety of retrieval models can be represented, suggesting that results obtained in

this environment have a better likelihood of generalizing to other retrieval models.✆ INQUERY has been shown to provide a high level of retrieval effectiveness [39, 40],

increasing the impact of the results presented in this dissertation. A fast system is

useless if it provides poor retrieval effectiveness.✆ INQUERY is a commercial quality system and is currently used in a number of instal-

lations [21], again increasing the impact of the results presented in this dissertation.

1.2 Research Summary

The research conducted for this dissertation covers two main areas: indexing and query

evaluation. Indexing includes the initial creation, modification, and overall management of

the inverted file. The specific indexing problems addressed are:

1. Efficient inverted file creation for large document collections.

2. Efficient additions of new documents to an existing document collection.

3. Design of an overall architecture that enables solutions to the first two problems and

provides a foundation for future work on the comprehensive informationmanagement

system problem.

10

These problems have a strong systems orientation, focusing on the management of

large amounts of data that must be moved back and forth between disk and main memory.

As such, any approach to solving these problems must be sensitive to basic computer

architecture issues and tradeoffs. In particular, the size and access characteristics of the

data to be managed must be taken into account when deciding how to make use of various

computer resources (e.g., CPU, disk, main memory). With these considerations in mind,

the following hypotheses are put forth:

1. Fast, scalable document indexing can be achieved by localizing sort and insertion op-

erations, building intermediate results in main memory, minimizing I/O, and favoring

sequential I/O over random I/O.

2. Document additions can be efficiently supported by an inverted list data structure that

minimizes access to the existing inverted file during the update.

3. A general, “off-the-shelf” data management system can be used to manage an in-

verted file if the data management system provides the appropriate data model and

extensibility mechanisms.

A general document indexing scheme based on the previous work of Witten et al. [90]

was implemented. The extension to their work is a double buffering scheme for parsing

documents and building inverted lists in main memory without the use of a term dictionary.

The overall indexing scheme is able to index documents at a rate of over 500 MB an hour

on a current, midrange workstation, and results show that the technique scales well with

document collection size. The issues identified in the first hypothesis were considered

throughout the implementation, and the results obtained lead to the acceptance of that

hypothesis.

An exploration of possible solutions to the problem of managing an inverted file was

conducted, leading to the conclusion that a persistent object store provides the appropriate

level of performance and functionality for this task. In particular, the Mneme persistent

11

object store [62] was used as the “off-the-shelf” data management system in the inverted

file architecture. The data model provided by Mneme allowed the design of an inverted list

data structure that meets the requirements stated in the second hypothesis. Experimental

results show that the new inverted file architecture supports document additions with costs

significantly less dependent on the size of the existing document collection than traditional

techniques, which require redundant indexing of the document collection or scanning of the

entire existing inverted file. Moreover, additions in the new implementation are performed

in-place, substantially reducing temporary disk space costs. These results confirm the

second hypothesis, although there is still room for improvement.

Other inverted file management tasks were explored within the context of the Mneme

based architecture. While many of these additional features have been implemented,

including document deletions, concurrency control, recovery, and transactions for multi-

user access, a full evaluation of these features is beyond the scope of this dissertation.

The implementation of these features, however, does lead to the acceptance of the third

hypothesis above.

A single problem was addressed within the context of query evaluation, namely, how

to provide fast evaluation of structured queries in statistical ranking retrieval systems. Re-

trieval systems of this kind are characterized by a statistical or probabilistic term weighting

function and a query language that provides a variety of query operators for combining

term weights, proximity information, and the results of nested query operators. A struc-

tured query can be represented as a tree with operators at the internal nodes and terms at

the leaves. During query evaluation, a document’s score is calculated by propagating term

weights for the document from the leaves toward the root, combining the term weights

according to the semantics of the query operators at the internal nodes to produce a final

score for the document at the root of the query tree.

A technique for reducing query evaluation costs can be categorized as either safe or

unsafe. A safe technique has no impact on retrieval effectiveness, while an unsafe technique

12

may trade retrieval effectiveness for execution efficiency. A number of safe optimization

techniques were explored, including their implications for the inverted file implementation

and expected impact on query evaluation time. The main focus here, however, was on

unsafe optimization techniques. Our research was guided by the following observation:

relevance scores are generated for a significant percentage of the documents in a document

collection when evaluating a query. This observation has been made by others. Moffat and

Zobel [58] found that for queries containing around 40 terms, nearly 75% of the documents

in the collection are scored. Even relatively short queries suffer from this problem. We

have observed that for queries containing around 8 terms, 35% of the documents in the

collection are scored. If the document collection contains 1 million documents, hundreds

of thousands of documents will be scored, far exceeding the number of documents an end

user is likely to be interested in. In light of this, the following hypothesis is put forth:✆ The set of documents to score, called the candidate document set, can be significantly

constrained with minimal effort, which in turn will produce a significant savings in

query evaluation execution time.

A new optimization technique was developed based on this hypothesis. The technique

populates the candidate document set in a light-weight preprocessing step using heuristics

to select the documents most likely to be relevant to the query. These documents are then

fully scored to generate the answer to the query. An evaluation of the new optimization

technique on large document collections using a variety of query sets showed that the

candidate document set can be reduced by over 90%. This in turn translates into a savings

in wall-clock execution time of over 50%, proving the above hypothesis. Furthermore,

retrieval effectiveness is maintained in the portion of the query result most likely to be

viewed by the end user.

The new optimization technique was also compared to and combined with a previously

proposed optimization technique, term-elimination. While the individual techniques per-

form comparably on certain query sets, our new technique was shown to be more robust in

13

all situations. Moreover, the two techniques are complementary, such that combining them

yields an additional improvement in performance.

Finally, the efficacy of applying the new optimization technique and term-elimination

on short, unstructured queries was evaluated, and the usefulness of high frequency (i.e.,

low idf) query terms was explored. It was found that high frequency query terms can

often be eliminated to yield substantial improvements in both execution speed and retrieval

effectiveness. While this is gratifying, it is actually indicative of a problem in the retrieval

model, suggesting that high frequency terms are not being handled properly. Appropriate

query modifications were explored to better incorporate high frequency query term infor-

mation into final document scores. These efforts led to a better understanding of both the

impact of high frequency query terms, and which techniques provide the best combination

of retrieval effectiveness and execution speed.

1.3 Research Contributions

The contributions of this thesis work are primarily practical in nature, with implications

for information retrieval system implementation. The contributions include:✆ Implementation and evaluation of a fast, scalable indexing system.✆ Design and implementation of an inverted file management architecture using “off-

the-shelf” data management technology, providing opportunities for all aspects of

an information retrieval system to benefit from traditional database management

features, such as buffer management and efficient low-level storage management.✆ Development and evaluation of an incremental indexing strategy enabled by the

above architecture.✆ Ground work for a comprehensive information management system where informa-

tion retrieval is a full-featured component.

14

✆ Development and evaluation of a structured query optimization that reduces execution

time by over 50% with no noticeable impact on retrieval effectiveness.✆ An investigation of the impact of high frequency query terms in short, unstructured

queries and how to handle them for best retrieval effectiveness and execution perfor-

mance.

1.4 Outline of the Dissertation

In the remainder of this dissertation, we begin with a survey of related work (Chapter 2).

We then consider the problems of indexing a document collection and managing an inverted

file, describe our solutions, and present results (Chapter 3). Next, we address the problem

of providing fast evaluation of structured queries, describe our solution, and present results

(Chapter 4). Finally, we summarize the conclusions drawn from this research and discuss

future work (Chapter 5).

15

16

CHAPTER 2

RELATED WORK

In this chapter we survey related work that is not specifically addressed in other parts

of the dissertation. We begin with a discussion of inverted file implementation issues

and alternatives, and then survey work on query optimization techniques for information

retrieval.

2.1 Inverted File Management

Inverted file management has been pursued from a number of perspectives. We begin

with a discussion of efforts to support information retrieval with a traditional database

management system, which range from treating IR as just a relational database application,

to loose integration of separate IR and database management systems. We then consider

custom inverted file management solutions, and briefly review alternative indexing schemes

for information retrieval.

2.1.1 Traditional Database Support for IR

The first body of work related to the research presented in this dissertation is the general

technique of providing information retrieval services using a standard database management

system (DBMS). Documents are stored by the DBMS and represented in such a way that the

query language of the DBMS can be used to construct information retrieval style queries.

Some of the earliest work was done by Crawford and MacLeod [18, 54, 17, 55], who

describe how to use a relational database management system (RDBMS) to store document

data and construct information retrieval queries. Similar work was presented more recently

17

by Blair [5] and Grossman and Driscoll [38]. Others have chosen to extend the relational

model to allow better support for IR. Lynch and Stonebraker [53] show how a relational

model extended with abstract data types can be used to better support the queries that are

typical of an IR system.

In spite of evidence demonstrating the feasibility of using a standard or extended

RDBMS to support information retrieval, the poor execution performance of such systems

has led IR system builders to construct production systems from scratch. Additionally, most

of the work described above deals only with document titles, author lists, and abstracts.

Techniques used to support this relatively constrained data collection may not scale to true

full-text retrieval systems. Moreover, sophisticated retrieval models such as the inference

network-based retrieval model are difficult to represent using an RDBMS. A custom re-

trieval engine will inevitably provide superior performance and is certain to better represent

the semantics of the retrieval model.

Other work in this area has attempted to integrate information retrieval with database

management [27, 74], and is representative of our comprehensive information management

system goal. The services provided by a database management system and an IR system

are distinct but complementary, making an integrated system very attractive. In this case, a

separate, self-contained information retrieval system is loosely coupled with a more tradi-

tional database management system. There is a single user interface to both systems, and

a preprocessor is used to delegate user queries to the appropriate subsystem. Additionally,

the DBMS is used to support the low level file management requirements of the whole

system.

Whether an RDBMS is used to implement an IR system or provide low-level storage

support for a loosely coupled IR system, the inverted file index required by the IR system

must be managed efficiently. We will see in Chapter 3 that the data management require-

ments of an inverted file are not easily satisfied by an RDBMS. Rather than use an RDBMS,

we propose the use of a persistent object store, favoring a data management system that

18

more naturally satisfies the unusual storage requirements of an inverted file. In particular,

the inverted lists in an inverted file will come in a broad range of sizes, with some of the

lists being very large. We will see that the persistent object store offers a straight forward

solution to the problem of managing these large objects.

Generic support for storage of large objects has been pursued elsewhere in the database

community. The EXODUS storage manager [13] supports large objects by storing them in

one or more fixed size pages indexed by a B+tree on byte address. For example, to access

the 12 bytes starting at byte offset 10324 from the beginning of a large object, the object’s

B+tree would be used to look up 10324 and locate the data page(s) containing the desired

bytes.

The Starburst long field manager [50] supports large objects using a sequence of variable

length segments indexed by a descriptor. As an object grows, a newly allocated segment

will be twice as large as the previously allocated segment. This growth pattern continues up

to some maximum segment size, after which only maximum size segments are allocated.

The last segment in the object is trimmed to a page boundary to limit wasted space. This

known pattern of growth allows a segment’s size to be implicitly determined, eliminating

the need to store sizes in the descriptor. A key component of this scheme is the use of a

buddy system to manage extents of disk pages from which segments are allocated. This

scheme is intended to provide efficient sequential access to large objects, assuming they are

typically read or written in their entirety.

Biliris [3] describes an object store that supports large objects using a combination

of techniques from EXODUS and Starburst. A B+tree is used to index variable length

segments allocated from disk pages managed by a buddy system. This scheme provides the

update characteristics of EXODUS with the sequential access characteristics of Starburst.

A comparative performance evaluation of the three schemes can be found in [4].

19

2.1.2 Custom Inverted List Management

Efficient management of full-text database indexes has received a fair amount of at-

tention. Faloutsos [29] gives an early survey of the common indexing techniques. Zobel

et al. [97] investigate the efficient implementation of an inverted file index for a full-text

database system. Their focus is on compression techniques to limit the size of the inverted

file index. They also address updates to the inverted file using large fixed length disk blocks,

where each block has a heap of inverted lists at the end of the block and a directory into the

heap at the beginning of the block. As inverted lists grow they are rearranged in the heap or

copied to other blocks with more space. Techniques for handling inverted lists larger than

a disk block are not discussed, nor is the disk block technique fully evaluated.

A more sophisticated inverted list implementation was proposed by Faloutsos and

Jagadish [31]. In their scheme, small lists are stored as inverted lists, while large lists are

stored as signature files. They have a similar goal of reducing the processing costs for long

inverted lists, but their solution is inappropriate for the inference network model. In [32],

Faloutsos and Jagadish examine storage and update costs for a family of long inverted

list implementations, where the general case is their “HYBRID” scheme. The HYBRID

scheme essentially chains together chunks of the inverted list and provides a number of

parameters to control the size of the chunks and the length of the chains. At one extreme,

limiting the length of a chain to one and allowing chunks to grow results in contiguous

inverted lists, where relocation of the inverted list into a larger chunk is required when the

current chunk is filled. At the other extreme, fixed size chunks and unlimited chain lengths

give a standard linked list.

Harman and Candela [41] use linked lists for a temporary inverted file created during

indexing. Their linked list nodes are quite small, consisting only of a single document

posting. Accessing the inverted file in this format during query processing is much too

inefficient, so the nodes in a linked list are ultimately conglomerated into a single inverted

list before the file is used for retrieval.

20

Tomasic et al. [84] propose a new inverted file data structure to support incremental

indexing, and present a detailed simulation study over a variety of disk allocation schemes.

The study is extended with a larger synthetic document collection in [76], and a comparison

is made with traditional indexing techniques. Their data structure manages small inverted

lists in buckets (similar to the disk blocks in [97]) and dynamically selects large inverted

lists to be managed separately. It is notable that they expect the scheme with the best

incremental update performance to have the worst query processing performance due to

fragmentation of the long inverted lists.

Moffat and Zobel [60] describe an inverted list implementation that supports jumping

forward in the list using skip pointers. This is useful for document based access into the

list during conjunctive style processing. The purpose of these skip pointers is to provide

synchronization points for decompression, allowing just the desired portions of the inverted

list to be decompressed.

Properly modeling the size distribution of inverted file index records and the frequency

of use of terms in queries is addressed by Wolfram in [91, 92]. He suggests that the

informetric characteristics of document databases should be taken into consideration when

designing the files used by an IR system. This is an underlying theme of the work described

here, where term frequency and access characteristics are carefully considered throughout.

2.1.3 Inverted File Alternatives

The most popular alternative to an inverted file is the signature file [30]. A signature

file contains document signatures, one for each document in the collection. A document’s

signature is a bit-string created by applying a hash function to each of the terms in the

document (documents may be sub-divided into blocks, with a separate signature for each

block). The hash function identifies one or more bits in the signature that should be set

to “1.” The width of the bit-string and the number of bits set by the hashing function are

parameters that control the likelihood of different terms setting overlapping bits.

21

During query evaluation, a signature is created from the terms in the query in the

same way. The query signature is then compared with all of the document signatures in

the signature file. A document will potentially match the query if the intersection of its

signature and the query signature is equal to the query signature. The match is “potential”

because terms different from those in the query may set the same signature bits as the query

terms, resulting in a false drop. In this case, a document is flagged as matching the query,

when in fact it does not. Note that the opposite cannot occur. If a document does contain

all of the query terms, this strategy will never fail to flag the document as matching. The

possibility of false drops means that documents with matching signatures must be processed

further to determine whether or not they truly match the query.

Signatures are commonly stored and manipulated in bit-slices. The nth bit-slice contains

the nth bit from all of the signatures, stored as a sequential string. With this organization,

we need to process only the bit-slices identified by the query signature, greatly reducing

the amount of data that must be read from the signature file. The cost of using a bit-

sliced organization is more expensive updates. This organization, however, is particularly

amenable to parallel processing, and a number of parallel implementations have been

described in the literature [63, 82].

It has long been argued that signature files provide performance superior to that obtained

with inverted files. Any performance advantage, however, comes at the cost of a more

restricted retrieval model—signature files typically support Boolean queries only. Croft

and Savino [23] show how signature files can be extended to support document ranking,

but ultimately find that equivalent performance can be obtained by using an inverted file.

More recently, Zobel et al. [96] give both analytical and empirical results that show inverted

files to be superior to signature files in all respects, regardless of the retrieval model. Given

their greater flexibility in terms of retrieval model and the recent results demonstrating

their superior performance, inverted files appear to be the index of choice for a full-text

information retrieval system.

22

2.2 Query Optimization

The database community has a rich history of query optimization techniques. In [37],

Graefe gives a comprehensive survey of query execution and optimization techniques,

concentrating mainly on the relational model. These techniques are generally based on an

algebra or calculus where query manipulations can be performed to reduce execution time

without modifying the semantics of the query. While some of these execution techniques

are applicable to information retrieval (e.g., set intersection techniques), the vague nature of

ranked retrieval makes it drastically different from the traditional database query paradigm,

where there is a single correct answer to any given query. In ranked information retrieval,

we can trade answer precision for speed using unsafe optimization techniques.

The unsafe query optimization techniques have their roots in the upper bound optimiza-

tions used to solve the nearest neighbor problem in information retrieval. In this model, a

query and the documents in the collection are represented as vectors in an n-dimensional

space, where n is the number of terms in the vocabulary. The problem is to find the docu-

ment closest to the query in this vector space. Distance in the vector space is defined by the

similarity measure used between a document and the query. This is typically some form of

dot product between the vectors. The dot product is limited to the terms that appear in the

query, so only documents that contain at least one of the query terms need be considered

in the nearest neighbor search. Inverted lists are used to identify documents that are the

potential nearest neighbor to the query. When a previously unseen document is encountered

in an inverted list, the document’s representation vector is retrieved to calculate its exact

similarity to the query. If this document is closer to the query than the current nearest

neighbor, it becomes the new nearest neighbor. When the inverted lists for all of the terms

in the query have been processed, the current nearest neighbor is returned as the answer to

the query.

Smeaton and van Rijsbergen [78] describe how an upper bound on the similarity of any

unseen document can be calculated based on the unprocessed query terms. If this upper

23

bound is less than the similarity of the current nearest neighbor, processing may stop. By

processing terms in order of increasing inverted list length, they achieve a 40% reduction

in the number of similarity calculations required to find the nearest neighbor.

An alternative technique for locating the nearest neighbor uses counters to gradually

accumulate a document’s similarity to the query. The accumulated similarity is based

solely on the information stored in the inverted lists, thus eliminating the need to retrieve

the document representation vectors. After all inverted lists have been processed, the

nearest neighbor is identified by selecting the maximum similarity from the counters. Perry

and Willett [64] show how the upper bound technique can be applied to this processing

strategy to reduce main memory requirements. The upper bound on the similarity of a

previously unseen document is calculated in the same way as before. If this upper bound is

less than the current best similarity for any previously seen document, the new document

is not allocated a counter since it cannot be the nearest neighbor. The overall number of

counters is reduced, resulting in main memory savings.

This processing strategy can be extended to support full ranking by computing the

complete similarity for every document encountered and sorting the set of counters to

produce the final ranking. This strategy is at the core of most modern ranking retrieval

systems, and can be restated as follows. A query consists of a set of terms, where each

term contributes a term weight for every document in which it appears. To evaluate the

query, the term weights for a given document are combined according to the semantics of

the particular similarity measure to produce a final score for the document. The documents

are then ranked by their final scores to produce the answer to the query. In essence, this

procedure involves allocating an array large enough to hold an identifier and final score for

each document, updating this array as each term weight from the terms is processed, and

sorting the final array by score.

In this processing strategy the goal of a query optimization is to avoid processing the

term weights that do not contribute significantly to the final document ranking. This can

24

be accomplished by identifying some subset of the term weights that will result in a final

ranking close to the “exact” ranking achieved when all term weights are processed. As this

subset becomes smaller and smaller, we expect the final ranking to differ more and more

from the exact ranking. The question now is how to select this subset. There are a variety

of methods to make this selection, and they all can be classified based on how they decide

the following:✆ which term weight to process next✆ when to stop

Both of these seemingly simple questions have interesting and subtle implications for

performance and implementation. The order in which term weights are processed will

affect the rate at which the array of scores is populated with discriminating information,

and has implications for the inverted list organization. The stopping condition is intimately

related to the term weight processing order and will determine how much work will be done

to answer the query and what claims can be made about the quality of the answer returned.

We consider possible answers to these questions below.

2.2.1 Term Weight Magnitude Ordering

The first term weight processing order is to greedily process term weights in order

of decreasing contribution to the final ranking. For a similarity measure that treats all

term weights equally, this is equivalent to processing term weights in order of decreasing

magnitude. This ordering is very appealing in that the document ranking scores will initially

grow very quickly and the relative order of the documents should be established early in the

processing. Term weights processed later in the order will be smaller, having less chance

to change the relative ranking of the documents.

To support this processing order, the term weights must be extracted from the inverted

lists in decreasing sorted order. Practically speaking, this would be accomplished by storing

25

the document entries in the inverted lists in decreasing term weight order. The next term

weight to process would be chosen by examining the next term weight in each inverted list

and selecting the largest of these values.

The stopping condition for this processing order can be defined in a number of ways.

First, we might simply stop after processing some arbitrary percentage of the term weights,

assuming that retrieval effectiveness is a logarithmic function of the number of term weights

processed and execution time is a linear function of the number of term weights processed.

Determining what these functions actually look like might be done experimentally or

analytically. The problem with this scheme is that, short of processing all of the term

weights, it gives us no guarantees on the correctness of the final ranking obtained. This

scheme was proposed by Wong and Lee [93], who describe two estimation techniques for

determining how many term weights must be processed to achieve a given level of retrieval

effectiveness.

An alternative to this ad-hoc stopping condition would be a stopping condition that

takes advantage of the organization of the term weights. Each term will contribute at most

one term weight to each document being considered. If we keep track of which terms have

contributed a term weight to a given document so far, we can calculate an upper bound

on the final score for that document using the current term weights from each of the terms

which have not contributed a term weight for that document (since a term’s term weights are

processed in decreasing sorted order). Moreover, we can use the current partially computed

score for a document as a lower bound for that document’s final score. At any given

time, if a document’s lower bound exceeds all other document’s upper bounds, then further

consideration of that document can stop and the document can be returned as the current

best document. With this stopping condition, we can guarantee that the top n documents

will be returned in the correct order, making the scheme safe for the top n documents. The

disadvantage of this scheme is the computational costs of the required bookkeeping, which

26

may exceed any savings in term weight processing. This scheme is described by Pfeifer

and Fuhr [66].

If we are more concerned with obtaining the top n documents and less concerned with

their relative ranking, we can define another stopping condition. At any given time, an

upper bound on the remaining increase in any document’s score is given by the sum of the

current term weights from each of the terms. Assume the documents are ranked by their

current partially computed scores. When the n+1st document’s current score plus the upper

bound on the remaining document score increase is less than the nth document’s score, we

know that the top n documents will not change and processing can stop. We can return the

top n documents, but we cannot guarantee their relative ranking.

Rather than place a hard limit on the size of the set of documents returned, thresholds can

be established that determine how a term weight is processed. Such a scheme is described

by Persin [65]. If a document is not in the set of documents currently being considered

and has no current score (i.e., no term weights have been processed for that document), an

insertion threshold is used to determine if a term weight for that document is significant

enough to place the document into the consideration set. If the document is already in the

consideration set, an addition threshold is used to determine if a term weight is significant

enough to modify a document’s current score. The addition threshold allows us to stop

processing an inverted list as soon as its term weights fall below the addition threshold.

The insertion threshold ensures that we consider only documents which have a significant

term weight contribution from the terms. With this scheme, we can make no claims about

the quality of the final ranking.

2.2.2 Document Based Ordering

None of the previous schemes can guarantee that a complete score for a given document

has been computed. All that might be guaranteed is that the top n documents have been

returned, and in one case, that they are correctly ranked. If we require that complete final

27

scores be calculated for all documents ranked, then the term weight processing order may

be document driven using a document-at-a-time query processing strategy. In this scenario,

once the current document to process has been identified, the term weights for all of the

query terms that appear in that document must be processed. This requires document based

access into the inverted lists and is most easily supported by storing the document entries

in the inverted lists in document identifier order. Now we must decide the order in which to

process the term weights for the current document. The order of decreasing contribution to

the document’s final score is most useful. Assuming a tf ☎ idf style term weighting function,

this can be accomplished by processing the term weights in decreasing order of idf .

This per document term weight processing order allows us to use the following stopping

condition. Assume we wish to return the top n documents. We begin by initializing the

set of top n documents with complete scores for the first n documents. We then identify

the minimum score S from these top n documents. For each of the remaining documents,

an upper bound on the current document’s final score can be calculated from its currently

accumulated score and the idf of the terms not yet processed for the document. If this upper

bound becomes less than S, processing of the current document can stop because it cannot

appear in the top n documents. If a complete score for the document is computed which is

greater than S, the document is placed in the set of top n documents and S is recalculated.

This scheme guarantees that the top n documents are returned, correctly ranked and with

complete final scores. Processing savings will accrue whenever a document’s upper bound

descends below S and the document is eliminated from consideration before its complete

score is calculated. I/O savings may accrue if we have the ability to skip portions of inverted

lists. Frequent terms will occur late in the processing order and will have long inverted

lists. Many documents will be eliminated from consideration before these frequent terms

are processed, such that much of the inverted list information for these terms can be skipped.

This scheme is called max-score by Turtle and Flood [89].

28

The document processing order used above will attempt to calculate a score for every

document that appears in the inverted lists of the query terms. In fact, we can identify

another stopping condition at which point all document processing can stop. As processing

proceeds, all of the term weights from short inverted lists will eventually be processed,

such that those terms no longer need to be considered. If the upper bound contribution of

the remaining terms which still have term weights to process descends below S, then all

processing can stop. We may be able to achieve this condition more quickly by altering the

document processing order to process first those documents which appear in the shortest

inverted lists, encouraging the early exhaustion of these lists.

2.2.3 Term Based Ordering

The last term weight processing order is term based, where all of the term weights for a

given term are processed at once. This corresponds to term-at-a-time query processing (see

[89] for a comparison of term-at-a-time and document-at-a-time processing). As with the

per document term weight processing order above, terms are processed in decreasing order

of document score contribution, approximated by the term’s idf score. This strategy will

cause the terms to be processed in order of inverted list length, from shortest to longest.

The first stopping condition we will consider was originally described by Buckley and

Lewit [10] and later discussed by Lucarella [52]. It is intended to eliminate processing of

entire inverted lists, and is similar to the third stopping condition described in Section 2.2.1.

Assume that we are to return the top n documents to the user. After processing a given

term, the documents can be ranked by their currently accumulated scores, establishing the

current set of top n documents. An upper bound on the increase of any document’s score

can be calculated from the unprocessed terms in the query, assuming the maximum possible

term weight contribution from each of those terms. If the n + 1st document’s score plus the

upper bound increase is less than the nth document’s score, then we know that the set of

top n documents has been found. At this point we can stop processing and guarantee that

29

the top n documents will be returned. We cannot, however, guarantee either the relative

ranking of the documents within the set or that complete scores have been calculated for

those documents.

This scheme elegantly addresses the irony where the most expensive terms to process

contribute the least to the final score. Since the terms are processed in order of decreasing

score contribution, the upper bound score increase will diminish as quickly as possible, and

the most expensive terms to process will be eliminated by the stopping condition. Note also

that since the processing order and stopping condition are completely term based, there are

no constraints on the organization of the document term weights within an inverted list.

There are three variations on this stopping condition, all of which are similar to the last

stopping condition described in Section 2.2.1. The first variation was proposed by Harman

and Candela [41], called pruning. Rather than place a limit on the number of documents

returned to the user, we can establish an insertion threshold for placing new documents

in the candidate set. In this case, the insertion threshold is term based, such that a term’s

potential score contribution must exceed some threshold in order for the term to contribute

new documents to the candidate set. Processing will then have two distinct phases. First,

during a disjunctive phase, documents will be added to the candidate set and partial scores

updated as usual. Then, after the insertion threshold is reached, a conjunctive phase will

occur where terms are not allowed to add new documents, only update the scores of existing

documents. This scheme can make no guarantees about the membership of the set. It does,

however, calculate complete scores for the documents in the candidate set, guaranteeing a

correct relative ranking.

The second variation was proposed by Moffat and Zobel [60, 58, 59]. Rather than

use an insertion threshold related to a term’s potential score contribution, a hard limit is

placed on the size of the candidate document set. The disjunctive phase proceeds until the

candidate set is full. Then, the conjunctive phase proceeds until all of the query terms have

been processed. This variation makes the same guarantees as the previous one.

30

The third variation is a term-at-a-time version of max-score described by Turtle and

Flood [89]. New documents are added to the candidate set until the upper bound score of an

unseen document (determined from the maximum possible term weight contributions of the

unprocessed terms) falls below the current partial score of the nth document. At this point,

we know that no unseen document can appear in the top n documents. Processing then

continues in a conjunctive fashion, updating the scores for just those documents currently

in the candidate set. When a given document’s score is updated, its maximum possible

score is computed assuming it contains all of the unprocessed terms. If this maximum score

is less than the nth score, this document is eliminated from the candidate set. This variation

will guarantee that the top n documents are returned in the correct order.

During the conjunctive processing phase of the last three variations, access into the

inverted lists will be document based. This suggests that, for the most efficient process-

ing, document entries within the inverted lists should be sorted by document identifier.

Moreover, as in Section 2.2.2, the ability to skip portions of inverted lists should provide

significant I/O savings during this processing phase.

There are two other optimization techniques that do not easily fit into the the taxonomy

used above. First is the two stage query evaluation strategy of the SPIDER information

retrieval system [75, 47]. In SPIDER, a signature file is used to identify documents that

potentially match the query, and an upper bound is calculated for each document’s similarity

to the query. Non-inverted document descriptions are then retrieved for these documents

in order of best upper bound similarity and used to compute an exact similarity measure.

As soon as a document’s exact similarity measure exceeds all other documents’ upper

bound (or exact) similarity measures, this document can be returned as the best matching

document. Correct document scores and rankings are guaranteed.

The second optimization technique, list pruning, was proposed by Smith [79] for the

p-norm retrieval model (an extended Boolean retrieval model). During term-at-a-time

evaluation, intermediate result lists are pruned by removing all document entries whose

31

current score is less than some score threshold. This threshold may be constant, or it

may be determined dynamically based on the contents of the intermediate result. Pruned

intermediate result lists require less computation as query evaluation proceeds, resulting in

potential execution time savings. A document eliminated from one part of the query may be

re-introduced in another part, however, allowing documents to have inaccurate final scores.

The accuracy of the final document ranking, therefore, cannot be guaranteed.

32

CHAPTER 3

INDEXING

In this chapter we consider two problems: efficiently building an inverted file index

for a document collection, and updating that index to reflect modifications to the document

collection. Indexing is an important procedure in any information retrieval system—a

document collection cannot be searched efficiently (if at all) unless it has been indexed. A

variety of indexing procedures have been proposed in the literature [41, 35, 42], although

only recently have procedures been described that claim to index large document collections

efficiently [57, 90]. While we are certainly concerned with finding an efficient indexing

technique for large document collections,we are equally concerned with supporting dynamic

document collections. A document collection is dynamic if new documents can be added to

an existing collection, old documents can be deleted from an existing collection, or existing

documents can be modified. We will, therefore, pursue a more comprehensive solution to

the problem of building and managing a document collection index.

The ability to modify an existing document collection is a natural requirement for

any information retrieval system. New documents will forever be created, discovered,

delivered, or requested. If the information contained in these new documents is to be

integrated into and accessible from the current information base, then the new documents

must be added to the existing document collection. Some applications have very explicit

requirements for supporting document collection modification. For example, an on-line

news wire service with a current events document collection must grow the collection

frequently and efficiently. There will be a continuous stream of new articles coming in on

the news wire. In order to answer queries about recent newsworthy events, the new articles

33

must be added to the current events document collection shortly after they are received.

Additionally, old news articles will eventually expire and must be deleted from the current

events document collection. Articles may expire either because their content is relevant only

for a certain period of time, or because the size of the current events collection must be held

below some threshold due to performance requirements or capacity limitations. Expired

articles will either be discarded or archived in a larger secondary document collection,

leading to further document addition operations.

Even if all of the documents that are to be added to the document collection are available

simultaneously, the ability to add new documents to an existing document collection can

be useful. As we will see in Section 3.1 when we consider the mechanics of document

indexing in more detail, if the inverted file does not support growth, the indexing process can

require substantial temporary disk space resources, especially if the document collection to

be indexed is large. If instead the inverted file does support growth, then temporary disk

space requirements can be significantly reduced using incremental indexing. An incremental

indexing strategy indexes the documents in batches, where each batch indexing step requires

little or no temporary disk space and yields a complete index for the documents processed

so far. The key to this strategy is the ability to build on the output of previous batch indexing

steps by growing the inverted file that was built during those steps. Underlying all of this

is the ability to add new documents to an existing collection.

Modifications to documents in an information retrieval system may come about for a

number of reasons. Consider, for example, a collaborative authoring system. In this ap-

plication, multiple authors will be simultaneously modifying documents in the collection.

The information retrieval system must be able to incorporate these modifications in order

to faithfully track the information content of the document collection. Of course, document

modifications are not restricted to applications specifically intended to support document

creation. An information retrieval system that stores manuals or documentation will in-

evitably be asked to modify those documents as they are revised and updated. Although

34

document modifications arise in a variety of situations, most of these situations can be ac-

commodated using a versioning scheme. A modified document is simply a new version of

the original document, and is added to the document collection as a new document, distinct

from the original. The original document can then be deleted, or a higher level mechanism

can be used to track multiple versions of the same document in the document collection.

Either way, as long as document additions and deletions are supported by the information

retrieval system, no extra functionality is required to support document modifications.

The level of functionality provided by the inverted file implementation will determine

how well the overall system can satisfy the requirements of a dynamic document collection.

During query evaluation, rather than operate on the documents themselves, the retrieval

engine processes the contents of the inverted file. As far as the retrieval engine is concerned,

the membership of the document collection is defined by the inverted file. A document has

not been truly added to the document collection until the inverted file has been updated to

reflect that addition. The same holds true for document deletions. The question of how

to support a dynamic document collection is in large part a question of how to support a

dynamic inverted file.

In the rest of this chapter we will pursue this question in detail. We begin with a

discussion of the general indexing process—how to build the inverted file in the first place.

For large document collections, building an inverted file efficiently is a difficult problem.

We have extended a previously described indexing technique to produce a fast, scalable

indexing system. The output of this system is complete inverted lists for the input document

collection. These lists are handed to the Inverted File Manager, which is responsible for

the low-level storage and retrieval of the inverted file. The Inverted File Manager is the

core system component that determines the overall functionality available for inverted file

manipulation. We will describe the issues pertinent to building an Inverted File Manager,

the particular solution we have chosen, and our implementation of that solution. This

discussion is followed by an experimental evaluation of our solution. The measurements

35

will focus on indexing whole document collections from scratch and adding new documents

to an existing document collection. These two activities represent the most common and

crucial indexing activities that must be performed by an information retrieval system. This

emphasis stems from the traditional role of IR systems in managing archival document

collections, which are either static or growing. The experimental results are followed by

conclusions.

3.1 Document Inversion

The process of indexing a document collection and building its inverted file is called

inversion. Initially, we can easily identify the terms that appear in a given document simply

by inspecting the document—the terms are what make up the document. Ultimately, what

we want is the inverse of this, such that given a term, we can identify the documents

that contain that term. Suppose we create a tuple ✝ d, t, l ✞ to represent each document/term

occurrence pair, where d is a document identifier, t is a term identifier, and l is the location

of the occurrence of term t in document d. An example is given in Figure 3.1. There is

a tuple for every term occurrence in the document collection. When we scan a document

collection from start to finish, the tuples for the collection will come out in an order sorted

first on d and second on l. For an inverted document collection, we want these tuples sorted

first on t, second on d, and third on l. As such, the inversion process can be viewed as a

large tuple sorting problem, going from the collection sort order to the inverted sort order.

A closer look at the problem, however, shows that a full sort of the collection tuples is

not actually necessary. A comparison of the collection sort order and the desired inverted

sort order reveals that the collection sort order is partially in the desired inverted sort order.

In the collection sort order, the tuples are fully sorted on d. In the inverted sort order, all

of the tuples for a given t are sorted by d. Furthermore, in both the collection sort order

and the inverted sort order, all of the tuples for a given ✝ d, t ✞ pair are sorted by l. This

suggests the following inversion strategy. First, maintain a separate list of tuples for each

36

1. the
2. cat
3. ate
4. snake
5. dog
6. chased

Documents Terms

Tuples

Collection
 Order

Inverted
 Order

1. The cat ate the snake

2. The dog chased the cat

3. The snake chased the dog

<1, 1, 1>
<1, 2, 2>
<1, 3, 3>
<1, 1, 4>
<1, 4, 5>
<2, 1, 1>
<2, 5, 2>
<2, 6, 3>
<2, 1, 4>
<2, 2, 5>
<3, 1, 1>
<3, 4, 2>
<3, 6, 3>
<3, 1, 4>
<3, 5, 5>

<1, 1, 1>
<1, 1, 4>
<2, 1, 1>
<2, 1, 4>
<3, 1, 1>
<3, 1, 4>
<1, 2, 2>
<2, 2, 5>
<1, 3, 3>
<1, 4, 5>
<3, 4, 2>
<2, 5, 2>
<3, 5, 5>
<2, 6, 3>
<3, 6, 3>

Figure 3.1 Document collection tuples

term in the collection. Then, scan the document collection and process the tuples in their

collection order. As each tuple is processed, append it to the tuple list for the term that

appears in the tuple. The document id order and term occurrence location order will be

preserved automatically in the new term based tuple lists, and the inverted tuple order will

be obtained.

We must consider a number of issues before implementing this inversion strategy.

First, large document collections contain a large number of distinct terms. The 1 GB

TIPSTER [39] document collection used in the experiments below (Tip1) contains 639,914

terms. During the inversion process we need appropriate data structures to keep track of

639,914 distinct term lists. Second, large document collections contain a large number of

term occurrences. The 1 GB TIPSTER document collection contains 112,812,693 term

occurrences, translating into 112,812,693 tuples. If a four byte integer is used for each

element of a tuple, each tuple will occupy 12 bytes and the total memory requirement for

all of the tuples will be 1.3 GB. If the inversion process is run on a workstation equipped

37

with 64 MB of main memory (a likely scenario these days), all of the tuples clearly will

not fit in main memory. It is therefore inevitable that inverting a large document collection

requires some amount of disk I/O. Careful management of this disk I/O is essential for

efficient inversion of large document collections.

There are two basic guidelines regarding disk I/O that will govern our implementation.

First, perform as little I/O as possible. Second, when I/O must be performed, favor

sequential I/O over random I/O in an effort to avoid disk head positioning. The first

guideline is somewhat obvious. The second guideline is based on the costs associated

with the different components of a disk access [14]. The time to perform a disk access is

made up of head positioning time, which includes seeking and rotational latency, and data

transfer time. Average head positioning times are currently around 15 milliseconds, and

data transfer rates are around 5 MB per second. Given the relatively fast data transfer rates

and slow head positioning times, it is advantageous to amortize the head positioning cost

over larger data transfers. Sequential I/O provides this desirable behavior, while random

I/O does not.

With these guidelines in mind, the following document indexing procedure was imple-

mented for INQUERY. The overall process is a unique combination of the main memory

linked list and multiway merge schemes with compressed temporary files described by Wit-

ten et al. [90], and consists of two main operations: parsing and merging. The subsystem

responsible for parsing is called the Parser. It creates partial inverted lists by scanning,

lexically analyzing, and inverting documents. A partial inverted list contains document en-

tries for a subset of the documents in the collection. It must be combined with other partial

inverted lists for the same term to create a final inverted list for the document collection.

The Parser buffers partial inverted lists in main memory and flushes them to temporary files

when the buffer is full. The subsystem responsible for merging is called the Merger. After

all of the documents have been parsed, the Merger combines the temporary files to produce

the final inverted lists for the collection.

38

struct location
 {
 int position;
 struct location *next;
 }

location node

struct doc_token
 {
 struct doc_token *left;
 struct doc_token *right;
 struct location *loc_list;
 int tf;
 char term[];
 }

document token node

location
node

document

token node

Figure 3.2 Document buffer binary tree

3.1.1 Parsing

Document indexing begins with parsing. The Parser scans and lexically analyzes each

document, producing a stream of tokens from the documents. The Parser checks each

scanned token against a stop words list (a list of terms too frequent to be worth index-

ing) [33, 34] and discards any tokens that it finds in the list. Tokens that survive the

stop words list are run through a stemmer [36]. Stemming reduces a term to its root

form, mapping different morphological variants to a common stem. This process con-

flates different representations of the same concept into a single representation, improving

retrieval effectiveness by eliminating mismatches between morphological variants of the

same term. It also compresses the index by reducing the total number of terms that are

indexed. Our indexing implementation uses document scanning, stopping, and stemming

utilities developed by others at the University of Massachusetts [12]. Our contribution to

the implementation is the portion of the system the handles the tokens from this point on.

39

The next step in the parsing process is assembly of the stemmed tokens and their

locations into partial inverted lists for the current document. This occurs gradually as the

Parser stores the location of each token occurrence in the document buffer. The document

buffer is organized as a binary search tree of token nodes sorted on term strings, depicted

in Figure 3.2. Each token node in the tree contains a count of the number of times the

associated term occurs in the current document and a pointer to a linked list of location

nodes containing the locations of each occurrence of the term. The Parser searches the

binary tree for each scanned token and either finds a token node for the current token in the

tree, or creates and inserts a new token node for the current token. The Parser then creates

a location node for the current token and adds the location node to the head of the linked

list of locations for the token.

The primary motivation for building partial inverted lists on a per document basis is to

reduce the time spent searching for each token’s partial inverted list as the tokens are parsed

out of the document. Since the document buffer contains inverted list entries just for the

current document, the number of token nodes in the binary tree will grow only to the size

of the vocabulary used within the current document. Documents in the 3.2 GB TIPSTER

collection [39] contain an average of 132 unique terms, while the entire collection contains

1,062,677 unique terms. Searching for each parsed token in the binary search tree requires

O(lg(n)) time, where n is the number of nodes in the binary search tree. For the average

document, we will traverse O(lg(132) = 7) binary tree nodes for each parsed token using a

per-document binary search tree. In comparison, if the binary search tree contained a node

for every term in the collection, we would traverse O(lg(1062677) = 20) binary tree nodes

for each parsed token.

When all of the tokens have been parsed out of the current document, the document

buffer is flushed to the batch buffer. The batch buffer holds partial inverted lists for a batch

of documents, where a batch consists of as many documents as can be parsed before the

batch buffer is full. The batch buffer is organized as a hash table of token nodes keyed on

40

struct batch_token
 {
 struct batch_token *next;
 struct doc_entry *doc_ents;
 int coll_freq;
 int doc_cnt;
 int data_bytes;
 int first_doc_id;
 int last_doc_id;
 char term[];
 }

struct doc_entry
 {
 int doc_id;
 int tf;
 int max_tf;
 int locations[];
 }

document entrybatch token node

document
entry

batch token
node

hash
table

Figure 3.3 Batch buffer hash table

term strings, depicted in Figure 3.3. The batch buffer could actually be organized using any

dynamic data structure that supports search and insert operations (e.g., a binary search tree).

The choice of a hash table is motivated by incremental indexing requirements, which are

discussed below in Section 3.2.3.3. The hash table size is fixed at 8191 slots and collisions

are resolved by chaining together tokens that hash to the same slot. A batch token node

stores a document count, collection frequency, and byte count for the current partial inverted

list. It also points to a linked list of document entries—the “data” of the partial inverted list.

The document count is equal to the number of document entries in the partial inverted list,

the collection frequency is equal to the total number of term locations stored in the partial

41

inverted list, and the byte count is the total number bytes occupied by all of the document

entries in the linked list.

The Parser flushes the document buffer to the batch buffer by traversing the document

buffer in a preorder tree walk. At each document token node, the Parser either finds the

corresponding node in the batch hash table, or creates a new batch token node and inserts it

into the hash table. The Parser then builds a document entry, which contains the document

identifier, term frequency, maximum term frequency for the document, and token locations

list (see Figure 3.3). Document identifiers are assigned from a global document counter,

which is incremented as each document is processed. The term frequency, tf , is obtained

from the document token node. A document’s maximum term frequency, max tf , is the

maximum of ✁ tf1, tf2, tf3, . . . ✂ , where tfi is the frequency of term i in the document. max tf

is calculated on the fly as each tfi is updated during document parsing. The locations list is

obtained by walking the linked list of location nodes.

The Parser compresses all of the numbers in a document entry using a variable length

byte encoding scheme [73]. The encoding scheme represents each integer in base 2 using the

minimum number of bytes. The 8th bit in each byte serves as a termination flag, indicating

whether or not the last byte for the current integer has been processed. This leaves seven

bits per byte to store the integer, such that the largest integer representable by a sequence

of n bytes is 2n ✟ 7. In this compression scheme, smaller integers consume less space. We

will achieve better compression, therefore, if we can reduce the magnitude of the integers

to be compressed. A common technique for reducing the magnitude of integers that form

a sequence of nondecreasing numbers is delta encoding [25] (the deltas are called gaps by

Bell et al. [2]). To delta encode a sequence of numbers, the first number is stored as an

absolute value and each subsequent number is stored as the difference between itself and

the previous number.

An inverted list provides two opportunities for delta encoding. The first opportunity

is found in the token locations list within each document entry. The locations list is delta

42

encoded when the linked list of location nodes is traversed to create a document entry. The

second opportunity is found in the sequence of document identifiers across the document

entries in an inverted list. To delta encode the document identifier in a document entry, we

must keep track of the document identifier in the last document entry that was chained onto

the batch token node’s linked list of document entries in the batch buffer. This information

is kept in the batch token node and updated as each document entry is added.

After a document entry’s locations list and document identifier have been delta encoded,

the entry is compressed as described above. The compressed document entry is placed in

the batch buffer and chained onto the batch term’s linked list of document entries. The batch

term’s document count, collection frequency, and byte count are then updated to account

for the new document entry. When all of the token nodes in the document buffer have been

processed and added to the batch buffer, the next document in the collection is parsed.

When the batch buffer is full, it is flushed to a temporary file block. To facilitate the

eventual merging of temporary files, the partial inverted lists in each temporary file block

must be written in the same order. The token strings provide a natural key on which to sort

the partial inverted lists and ensure a consistent ordering across temporary files. Since the

batch buffer is organized as a hash table, the batch token nodes are not directly available

in token string order; they must first be sorted by token string. This is accomplished using

an array of pointers to the batch token nodes. The pointers are sorted based on the strings

in the token nodes that they reference, and an iteration through the array yields the token

nodes in sorted order.

A batch token node is written to the temporary file block in three steps. First, the token

string is written with a terminating null character. Second, the statistics for the partial

inverted list are compressed and written. The statistics consist of the collection frequency,

document count, byte count, and document identifiers in the first and last document entries

for the partial inverted list. Third, the compressed document entries are written in document

identifier order.

43

This parsing scheme generates a large number of small main memory data structures (i.e.,

token nodes, location nodes, and document entries). Main memory allocation, therefore,

must be fast. The Parser preallocates main memory for the document and batch buffers

and manages each buffer as a heap. To allocate memory from one of the heaps, the Parser

need only advance a current pointer and perform a limit check to ensure that the heap

has enough room to satisfy the current request. This heap based buffer implementation

provides fast memory allocation and simple reclamation of an entire buffer—we merely

reset the current pointer to the beginning of the heap. If the document buffer heap cannot

satisfy the current memory request during document parsing, additional main memory is

temporarily allocated to the document buffer, allowing the system to finish parsing the

current document. Similarly, if the batch buffer cannot satisfy the current memory request

during document buffer flushing, additional main memory is temporarily allocated to the

batch buffer so that the system can finish flushing the document buffer, after which the

batch buffer is flushed.

3.1.2 Merging

A temporary file produced by the Parser will contain one or more blocks of partial

inverted lists, where each block corresponds to a batch of documents. The partial inverted

lists within a block are complete inverted lists for the documents indexed during the corre-

sponding batch. To build final inverted lists for the entire document collection, the partial

inverted lists from all of the blocks must be merged.

The merge is performed in main memory by allocating an M byte merge buffer and

dividing it evenly among all of the temporary file blocks. If there are N temporary file

blocks, the merge buffer can be filled using N disk reads. Ideally, each disk read will

consist of a single disk seek followed by a single data transfer of M/N bytes. This behavior

is encouraged by the Parser, which sequentially writes batches to their temporary file blocks.

If the aggregate space occupied by the temporary file blocks is T bytes, the total number

44

of disk seeks required will be TN
M

. For example, using a 20 MB merge buffer, 2500 disk

reads are required to merge 50 temporary file blocks that occupy a total of 1 GB on disk.

Assuming ideal conditions—each disk read requires one disk seek and one data transfer—

the 15 millisecond average head positioning time and 5 MB per second data transfer rate

cited above yield 37.5 seconds for disk seeks and 200 seconds for data transfer. Even

though reading the temporary file blocks in this fashion might appear to require significant

random disk I/O, this example shows that disk seek time can be limited to less than 16% of

the total I/O time.

The merge buffer provides an interface to the temporary file blocks for the Merger. In

the rest of this discussion, we will describe the Merger as if it were interacting directly with

the temporary file blocks. Bear in mind, however, that the Merger is actually manipulating

the portions of the temporary file blocks that are currently buffered in the main memory

merge buffer.

Once the merge buffer has been primed from the temporary file blocks, the actual merge

process can begin. Recall that the Parser sorts a batch of partial inverted lists by token

string before flushing the batch to its temporary file block. This ensures that all of the

blocks will present their partial inverted lists in the same order when the blocks are read by

the Merger. On each iteration of the merge process, the Merger considers all of the partial

inverted lists currently presented for processing by the temporary file blocks and identifies

the partial inverted list with the lexicographically smallest term string. This becomes the

current token. The partial inverted lists presented by all of the other blocks will either have

the same token string as the current token or a larger token string, allowing the Merger to

find all of the partial inverted lists that match the current token simply by inspecting the

current partial inverted list in each block.

When all of the matching partial inverted lists have been found, the Merger must

concatenate them such that all of the merged document entries are sorted by document

identifier. The document entries in a given block pertain to the documents parsed during

45

the corresponding batch and are already sorted within each partial inverted list by document

identifier. For any two blocks, all of the document identifiers in the first block will be less

than all of the document identifiers in the second block if the first block was created before

the second block. Therefore, the document identifiers across blocks will be sorted if they

are concatenated in order of block creation time.

Witten et al. [90] point out that the problem of selecting the smallest token from the

set of partial inverted lists currently presented for processing is similar to the problem of

managing a priority queue. A convenient data structure for managing a priority queue

is the binary min-heap [16], which allows quick extraction of the minimum element in a

set. A binary min-heap consists of an array A of n elements numbered 1 through n. Each

element i > 1 in the array satisfies the min-heap property: A[parent(i)] < A[i], where

parent(i) = ✠ i/2 ✡ . The min-heap property guarantees that A[1] is the minimum element in

the array, and O(lg n) time is required to arrange A so that it satisfies this property.

The Merger was implemented using a binary min-heap. There is one element in the

min-heap for each temporary file block being merged. Each element corresponds to the next

partial inverted list to be processed from the associated block. The comparison function

used for the min-heap property has two components. The primary component is a string

comparison of the partial inverted list tokens for the two elements being compared. The

secondary component is a comparison of the creation dates for the associated temporary file

blocks. The current token is readily available from the top element in the min-heap, and

matching tokens from the remaining blocks are found by extracting elements from the heap

until a non-matching token appears at the top of the heap. The secondary component of the

min-heap comparison function causes matching tokens to be extracted from the min-heap

in temporary file block creation order, which is also the concatenation order for the partial

inverted lists.

The Merger builds the final inverted list for the current token by concatenating the

matching partial inverted lists as they are extracted from the min-heap. When all of the

46

matching partial inverted lists have been processed, the final inverted list for the current

token is output. Each block that contributed a partial inverted list for the current token

is advanced to its next partial inverted list and the new elements are inserted into the

min-heap. A new current token is then selected from the min-heap and the merge process

repeats, iterating until all of the partial inverted lists in the temporary file blocks have been

consumed.

As the final inverted lists are produced, they may be written to disk in a sequential

fashion, adhering to our rule of favoring sequential I/O over random I/O. Storing the final

inverted lists on disk and making them available for future access is the responsibility of

the Inverted File Manager. The Inverted File Manager has a significant impact on the

functionality and performance of the overall system, and its design and implementation

require careful consideration of a number of important issues. In the next section, these

issues are considered and the Inverted File Manager that was designed and implemented is

described.

3.2 The Inverted File Manager

The Inverted File Manager is responsible for storing the inverted lists created by the

document inverter and making their contents available during query evaluation. Access to

the inverted lists is provided through a high-level interface that includes operations such

as store a new list, modify an existing list, open a specified list for access, sequentially

output the document entries from an open list, and close a list. This interface serves to

shield the rest of the system from the low-level inverted file implementation details, and

confines consideration of a number of important issues to just the Inverted File Manager.

In particular, the problem of how to support a dynamic document collection can in large

part be solved within the Inverted File Manager.

To see this more clearly, consider the process of adding new documents to an existing

document collection. The documents being added will contain a combination of old and

47

new terms. New terms do not appear in the existing document collection and require new

inverted lists to be built and added to the inverted file. Old terms already have inverted lists

in the inverted file; these lists must be updated with entries for the new documents. Since

document entries within an inverted list are sorted by document identifier, if new documents

are always assigned increasing document identifiers, the new document’s inverted list entries

can simply be appended to the existing inverted lists. The functionality required to support

an append operation is the ability to grow existing inverted lists. In order to add new

documents, therefore, we must be able to add new inverted lists to an existing inverted file

and grow existing inverted lists already in the inverted file. Both of these operations require

low-level support from the Inverted File Manager.

The tasks that must be performed by the Inverted File Manager are suggestive of a

traditional data management problem that can be solved using a general data management

facility. In fact, inverted file modification combined with multi-user access to the overall

information retrieval system introduces a host of data management issues that naturally

fall within the purview of a database management system [28]. Besides the issues of

data storage, modification, and access, a multi-user system must contend with issues of

concurrency control, recovery, and transactions that ensure consistent and complete actions

against the database.

A logical solution to satisfying this long list of data management requirements is to

implement the Inverted File Manager using a relational database management system

(RDBMS). An RDBMS provides a number of tools for sophisticated management of

structured data, including a data definition language for describing the schema of the

database, a declarative query language for populating, manipulating, and accessing the

database, a powerful transaction facility for consistent multi-user access to the database,

and a backup and recovery mechanism to protect the database in the event of failures. An

RDBMS can easily satisfy all of the functionality requirements imposed by the Inverted

File Manager, and others have shown how such a system can actually be built [67, 26].

48

The problem with this approach is that an RDBMS is designed to support record based

data with rich structure and interesting relationships. The relational data types are tailored

to this record orientation and the data access methods are optimized for selecting subsets

of records and attributes and joining multiple records based on their relationships. Inverted

lists, on the other hand, have no pre-determined relationships with other inverted lists

and are usually accessed in a sequential fashion. This access characteristic suggests that

inverted lists should be represented as strings of bytes. Although an inverted list can be

decomposed into records and attributes, storing it this way in a relational database forces the

use of expensive join operations in order to effect sequential processing of the overall list.

Basically, an RDBMS provides too much—the general data structures and access methods

are wasted when managing an inverted file. Rather than simplifying manipulation of the

inverted lists, an RDBMS complicates inverted list operations and imposes unnecessary

overheads.

The limited way in which inverted lists are accessed leads to consideration of a custom

software implementation for the Inverted File Manager. This is the route most information

retrieval system developers have chosen. Assuming we are willing to build and main-

tain the system, the specific functionality and performance requirements of inverted list

management can be satisfied exactly. This is a big assumption. While minimum function-

ality requirements can be met without too much work, satisfying the demands of a large,

dynamic, multi-user system requires significant effort. Concurrency control and recov-

ery mechanisms must be built. Some form of transaction model must be implemented.

Low-level storage and retrieval mechanisms must be implemented. We essentially end

up duplicating much of the effort that has already gone into building a generic database

system. The custom software solution suffers from high development and maintenance

costs to provide functionality that is preferably obtained elsewhere.

There are other “off-the-shelf” database management systems (besides an RDBMS)

that are worth considering. To decide what kind of system is most likely to satisfy our

49

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1K 10K 100K 1M

C
u

m
u

la
ti
v
e

 %

Inverted List Size (bytes)

% of lists in file
% of file size

% of lists in query

Figure 3.4 Inverted list size distributions

requirements, we need to consider further the size and access characteristics of the data we

need to manage.

3.2.1 Inverted List Characteristics

The size of an inverted list depends on the number of occurrences of the corresponding

term in the document collection. Zipf [94] observed that if the terms in a document

collection are ranked by decreasing number of occurrences (i.e., starting with the term that

occurs most frequently), there is a constant for the collection that is approximately equal to

the product of any given term’s frequency and rank order number. The implication of this

is that most of the terms will occur a relatively small number of times, while a few terms

will occur very many times.

50

Figure 3.4 shows the distribution of inverted list sizes for 2 GB of the TIPSTER

document collection (CD-ROM disks 1 and 2) [39]. The inverted file contains 846,331

compressed inverted lists occupying a total of 720 MB. For a given inverted list size, the

figure shows how many records in the inverted file are less than or equal to that size, and

how much those records contribute to the total file size. As we might expect, the majority

of the inverted lists are relatively small—approximately 95% of the lists are less than 1 KB.

In fact, better than 50% of the lists are less than 16 bytes. It is also clear that these small

lists contribute a very small amount to the total file size. Less than 5% of the total file size

is accounted for by inverted lists smaller than 1 KB. In other words, better than 95% of the

total file size is accounted for by less than 5% of the inverted lists in the file. The lists in

this 5% can be quite large, with the largest list in the file weighing in at 2.5 MB.

If we could assume that inverted list access during query processing was uniformly

distributed over the inverted lists, then supporting this activity (from a data management

perspective) would be simplified, since the majority of the file accesses would be restricted

to a relatively small percentage of the overall file. Unfortunately, this is not the case.

Figure 3.4 also shows the distribution of sizes for the inverted lists accessed by a typical

query set (produced from TIPSTER Topics 51–100). The majority of the records accessed

are between 10 KB and 1 MB. This size range represents a small percentage of the total

number of records in the file, but a large percentage of the total file size. Therefore, we

must be prepared to provide efficient access to the majority of the raw data in the file.

We can, however, anticipate one access characteristic during query processing that

works in our favor. It is likely that there will be non-trivial repetition of the terms used

from query to query. This can be expected for two reasons. First, a user of an IR system

may iteratively refine a query to obtain the desired set of documents. As the query is

refined to more precisely represent the user’s information need, terms from earlier queries

will reappear in later queries. Second, IR systems are often used on specialized collections

where every document is related to a particular subject. In this case, there will be terms

51

that are common to a large number of queries, even across multiple users. The implication

of this is that caching inverted lists in main memory should prove beneficial.

In summary, an inverted file will display the following characteristics. Using the

compression techniques described earlier, the inverted file’s size will be 30–40% of the size

of the raw document collection. The inverted lists contained within the inverted file will

vary in size from less than 16 bytes to one or more megabytes, although the vast majority

of the inverted lists will be quite small. During query processing, the longer lists will be

favored and inverted list access will benefit from main memory buffering. During document

additions, new inverted lists will be added to the inverted file and existing inverted lists will

grow, with the longer inverted lists experiencing vigorous growth. Inverted list access must

be efficient during query processing and collection modification, and mechanisms must

exist to ensure that multiple users can simultaneously operate on the inverted file in a safe,

consistent manner. Finally, even though inverted lists are actually built up from smaller

components, at the storage management level they are best viewed as byte strings whose

main operation is sequential scanning.

These requirements point to a data management system that combines a traditional

database transaction facility and low-level storage management subsystem with a simple

data model and low overhead. All of these features are found in a persistent object store

(POS). A POS provides low-level storage and retrieval of objects, where an object is an

identifiable unit of data. The services typically found in a POS include object creation,

storage, and retrieval, disk management, buffering, transaction control, and recovery. The

level of understanding possessed by the system about the contents of an object (i.e., an ob-

ject’s semantics) varies across different POS implementations. Usually, this understanding

is limited to viewing objects as containers of bytes and references to other objects. This

view eliminates the overhead associated with a more complex data model and allows the

application to define the appropriate level of object semantics. The flip side of this is that

the application must provide more functionality. This tradeoff, however, is appropriate

52

for a number of applications. For example, we can construct an object-oriented database

management system using a POS as a foundation and building additional layers on top that

provide a data model, data definition language, declarative query language, and other user

interface applications.

The functionality and performance provided by a POS are ideally matched to the

requirements of an Inverted File Manager. As such, we have used a POS to build our Inverted

File Manager. In particular, we have used the Mneme persistent object store [62, 9, 8]

developed under the direction of Eliot Moss at the University of Massachusetts. In the next

section we consider Mneme in more detail.

3.2.2 The Mneme Persistent Object Store

The Mneme persistent object store was designed to be efficient and extensible. The

basic services provided by Mneme are storage and retrieval of objects, where an object

is a chunk of contiguous bytes that has been assigned a unique identifier. Mneme has no

notion of type or class for objects. The only structure Mneme is aware of is that objects

may contain the identifiers of other objects, resulting in inter-object references.

Objects are grouped into files supported by the operating system. An object’s identifier

is unique only within the object’s file. Multiple files may be open simultaneously, however,

so object identifiers are mapped to globally unique identifiers when the objects are accessed.

This allows a potentially unlimited number of objects to be created by allocating a new file

when the previous file’s object identifiers have been exhausted. The number of objects that

may be accessed simultaneously is bounded by the number of globally unique identifiers

(currently 228).

Objects are physically grouped into physical segments within a file. A physical segment

is the unit of transfer between disk and main memory and is of arbitrary size. Objects are

also logically grouped into pools, where a pool defines a number of management policies

for the objects contained in the pool, such as how large the physical segments are, how the

53

objects are laid out in a physical segment, how objects are located within a file, and how

objects are created. Note that physical segments are not shared between pools. Pools are

also required to locate for Mneme any identifiers stored in the objects managed by the pool.

This would be necessary, for instance, during garbage collection of the persistent store.

Since the pool provides the interface between Mneme and the contents of an object, object

format is determined by the pool, allowing objects to be stored in the format required by the

application that uses the objects (modulo any translation that may be required for persistent

storage, such as conversion of main memory pointers to object identifiers). Pools provide

the primary extensibility mechanism in Mneme. By implementing new pool routines, the

system can be significantly customized.

The base system provides a number of fundamental mechanisms and tools for build-

ing pool routines, including a suite of standard pool routines for file and auxiliary table

management. Object lookup is facilitated by logical segments, which contain 255 objects

logically grouped together to assist in identification, indexing, and location. A hash table is

provided that takes an object identifier and efficiently determines if the object is resident in

main memory. Support for sophisticated buffer management is provided by an extensible

buffering mechanism. Buffers may be defined by supplying a number of standard buffer

operations (e.g., allocate and free) in a system defined format. How these operations are

implemented determines the policies used to manage the buffer. A pool attaches to a buffer

in order to make use of the buffer. Mneme then maps the standard buffer operation calls

made by the pool to the specific routines supplied by the attached buffer. Additionally, the

pool is required to provide a number of “call-back” routines, such as a modified segment

save routine, which may be called by a buffer routine.

Mneme is particularly appropriate for the task of managing an inverted file for a number

of reasons. First, an object store provides the ideal level of functionality and semantics. The

data that must be managed can be naturally decomposed into objects, where each inverted

list is a single object. More sophisticated mappings of inverted lists to objects can also be

54

easily supported with inter-object references, which allow more complex data structures

to be built up. The primary function required is object retrieval, or providing access

to the contents of a given object for higher level processing. Object access includes the

traditional data management tasks of buffering and saving modifications. The processing of

objects, however, is highly stylized and unlikely to be adequately supported within the data

management system. Therefore, semantic knowledge about the contents of an object within

the data management system is not only useless, but actually cumbersome. An object store

that treats objects as containers of uninterpreted bytes and inter-object references provides

just the right level of semantics.

Second, because Mneme is extensible, certain functions can be customized to better

meet the management requirements of an inverted file. As we have seen, the objects in

an inverted file come in a variety of sizes and exhibit unusual access patterns, such that a

single physical storage scheme specifying clustering and physical segment layout will be

inadequate. A better approach will be to identify groups of objects that can benefit from

storage schemes tailored to the physical characteristics and access patterns of each group.

In particular, buffer management policies should be customized for each group.

Finally, Mneme is tuned for performance and imposes a particularly low overhead along

the critical path of object access. Memory resident objects are quickly located using the

resident object table, and non-resident objects are faulted in with little additional processing.

This can be contrasted with page mapping architectures of other object stores [49, 77] which

have a fairly high penalty for accessing a non-resident object. These systems are optimized

for localized processing of a large number of small objects, where the cost of faulting a

page of objects can be amortized over many access to the objects in the page. This pattern

of access differs from that expected in an inverted file, where large objects are accessed for

sequential processing with little temporal locality.

55

3.2.3 The Mneme Solution

To build an Inverted File Manager using Mneme,we designed and implemented software

for two layers of the system: the application interface layer and the Mneme extensibility

layer. The application interface layer supplies the Inverted File Manager interface to the

rest of the IR system, defines the semantics of the objects that are stored in Mneme,

and translates the interface requests into Mneme operations. The Mneme extensibility

layer provides hooks for extending and tailoring a number of the Mneme operations to

better satisfy the specific requirements of inverted list management. Rather than address

these layers individually, we will describe our implementation of the core inverted file

management tasks and comment as appropriate on each task’s implications for the different

software layers. The core tasks include inverted list storage, inverted list lookup, document

additions, and document deletions.

3.2.3.1 Inverted List Storage

The first step in the implementation process was deciding on how to map inverted lists

to Mneme objects. To make this decision, we considered the basic operation that must be

performed to retrieve an object from disk, namely, a disk read. A read in a typical Unix

file system causes 8 KB to be read from disk. We chose to partition inverted lists into two

groups: those less than or equal to 8 KB, called short lists, and those greater than 8 KB,

called long lists. A short list is less than or equal to the size of an elemental file system

read; it can be obtained in a single file system access. To guarantee that short lists are

in fact retrieved in a single access, the low-level storage organization must align them so

that they do not span file system page boundaries. Moreover, if the desired short list is

less than 8 KB, the file system access will return more than just the desired inverted list.

The implementation should ensure that the extra data retrieved contains useful information,

such as other entire short lists.

56

The size distribution of inverted lists discussed in Section 3.2.1 shows that nearly 99%

of the inverted lists are less than or equal to 8 KB and will be short. The remaining 1% of the

inverted lists are larger than 8 KB and will be long. The long lists account for nearly 90% of

the total inverted file size. Long lists, therefore, can be quite large and will require storage

and access strategies substantially different from the short lists. In particular, long lists will

be the most expensive lists to process during query evaluation and collection modification.

Consideration of these issues led to the following organization. Short inverted lists are

stored in fixed length objects, ranging in size from 16 bytes to 8 KB by powers of 2 (i.e.,

16, 32, 64, . . ., 8K). When a new short list is created, an object of the smallest size large

enough to contain the list is allocated. A long inverted list is stored as a linked list of 8 KB

objects, requiring ☛ l
8192 ☞ k ✌ objects, where l is the size of the long list in bytes and k is the

size of the header and next pointer in the Mneme object.

The set of distinct object “types” used in this implementation is rather constrained,

providing an opportunity for performance improvement via custom management of the

objects. To take advantage of this opportunity, we designed and implemented three new

object pools in Mneme. The new object pools constitute the modifications made at the

Mneme extensibility layer. The first object pool, called the small-object pool, stores 16 byte

objects using 4 KB physical segments. Each physical segment contains one logical segment,

or 255 objects. The fixed object size and one-to-one mapping of physical and logical

segments simplifies many of the pool operations, including object creation, object lookup

in the file, and updates to the resident object table when transferring physical segments

to and from the main memory buffer. Simplifying these tasks generally leads to smaller

auxiliary tables and faster operations. The small-object pool will store approximately 50%

of the inverted lists in an inverted file.

The second new object pool, called the fixed-object pool, stores fixed length objects

ranging in size from 32 bytes to 4 KB by powers of 2. Objects are stored in 8 KB

physical segments, where all of the objects in a given physical segment are the same size.

57

The number of objects per physical segment varies depending on the size of the objects

residing in the physical segment. For example, a physical segment of 64 byte objects

will contain 128 objects, while a physical segment of 512 byte objects will contain 16

objects. The fixed-object pool affords the same advantages as the small-object pool in

terms of simplifying a number of the pool operations and improving storage and processing

efficiency. Approximately 49% of the inverted lists will reside in the fixed-object pool.

The third object pool that we built for this application is the page-object pool. This

pool manages page sized objects where all objects in the pool are the same size and each

object is allocated in its own physical segment. The object size is specified when the

page-object pool is instantiated. Although this size may be arbitrary, typically it will be

some large power of 2. In this case, the object size is specified to be 8 KB. Again, the

fixed object size and one-to-one mapping of objects to physical segments enables a more

efficient implementation of certain pool operations, such as object creation, object lookup,

and physical segment transfer to and from main memory.

The long inverted lists are stored using two separate page-object pools, with one pool

storing the linked list head objects, and the other storing the remaining linked list data

objects. This separation facilitates the delete operation, discussed below. Roughly 1% of

the inverted lists in the inverted file will be stored this way. However, since all of the lists

stored this way are long, these two object pools will account for the majority of the space

in the inverted file.

This scheme efficiently allocates the large number of short inverted lists in the small

and medium object pools, and provides a scalable storage structure for the long inverted

lists. Physical segment sizes are sensitive to the file system transfer size, and multiple

objects are efficiently packed in the physical segments that contain more than one object.

Each object pool can also be attached to its own buffer manager, allowing the buffer size

and management policies to be individually tuned to the requirements of each object pool.

Furthermore, these policies can be adjusted depending on the current task at hand. For

58

example, the amount of buffer space required by the page-object pool during document

indexing is substantially less than during query evaluation.

3.2.3.2 Inverted List Lookup

Once we have assigned the inverted lists to Mneme objects, we must provide some

mechanism for identifying the object (or, in the case of a long list, the linked list head object)

that contains the inverted list for a given term. An indexing structure commonly used for

this purpose in database systems is the B+tree [15] (see [45] for additional references, and

deletion pseudo-code!). A B+tree is a balanced search tree with an upper bound search

time of O(logb n) for an n node tree with branching factor b. In a disk based application, the

tree nodes are typically the size of a disk page and the branching factor is relatively large,

resulting in very short trees. For example, if we have one million terms and each term entry

in the B+tree requires on average 20 bytes, the height of a B+tree with 8 KB nodes is 3

(counting the leaves as 1). All of the values associated with the keys are stored in the leaf

nodes, simplifying scanning operations, but forcing all searches to traverse to a leaf node.

With careful buffer management, however, we can keep most of the internal nodes resident

in main memory and limit the number of disk reads to at most one per lookup (to obtain a

leaf node).

The problem with a B+tree is that clustering of key/value pairs within a node is based

on the key sort order. When a leaf node is made resident due to a search on one of its

keys, the chance that we will search for another key in that same node before the node

is flushed from the main memory buffer is no better than random. If instead we cluster

together the key/value pairs most likely to be accessed during query evaluation, we will

reduce the number of disk reads required during query evaluation and achieve a performance

improvement. To accomplish this we need a method for identifying the keys most likely to

be accessed and an indexing data structure that will support the clustering. The discussion

in Section 3.2.1 shows that the more frequent terms are favored during query evaluation,

59

hash
table

bucket chains

1

2

8191

clustering

Figure 3.5 Inverted file hash table

suggesting that term frequency could be used to guide key clustering. Another, more

pragmatic, approach would be to keep track of query term usage statistics over a period of

time and use them to guide the clustering.

Since a B+tree cannot support arbitrary key clustering, if we want to take advantage

of our clustering heuristic, we must find an alternative indexing structure. An indexing

structure commonly used to store terms in an information retrieval system is a hash table.

A hash table can incorporate an external clustering heuristic, making it the data structure of

choice for this application.

We have implemented a Mneme-based hash table for our Inverted File Manager using

the overall structure shown in Figure 3.5. The length of the hash table is fixed at 8191

slots. Each slot occupies 4 bytes, for a total hash table size of just under 32 KB. Rather

than use a single 32 KB object to store the hash table, four 8 KB page objects are used. The

motivation here is to increase concurrent access to the hash table in the event of updates.

Each slot points to a linked list of buckets, which contain the key/value pairs for the keys

60

Value
Array

Key
Heap

unused

b
u

c
k
e

t
h

e
a

d
e

r

Figure 3.6 Hash table bucket

that hash to that slot. Each bucket is allocated in a 256 byte object using the fixed-object

pool described above. A bucket has an array of values (object identifiers) at one end, a

heap of keys (null terminated term strings) at the other, and a header containing a pointer

to the next bucket in the chain, the number of entries in the bucket (N), and the offset of

the key heap (see Figure 3.6). The value array and key heap grow towards each other, such

that the maximum number of entries in a bucket is variable. The array and heap entries are

paired-up from the inside out, eliminating the need for string heap offsets in the value array

entries and minimizing the amount of space required by the key/value pairs (compression

techniques excluded). The tradeoff is a more complex bucket search algorithm. To find a

key/value pair in a bucket, we must scan the bucket’s key heap from left to right, count the

number of strings scanned before the key is found, and index into the value array with N

minus count to obtain the corresponding value.

To locate the value for a given key, the hash function is applied to the key to obtain

a slot index into the hash table. The appropriate hash table page object is retrieved and a

chain pointer is obtained from the indexed slot. The chain pointer points to the first bucket

object in the chain, which is retrieved and searched. If the key is found, its value is returned.

61

Otherwise, the next bucket is obtained and searched. This process is repeated until the key

is found or there are no more buckets, in which case the key is not in the hash table.

The clustering heuristic is incorporated into the hash table by sorting the keys in each

chain in decreasing order of term frequency. This causes within bucket clustering by placing

the most frequent terms in each chain in the head bucket of that chain. We can additionally

cluster across buckets by allocating all of the bucket chain heads in their own set of physical

segments. Furthermore, to ensure that only a single disk read is required in the event that

the desired key is not found in the head bucket, the rest of the buckets in a given chain are

allocated in the same physical segment.

When the hash table is opened, the four 8 KB hash table page objects are read into their

own private buffers, ensuring that they will never be swapped out by Mneme. The amount

of buffer space allocated to the bucket objects is controlled by the application and should

vary depending on the task at hand. When creating a new hash table from scratch, we

allocate a small buffer (at least 16 KB, or enough for two physical segments) to the bucket

objects. In this situation, we are sequentially allocating and filling bucket objects, and the

new physical segments that contain these objects are written to disk as soon as they are full.

During query processing, if our clustering heuristic is effective, we allocate a relatively

modest amount of buffer space to the bucket objects. This can be tuned to a particular

query environment based on observed object reference hit rates. When we are updating an

existing hash table, we allocate as much buffer space as possible (up to the aggregate size

of all of the buckets) to the bucket objects since every new term causes a bucket chain to

be fully traversed during the initial search for the term.

3.2.3.3 Document Additions

New documents are added to an existing document collection in two steps. During the

first step, complete inverted lists are created for the new document batch. In the second step,

the new inverted lists are merged with the existing inverted file. The first step is executed

62

by the document inverter, and can proceed as described in Section 3.1 with no changes. The

second step is carried out entirely within the Inverted File Manager. As the Merger outputs

each final inverted list for the new document batch, the Inverted File Manager searches

the existing inverted file for the term associated with the new inverted list. If the term is

found, an inverted list already exists for the term and the new inverted list is appended to

the existing inverted list. Otherwise, the term is new to the original document collection

and the new inverted list is simply added to the existing inverted file.

The critical functionality here is the ability to grow an existing inverted list during an

append operation. The inverted list storage scheme described above easily supports this

operation. A short inverted list may have unused space at the end of its object and can

grow to fill this space. When the list exceeds the object, a new object of the next larger

size is allocated, the contents of the old object are copied into the new object, and the old

object is freed. When a short list exceeds the largest object size (8 KB), it becomes a long

inverted list and is stored as a linked list of 8 KB objects. Long inverted lists are grown by

appending to the tail object in the linked list and adding a new object to the linked list when

the tail is full.

The main advantage of this scheme is that the majority of the existing inverted file is

untouched during an update, keeping the update costs more proportional to the size of the

new document batch, rather than the size of the existing document collection. This behavior

is provided by the long inverted list implementation. When a long inverted list is updated,

only the head and tail objects in the linked list are accessed, leaving the majority of the data

in the long lists untouched. Since nearly 90% of the data in an inverted file is stored in the

long inverted lists, the majority of the inverted file should be untouched during an update.

Note that the head object of a long list must be accessed to update the collection frequency

and document count for the term and obtain the object identifier of the linked list tail. If

instead this information is stored in the term hash table, accesses to the head objects can be

eliminated at the expense of a larger term hash table. Increasing the size of the term hash

63

table, however, will cause it to demand more main memory during query evaluation. How

to resolve this tradeoff depends on the frequency of updates versus the frequency of queries.

The implementation described here is tuned for an environment where query evaluation is

more frequent than document additions, hence a smaller term hash table is favored.

A potentially serious problem crops up during update operations on short inverted

lists. Short inverted lists are stored in objects that share their physical segment with other

objects. A physical segment, therefore, will contain multiple short inverted lists. When a

short inverted list is retrieved for an update, all of the other short inverted lists in the same

physical segment are simultaneously retrieved. It is possible that more than one inverted

list in this physical segment must be updated during the batch update. It is also possible,

however, that the physical segment will be swapped out of main memory before the other

inverted lists have been updated, causing the same physical segment to be retrieved multiple

times during the same batch update. If this thrashing behavior is extreme, performance will

suffer.

One way to combat this effect is to allocate a larger main memory buffer so that more

physical segments may be resident simultaneously. This is a bad solution for three reasons.

First, for large inverted files the amount of space occupied by all of the short inverted lists

will still be quite substantial, such that it is impossible to allocate a large enough buffer.

Second, during an update, main memory is also required by the Merger (for its merge

buffer) and the term hash table, making main memory a scarce resource. Third, caching

modified physical segments for extended periods of time will interfere with the amount of

concurrency available in the system.

A better solution to this problem is to apply the short inverted list updates in a more

advantageous order. In particular, all of the short inverted lists that coexist in a physical

segment should be updated simultaneously. As currently described, inverted lists are

updated in sorted term string order. This order is determined by the Parser, which writes

partial inverted lists in term string order. Term string order is unrelated to the assignment

64

of inverted lists to physical segments. Mneme object identifier order, however, is related

to the assignment of objects to physical segments. We have implemented the small-object

and fixed-object pools in such a way that a physical segment contains objects identified by

a continuous range of the object identifier space. In other words, when the identifiers for

the objects in a physical segment are listed out in the order in which the objects appear

in the physical segment, the identifiers form the sequence ✁ n1, n2, n3, . . . ✄ ni+1 = ni + 1 ✂ .

Moreover, the physical segments tend to be allocated in the file in such a way that the

identifiers for the objects in a physical segment earlier in the file will be less than the

identifiers for the objects in a physical segment later in the file.

To take advantage of object identifier order during updates, we extended the Parser to

sort partial inverted lists based on existing inverted list object identifiers. Recall that the

partial inverted lists are sorted just before the batch buffer is flushed to a temporary file

block. Rather than sort on term string at this point, the Parser probes the existing inverted

file’s term hash table for each of the partial inverted lists in the batch buffer and obtains

object identifiers for the existing inverted lists. A partial inverted list associated with a new

term (i.e., for which there is no existing inverted list) is assigned object identifier 0. Note

that the Parser’s batch buffer has the same organization as the inverted file’s term hash table

(Figures 3.3 and 3.5). This is by design, and is intended to improve locality of the term

hash table probes as we iterate through the batch buffer.

Now the Parser can sort the partial inverted lists by object identifier. So that new

partial inverted lists are added to the inverted file after any existing inverted lists have

been updated, object identifier 0 is considered to be greater than all other object identifiers

during the sort. Furthermore, to distinguish amongst the new terms, partial inverted lists

that have been assigned object identifier 0 are sorted secondarily on term string. After the

sort, the partial inverted lists are written to the temporary file block in existing inverted list

object identifier order. When the temporary file blocks are merged, the final inverted lists

produced are presented to the Inverted File Manager in the desired object identifier order.

65

Updates to existing inverted lists are performed with no physical segment thrashing, and

the physical segments are retrieved in a series of scans over the inverted file. Moreover,

we only need to allocate enough buffer space to hold the physical segment currently being

updated. Once the last object in the segment has been updated, that segment will not be

accessed again during the current batch.

3.2.3.4 Document Deletions

Document deletion is slightly more complicated. Deleting a document involves the

deletion of all of the entries for that document in the inverted lists for the terms that appear

in that document. There are three general approaches for accomplishing this. In the first

approach, the deleted document is re-parsed (lexically analyzed, stopped, and stemmed)

to identify the terms contained within the document and allow the affected inverted lists

to be accessed and updated directly. This approach suffers from two problems. First, the

document source must be available. This may not always be the case, especially if the

inverted file is being updated to reflect the loss or unavailability of the document. Second,

the parse that is performed for deletion must produce the exact same tokens as the parse

that was performed when the document was originally indexed. The parser may have been

upgraded or modified since the document was originally parsed, making an exact match

impossible.

The second approach involves the use of an auxiliary index. For each document, the

index stores a list of the terms that occur in the document. When a document is deleted, its

list of terms is obtained and used to identify the inverted lists that must be updated. This

eliminates the problems inherent in the first approach, but introduces an additional index

that must be maintained and stored. If each term identifier in the auxiliary index requires 4

bytes of storage, then such an index for the 3.2 GB TIPSTER document collection described

below would occupy 541 MB, or 17% of the space occupied by the document collection.

66

This estimate is based on 141,929,665 document entries in the corresponding inverted file.

Of course, compression techniques could substantially reduce this overhead.

In the third approach, all of the inverted lists in the inverted file are scanned and entries

for the deleted document are removed from the inverted lists as they are found. This

solution is more robust than the first approach, imposes no storage overhead, and is more

straightforward than the second approach; for these reasons it is the one that we have

implemented. The scan of the inverted file is driven at the object level and is supported

by Mneme’s object scanning facility. This facility allows an object pool to iterate through

its objects in order of object identifier. As we saw earlier, processing objects in object

identifier order results in sequential processing of the inverted file.

Due to the high cost of scanning the inverted lists, individual document deletions are

not immediately applied to the inverted file. Instead, they are buffered up in a document

delete list and eventually applied to the inverted file in a large batch purge. In the mean

time, the document delete list is used to filter query processing results. Before the final

document ranking for a query is returned to the user, documents that appear in the delete list

are removed from the answer. Note that management of the document delete list is external

to the Inverted File Manager and falls outside the boundaries of our implementation (i.e., it

was implemented by others).

The batch purge begins by scanning the small-object and fixed-object pools, which con-

tain the short inverted lists. To process a short inverted list, we decompress the existing list

and search for entries that match the documents in the document delete list. Any matching

entries are deleted from the inverted list and the remaining inverted list is recompressed

into the same object. The newly freed space in the list will appear at the end of the object

and be available for future allocation. If no matching document entries were found, the

decompressed inverted list is discarded and the object is left unmodified. Should all of

the document entries be deleted from an inverted list, the list’s object can be freed and the

corresponding term can be deleted from the term hash table.

67

Destination
 Cursor

Source
Cursor

currently being processed

not yet processed

Key:

head object data objects

already processed

Figure 3.7 Deletion in a long inverted list

The long inverted lists are processed next. The page-object pool that contains the linked

list head objects is scanned, giving us the first object for each long inverted list. A long

inverted list is processed in chunks using two cursors: a source cursor and a destination

cursor, shown in Figure 3.7. A portion of the inverted list (about 8 KB) is read from

the source cursor and decompressed into a work buffer. We scan the work buffer and

remove any entries found for documents listed in the document delete list. When the work

buffer has been processed, it is re-compressed and written to the destination cursor. The

destination cursor follows the source cursor and will gradually lag farther and farther behind

the source cursor as more document entries are deleted. When the entire inverted list has

been processed, the hole for the deleted document entries will have percolated to the end

of the list. Any unused objects at the tail of the linked list can be freed.

3.3 Experimental Results

To evaluate our implementation of the Inverted File Manager, we ran a series of exper-

iments to measure bulk indexing speed, incremental update speed, disk space utilization,

68

and the impact of the inverted file construction technique on query processing speed. Be-

low we describe the experimental platform, the test collection used, and the results of our

measurements.

3.3.1 Platform

All of our experiments were run as superuser with logins disabled on an otherwise idle

DECSystem 3000/600 (Alpha AXP CPU clocked at 175 MHz) running OSF/1 V3.0. The

system was configured with 64 MB of main memory, one DEC 1.0 GB RZ26L Winchester

SCSI disk, and one Micropolis 4.3 GB M3243 SCSI disk. The executables were compiled

with the DEC C compiler driver 3.11 using optimization level 2. All of the data files

and executables were stored on the larger local disk, and a 64 MB “chill file” was read

before each parse, merge, or query processing run to purge the operating system file buffers

and guarantee that no inverted file data was cached by the file system across runs. The

effectiveness of the chilling procedure was verified by measuring the number of file inputs

charged to a test program that reads a 1 MB file. The test program was run 10 times, both

with and without chilling between iterations. Without chilling, the number of file inputs

required by each iteration after the first is 0. With chilling before each iteration, the number

of file inputs required by every iteration is 133. Since the file system block transfer size is

8 KB, 128 file inputs are required to read the test file data. The remaining 5 file inputs are

required by the file system to read directory and file structure data. All times reported were

measured with the GNU time command.

3.3.2 Test Collection

For our experiments we used the 3.2 GB TIPSTER document collection distributed for

the Third Text REtrieval Conference (TREC-3) [40]. The TIPSTER document collection is

broken down into a number individual files containing a wide variety documents. Table 3.1

gives the size, number of documents, number of term occurrences (Postings), and number

69

Table 3.1 TIPSTER document collection file characteristics

File MB Documents Postings Terms

wsj87 125.6 46448 11404792 125035

wsj88 104.4 39904 9729119 53925

wsj89 35.7 12086 3247328 16739

doe 183.8 226087 17240754 118444

ziff 242.3 75180 21247322 96213

ap 254.2 84678 22386691 78330

fr a 156.7 15640 14455792 84781

fr b 103.0 10320 9464721 44837

wsj90 69.8 21705 6203493 19339

wsj91 139.2 42652 11853656 35432

wsj92 32.9 10163 2747163 7808

ziff2 175.5 56920 15272205 39598

ap2 237.2 79919 20607785 46125

fr2 209.2 19860 19239417 66612

ziff3 a 192.4 56398 17146002 43689

ziff3 b 152.3 104623 8830722 17795

ap3 237.5 78321 20692345 42228

patn 242.6 6711 19493312 76986

sjm a 189.9 60399 14106777 34533

sjm b 97.0 29858 7199499 14228

total 3181.2 1077872 272568895 1062677

of uniquely indexed terms for each file. The term count for a given file is the number of

new terms added by that file to all of the files listed earlier in the table. The files contain

documents from the Wall Street Journal (wsj*),1 Department of Energy abstracts (doe),

Ziff-Davis Publishing Computer Select disks (ziff*), AP Newswire (ap*), Federal Register

(fr*), U.S. Patents (patn), and the San Jose Mercury News (sjm*). This is one of the

first publicly available large scale document collections, and has become a standard test

collection in the information retrieval research community.

1Due to human error, the local version of wsj89 used for these experiments was missing 294 documents

from the original distribution.

70

Table 3.2 TIPSTER file parsing results

File Time (sec) msec/post Temp Blocks Temp Size (MB)

wsj87 800 0.070 9 42.4

wsj88 674 0.069 8 36.5

wsj89 227 0.070 3 12.3

doe 1398 0.081 14 63.3

ziff 1515 0.071 14 70.3

ap 1583 0.071 18 86.1

fr a 889 0.061 7 39.1

fr b 587 0.062 5 26.0

wsj90 449 0.072 5 23.4

wsj91 849 0.072 9 44.6

wsj92 201 0.073 3 10.4

ziff2 1075 0.070 10 50.4

ap2 1491 0.072 16 78.9

fr2 1241 0.064 9 51.8

ziff3 a 1145 0.067 11 56.3

ziff3 b 784 0.089 6 29.9

ap3 1494 0.072 16 79.5

patn 1214 0.062 6 42.8

sjm a 1069 0.076 11 55.0

sjm b 552 0.077 6 28.1

total 19237 0.071 186 927.1

3.3.3 Bulk Indexing

The first question we are interested in is how well the overall indexing scheme described

in Section 3.1 works. To answer this question, we measured the elapsed (wall-clock) time

required to index the entire 3.2 GB TIPSTER document collection. Using an 18 MB batch

buffer, the Parser was run separately on each of the TIPSTER files. Note that for the

experiments described in this chapter, INQUERY’s feature recognizers were not used. The

feature recognizers identify city names, company names, foreign country names (i.e., not

the United States), and references to the United States, and increase the time required for

parsing.

71

For each file, Table 3.2 gives the elapsed parsing time in seconds, the number of

temporary file blocks produced, and the aggregate size of the temporary file blocks. The

elapsed parsing time depends on the size of the input document file, so the table also gives

a normalized parsing time in terms of milliseconds per posting. The total elapsed time

required to parse the entire collection was 19237 seconds, or 5 hours 21 minutes. A total of

186 temporary file blocks were produced occupying 927 MB, or 29% of the space required

by the raw document collection. On average, 0.071 milliseconds were required per posting.

The table indicates, however, that parse time per posting fluctuates depending on the size

of the documents being parsed. The Department of Energy abstracts (doe) and some of the

Ziff-Davis publications (ziff3 b) contain relatively short documents and require more time

per posting. The Federal Register (fr*) and U.S. Patents (patn) contain relatively long

documents and require less time per posting. This discrepancy is caused by the overheads

associated with parsing a single document, e.g., flushing the document buffer to the batch

buffer. Longer documents can amortize this overhead over more postings, resulting in

lower per posting costs.

All of the temporary file blocks produced by the Parser were then merged by the Merger

using a 20 MB merge buffer. Mneme was allocated 16.4 MB for its buffers, of which

14.3 MB were allocated for the term hash table objects, 2 MB were allocated for Mneme

system (meta) data, and the remaining 126 KB were allocated for inverted list objects. The

term hash table buffer was large enough to keep the entire term hash table memory resident

throughout the merge. This is done to prevent thrashing during hash table insertions—a

hash table insert typically requires access to an entire bucket chain. The inverted list objects

require a relatively small amount of buffer space since the only operation we are performing

here is creation. Once an object has been created, it can be flushed from main memory.

The Merger required 39 minutes to merge all of the temporary file blocks and store

the new inverted lists. This gives a total time of 6 hours to index the 3.2 GB TIPSTER

document collection, or an overall indexing rate of 530 MB per hour.

72

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35

E
la

p
s
e
d
 T

im
e
 (

s
e
c
)

Collection Size (x100 MB)

Bulk Indexing Time versus Collection Size

Total
Parser
Merger

Figure 3.8 Bulk indexing times

The next question of interest is how well this indexing scheme scales. To answer this

question, we divided the TIPSTER document collection into 32 batches of approximately

100 MB each.2 The first batch contains the first 100 MB of wsj87, the second batch contains

the remaining 25.6 MB of wsj87 and the first 74.4 MB of wsj88, etc. We then indexed 32

different document collections ranging in size from 100 MB to 3.2 GB, where a document

collection of size n ✍ 100 MB consists of batches 1 through n. The elapsed time to index

each of these document collections is plotted in Figure 3.8. The figure suggests that total

indexing time scales linearly with the size of the document collection being indexed. This

is due mainly to the Parser, which dominates the total running time, but maintains a constant

time per posting rate (as discussed earlier).

2The last batch is actually only 80.7 MB.

73

Table 3.3 TIPSTER Inverted file object statistics

Object Number Space Usage (MB) Utiliza-

Size (B) Total Data Free Mneme tion (%)

16 569188 8.7 5.1 2.5 1.112 59.1

32 228940 7.0 4.4 2.2 0.447 62.6

64 104034 6.3 4.3 1.9 0.203 67.6

128 60849 7.4 5.1 2.2 0.119 68.8

256 35795 8.7 6.1 2.6 0.070 69.4

512 21257 10.4 7.3 3.1 0.042 70.1

1024 13654 13.3 9.4 3.9 0.027 70.7

2048 9170 17.9 12.6 5.3 0.018 70.4

4096 6536 25.5 18.0 7.5 0.013 70.5

8192 102093 797.6 749.1 47.5 1.005 93.9

total 1151516 902.9 821.4 78.5 3.054 91.0

If we change the collection size units in Figure 3.8 from bytes to postings and fit

a line to the Total points using a least-squares fit linear regression, the line obtained is

y = 114.63 + 7.58 ✎ 10 ☞ 5x. The coefficient of determination for the linear regression

relationship is r2 = 0.99976, suggesting a very strong linear relationship. The slope of the

line indicates an overall indexing rate of 0.076 msec/posting. This is consistent with the

overall parsing rate of 0.071 msec/posting reported in Table 3.2, with the difference due to

the merge costs included in the Total time.

Space utilization statistics for the final inverted file created for the 3.2 GB TIPSTER

collection are given in Table 3.3. For each object size, the table gives the number of

objects in the file, total space occupied by the objects, amount of inverted list data stored

in the objects, free space in the objects (i.e., currently unused space that may be allocated

in the future), Mneme overhead (object headers and data structures), and effective space

utilization (Data/Total ✍ 100). The smallest objects are poorly utilized, with less than 60%

of their space occupied by inverted list data. However, they account for a very small portion

of the total inverted file size. On the other hand, most of the 8 KB objects are fully utilized

since they are in the middle of a long inverted list. The overall object utilization is quite

74

Table 3.4 Indexing variations for 3.2 GB TIPSTER collection

Variation A B C D

Stemming yes no yes yes

Stopping yes yes yes no

Proximity yes yes no no

Parser (sec) 19297 17909 18744 17327

Merger (sec) 1726 2219 1029 1426

Total (sec) 21023 20128 19773 18753

Temp Blocks (MB) 929 1043 541 673

Inv File (MB) 913 1003 513 634

Vocab Size 1062667 1229847 1062667 1062690

Term Hash Tbl (MB) 13.8 16.5 13.8 13.8

high—better than 90%. Mneme system data and free space in the object file add a negligible

9.7 MB to the object space total, for a total inverted file size of 913 MB. The term hash

table requires an additional 13.8 MB, such that the overall inverted index requires 927 MB,

or 29% of the space occupied by the original document collection.

Given that the Parser accounts for nearly 90% of the total indexing time, a closer look

at how the Parser spends that time is in order. Of the 19237 seconds spent parsing, 18076,

or nearly 94%, are charged to user CPU time. Since the Parser appears to be CPU bound,

it was profiled using the gprof profiler. The resultant profile report indicates that only 16%

of the CPU time is spent assembling and handling inverted lists, i.e., adding entries to the

document buffer, flushing the document buffer to the batch buffer, and flushing the batch

buffer. The rest of the CPU time is spent as follows: 61% is spent scanning and parsing,

14% is spent checking for stop words, 8% is spent updating the document catalog, and 1%

is spent stemming. From this profiling data we conclude that our efforts at improving the

efficiency of inverted list assembly have successfully eliminated the bottlenecks imposed

by that portion of the indexing system. Scanning and parsing are now the most expensive

components of the Parser and have the greatest need for future performance tuning.

75

To provide a complete picture of the performance of our indexing system, we evaluated

a number of variations on the original indexing process described above. Each variation was

run on the 3.2 GB TIPSTER collection. Using an 18 MB batch buffer, the collection was

parsed in 32 batches of approximately 100 MB each. The temporary file blocks produced

were then merged in a single step using a 20 MB merge buffer. Results for the different

variations are shown in Table 3.4. Note that variation A is the original indexing process.

First, the Parser profile suggests that stemming is a relatively insignificant component of

the overall cost. To verify this, we measured the time required to index the 3.2 GB TIPSTER

collection without stemming, shown as variation B in Table 3.4. Compared to the original

indexing process (variation A), parse time decreased by 7%, merge time increased by 29%,

and total indexing time decreased by 4%. The measured effect of stemming on parse time

is actually larger than the profile suggests, although the parse time savings obtained by

eliminating stemming is still modest and is offset somewhat by an increase in the time

required to merge.

The increase in merge time is due to a 12% increase in the size of the temporary

file blocks, a 10% increase in the size of the final inverted file, a 16% increase in the

size of the vocabulary (the number of unique terms indexed), and an overall increase in

the string length of the indexed terms. The temporary file blocks and final inverted file

are larger in the absence of stemming because many of the inverted lists in the stemmed

version are now split into multiple inverted lists for terms that would otherwise stem to

the same term. This increases the average distance between two occurrences of the same

term, eliminating some of the benefits of delta encoding and reducing the effectiveness

of the inverted list compression algorithm. The larger vocabulary and term string length

additionally contribute to the increase in temporary file block size. More importantly, they

increase the size of the term hash table by 19%, which is created and written during the

merge.

76

Next, we explored the cost of storing term occurrence locations (i.e., proximity in-

formation) in the inverted file. In variation C, term occurrence locations were not stored

when indexing the 3.2 GB TIPSTER collection. Compared to variation A, parse time is

reduced by 2.8%, merge time is reduced by 40%, and total indexing time is reduced by

5.9%, for an overall indexing rate of 580 MB per hour. The temporary file blocks produced

by the Parser occupy a total of 541 MB, and the final inverted file produced by the Merger

occupies 513 MB, or just 16% of the size of the raw document collection. Compared to the

original indexing process, temporary file block and final inverted file space requirements

are reduced by 42% and 44%, respectively. Viewed another way, storing term occurrence

locations increases the size of the final inverted file by 78%.

When term occurrence locations are not stored, little time is saved during parsing. This

is expected given that the savings are confined to inverted list assembly and handling, which

account for only 16% of the CPU time spent in the Parser. Scanning, parsing, stopping,

stemming, and document cataloging are unchanged. The substantial reduction in the size of

the temporary file blocks, however, yields a large savings at merge time, where the amount

of data that must be merged is nearly halved. The reduction in total indexing time is rather

modest since merging accounts for only 10% of the total time. In the indexing system

described here, the extra processing cost of indexing and storing term occurrence locations

is minimal. The most noticeable expense is an increase in the size of the inverted file. We

should note that this comparison was made using an inversion algorithm originally designed

to store term occurrence locations. It is likely that the algorithm could be better tuned for

the case where term occurrence locations are not stored, resulting in a more significant

savings in parse time.

Finally, the Parser profile suggests that stopping is a relatively expensive operation. The

last variation measured, variation D in Table 3.4, does no stopping and does not store term

occurrence locations (but does stemming). Compared to variation C, eliminating stopping

reduces parse time by 8%, increases merge time by 39%, reduces total indexing time by

77

5%, and increases both temporary file block and final inverted file space requirements by

24%. Since the terms eliminated by stopping are highly frequent, indexing those terms (by

not stopping) increases the size of the temporary file blocks and final inverted file. If we

additionally stored term occurrence locations in this variation, the size increases would be

even more substantial—the number of postings indexed increases by 66% when stopping

is turned off. In spite of the increased file sizes and merge time compared to variation C,

variation D is the fastest variation we measured, with an overall indexing rate of 614 MB

per hour.

3.3.4 Incremental Update

We evaluated the ability of our Inverted File Manager to accommodate document

additions by indexing the 3.2 GB TIPSTER document collection in a series of incremental

updates. In an incremental update, a new batch of documents is added to an existing

document collection and the necessary updates to the inverted file are performed in-place.

We use the term incremental to distinguish this process from the traditional method of

adding new documents, which simply re-indexes the entire document collection from

scratch, building a whole new inverted file.

Using the 100 MB document batches described earlier, we incrementally indexed the

TIPSTER collection by successively adding each document batch. Figure 3.9 shows

the elapsed time required to add each successive batch, where the x-axis enumerates the

100 MB batch updates in the order that they were applied. For example, at batch update

5, we have already indexed 400 MB in the first 4 batches, and are now adding 100 MB of

new documents to the existing 400 MB document collection. The figure shows a rapidly

increasing cost per update when the existing document collection is small. However, as the

existing document collection becomes larger, the cost per update starts to level off. This is

an encouraging result, indicating that the overall technique will scale well. The cumulative

78

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35

E
la

p
s
e
d
 T

im
e
 (

s
e
c
)

Incremental Update

Elapsed Time per Incremental Update

Total
Parser
Merger

Figure 3.9 Incremental update times

elapsed time required to incrementally index the entire 3.2 GB collection in 32 batches is

just over 12 hours, giving an overall indexing rate of 265 MB per hour.

Consistent with the results reported above for bulk indexing, the parsing rate is es-

sentially constant with minor variations depending on the size of the documents in the

particular batch. In the case of an incremental update, however, we now must access the

term hash table during parsing so that partial inverted lists are written in inverted list object

identifier order. The extra cost of this operation is shown in Figure 3.10, which compares

bulk and incremental parsing costs for a series of collection sizes. The bulk parsing costs

are the same costs reported earlier in Figure 3.8. The incremental parsing costs are the

cumulative parsing costs accrued when incrementally indexing in 100 MB batches. The

79

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 5 10 15 20 25 30 35

E
la

p
s
e
d
 T

im
e
 (

s
e
c
)

Collection Size (x100 MB)

Elapsed Parse Time versus Collection Size

Cum Incremental
Bulk

Figure 3.10 Parse time comparison

figure shows that incremental parsing costs are only slightly higher than bulk parsing costs,

and the incremental version scales well with collection size.

Unlike the bulk indexing version, the Merger eventually dominates running time in the

incremental version. The new cost is not actually due to the merge process itself, but rather

the extra work that must be performed by the Inverted File Manager in the form of reading

existing inverted file data. When an existing inverted list is updated, it must first be retrieved

from the inverted file. Although we have taken pains to make this retrieval sequential and

efficient, the fact remains that a certain portion of the existing inverted file must be read

from disk. Figure 3.11 shows the amount of existing inverted file data read during each

incremental update. When merge time is plotted versus bytes of existing inverted file read

for each incremental update, we see a strong linear relationship. Figure 3.12 shows each

80

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35

D
a

ta
 R

e
a

d
 (

M
B

)

Incremental Update

Existing Inverted File Data Read versus Incremental Update

Figure 3.11 Inverted file data read per update

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300

M
e
rg

e
 T

im
e
 (

s
e
c
)

Inverted File Data Read (MB)

Incremental Merge Time versus Inverted File Data Read

Measured
85.79 + 3.87 * x

Figure 3.12 Incremental merge time versus data read

81

of these data points, along with the curve y = 85.79 + 3.87x, obtained via a least-squares

linear regression. The coefficient of determination for the linear regression relationship is

r2 = 0.9956, suggesting a very strong linear relationship and an incremental merge time

that, for a given batch size, is entirely dependent on the amount of existing inverted file

data read.

Our inverted file organization allows us to bound the amount of inverted file data that

must be read when updating a given inverted list. A long inverted list is the most expensive

list to update, requiring two 8 KB objects to be read from the existing inverted file. All

other lists (i.e., short lists) are less than 8 KB; at most one disk access is required to read

these lists. In practice, less than one disk access is required per short inverted list update

since short lists are clustered in segments and our update algorithm takes advantage of

this clustering. In the worst case, therefore, the total amount of data that must be read is

bounded by a constant times the size of the vocabulary.

Heaps [43] suggests that vocabulary size can be estimated with V = aNb, where V is the

size of the vocabulary and N is the number of term occurrences (postings) in the document

collection. Using least squares fitting, we fit this function to the vocabulary sizes measured

when indexing the 3.2 GB TIPSTER collection. The constant and exponent obtained from

the fitting are a = 2.693395 and b = 0.664163, giving a sub-linear function. Figure 3.13

shows this function plotted along with the actual vocabulary sizes measured.

The function V = 2.693395N0.664163 is linear when plotted using a log-log scale. If we

take the log of both sides, we get ln(V) = ln(2.693395) + 0.664163 ln(N). Substituting y for

ln(V) and x for ln(N), we get the linear function y = 0.990803 + 0.664163x. This is plotted

in Figure 3.14, along with the logs of the measured vocabulary growth data points (from

Figure 3.13). The coefficient of determination for the linear relationship is r2 = 0.9979,

suggesting a very strong linear relationship, and a function that models vocabulary growth

quite well.

82

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

1.1e+06

0 5e+07 1e+08 1.5e+08 2e+08 2.5e+08 3e+08

V
o

c
a

b
u

la
ry

 S
iz

e

Postings Indexed

Vocabulary Size versus Postings Indexed

Measured
2.693395 * (x ** 0.664163)

Figure 3.13 TIPSTER vocabulary growth

11.5

12

12.5

13

13.5

14

16 16.5 17 17.5 18 18.5 19 19.5

L
o

g
 o

f
V

o
c
a

b
u

la
ry

 S
iz

e

Log of Postings Indexed

Log of Vocabulary Size versus Log of Postings Indexed

Measured
0.990803 + 0.664163 * x

Figure 3.14 Log of TIPSTER vocabulary growth

83

There are some noticeable systematic variations of the measured data from the function,

but they are due to the way in which we assembled the document collections that were

used to obtain each of the data points. Since a collection of a given size was created by

indexing the files listed in Table 3.1 from top to bottom, a relatively homogeneous set of

documents (i.e., documents that come from the same file or kind of files) represents the

difference between two data points plotted in Figure 3.13. This set of documents will

have slightly different vocabulary growth characteristics than the rest of the collection,

causing the occasional systematic variations. If the different document collections were

assembled by randomly drawing documents from all of the different files, this variation

would disappear.

Since vocabulary growth is sub-linear in terms of the size of the document collection,

the amount of existing inverted file data that must be read during an update grows sub-

linearly with the size of the existing document collection. Therefore, incremental update

merge costs (and total update costs) grow sub-linearly with the size of the existing document

collection. Bounding this cost with vocabulary size is very conservative, however, and we

are working on a better model for estimating the amount of data read during an incremental

update.

An inverted file produced by a series of incremental updates will have the exact same

object utilization as if the inverted file had been built in a single bulk indexing operation. The

inverted file produced by the above incremental procedure, therefore, has the same object

characteristics as the inverted file described in Table 3.3. The only possible difference is the

addition of vacant objects created by inverted list relocations in the incrementally produced

version. Because we add new objects last in a batch update, however, vacant objects have

high likelihood of being reused immediately, and there is no noticeable impact on the size

of the incrementally produced inverted file. In fact, the inverted file produced incrementally

above occupies 906 MB of disk space, or 7 MB less than the inverted file produced in a

single bulk indexing operation. This reduction is somewhat misleading—it is caused by an

84

inefficiency in Mneme’s low-level file allocation mechanism. Recall that 16 byte objects are

allocated in 4 KB physical segments, while all other objects are allocated in 8 KB physical

segments. Mneme aligns the 8 KB physical segments on 8 KB file boundaries, such that a

4 KB hole will be created when an 8 KB physical segment is created immediately after a

4 KB physical segment that was aligned on an 8 KB boundary. These holes can be allocated

to 4 KB physical segments in the future, but it may take a while before the file free space

search algorithm (circular next fit) finds them. When the file is built incrementally, 4 KB

physical segments are created in bursts, reducing the chances for holes to be created.

One final issue that we must address in evaluating the ability of our Inverted File

Manager to support document additions is the impact of incremental updates on query

processing speed. The danger with our implementation is that the objects that make up

a long inverted list will be allocated far apart from each other during the different batch

updates. In contrast, a long inverted list created in a single bulk indexing procedure will

have all of its objects allocated contiguously in the inverted file. Accessing an incrementally

built long inverted list during query processing will potentially require additional disk seeks,

increasing the time required to process queries.

To determine if this is a factor, we measured the time to process Query Set 1 (see

Section 4.4.3) using both the bulk indexed inverted file and the incrementally built inverted

file. For each version, we ran the query set 6 times and measured the elapsed time for

each run. In both versions, the range between the best and worst times recorded for

the 6 runs was less than 1% of the average for the 6 runs (i.e., there was no noticeable

variation across runs). The average elapsed time for the bulk indexed inverted file was

2741 seconds. The average elapsed time for the incrementally indexed inverted file was

2694 seconds. The incrementally indexed version actually reduces query processing time

by nearly 2%. This pleasant result can be explained by considering the query evaluation

strategy employed by INQUERY (discussed in more detail in Chapter 4). Queries are

evaluated document-at-a-time, such that all of the inverted lists for the terms in the query

85

are processed simultaneously. Rather than sequentially process each list one by one, we

cycle through all of the lists for each document in document identifier order. The long

inverted list objects in the incrementally indexed inverted file will be clustered based on

update batch, and a batch corresponds to a range of document identifiers in the document

collection. Therefore, access to the inverted file will be localized for each range of document

identifiers, actually reducing the amount of disk seeking.

There are a number of alternatives to the technique described here for supporting docu-

ment additions. One alternative was mentioned briefly at the beginning of this subsection,

and is the simple strategy of re-indexing the entire document collection whenever a batch

of new documents must be added. This scheme has two serious problems. First, if the

document collection is to remain available for query evaluation during the indexing process,

there must be sufficient disk space to hold two complete versions of the inverted file plus the

temporary files required by the indexing process. For large existing document collections,

this may be impractical. Second, the cumulative bulk indexing costs will quickly exceed

the cumulative incremental indexing costs, making this alternative much more expensive.

If we can afford to save the temporary file blocks, we can avoid the redundant parsing

of the existing document collection required by the previous scheme. The processing costs

to add a batch of new documents will now be limited to parsing the new batch and merging

the entire collection. Even in this scheme, the cumulative bulk merge costs will eventually

exceed the cumulative merge costs of the incremental version. This is demonstrated in

Figure 3.15, which shows the cumulative merge costs for each scheme when the document

collection is indexed in 100 MB batches. Merge costs in the bulk indexing scheme are

proportional to the size of the existing collection and will continue to grow with each new

batch update. Overall, this modified bulk indexing scheme is a poor solution. It requires

more elapsed time than the incremental solution and wastes significant disk resources.

Moreover, document deletions will make the saved temporary file blocks obsolete and

useless.

86

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30 35

C
u
m

u
la

ti
v
e
 E

la
p
s
e
d
 M

e
rg

e
 T

im
e
 (

s
e
c
)

Collection Size (x100 MB)

Cumulative Elapsed Merge Time versus Collection Size

Incremental
Bulk

Figure 3.15 Cumulative merge time comparison

One last alternative is to parse just the new document batch and use the existing inverted

file as input to the merge process, rather than the temporary file blocks used to build the

inverted file. The entire existing inverted file is scanned and a new complete inverted file

is written. This scheme is similar to the incremental version. However, the incremental

version performs updates in-place and, as we saw in Figure 3.11, must read a relatively small

proportion of the existing inverted file. We would expect, therefore, that this last alternative

scheme will have higher merge costs due to its complete scan of the existing inverted file.

Furthermore, this last scheme will certainly have higher storage costs, requiring enough

disk space to hold two complete copies of the inverted file.

87

3.4 Conclusions

The inverted file index is a critical component in an information retrieval system,

determining to a large extent the performance and functionality available from the system.

A number of issues must be considered in the management of an inverted file, including

efficient inverted file construction, support for inverted file modification,and efficient access

to the contents of an inverted file. We have discussed a number of these issues in detail and

presented a comprehensive solution to the inverted file management problem.

Our first hypothesis with respect to indexing is that fast, scalable document indexing

can be achieved by localizing sort and insertion operations, building intermediate results

in main memory, minimizing I/O, and favoring sequential I/O over random I/O. We have

presented an inversion scheme that adheres to these principles. Documents are processed

using a document based main memory buffer that localizes the inversion of each document.

The document buffer is then flushed to a main memory batch buffer, delaying the output

of intermediate results to disk as long as possible. Furthermore, the batch buffer stores

compressed data, increasing its effective capacity. When the batch buffer must be flushed,

it is written to disk in a sequential fashion.

The temporary file blocks written during parsing incur a disk space overhead of approx-

imately 100% of the size of the final inverted file—only 30% to 40% of the size of the raw

document collection. The temporary file blocks are efficiently merged using a large main

memory merge buffer. The merge process can keep disk seek time down to as little as 16%

of the total I/O time required to read the temporary file blocks, and the final inverted lists

produced by the merge process can be sequentially written. The overall system was shown

to index documents at a rate of 530 MB per hour on a current, midrange workstation, and

experiments over a wide range of collection sizes indicate excellent scalability, all of which

lead us to accept our first indexing hypothesis.

Without implementing alternative algorithms or measuring other systems on the same

platform, it is difficult to compare the indexing system described here with previously

88

proposed solutions in terms of speed. Possibly the best indexing speeds reported in the

literature have been obtained by Witten et al. [90], who achieve an overall indexing rate

of 430 MB per CPU hour when indexing the 2 GB TIPSTER collection on a Sun SPARC

10 Model 512 using one processor. In their implementation, Witten et al. do not store

term occurrence locations (proximity information) in their inverted files and do not use a

stop words list. The particular inversion scheme used to obtain these results performs two

passes over the document collection. The first pass gathers statistics for a parameterized

compression algorithm, a minimal perfect hash function for the terms, and the final size of

each inverted list. Using these statistics, an inverted file skeleton is laid out in main memory

marking the start of each inverted list. During the second pass over the document collection,

compressed inverted list entries are entered directly into the main memory inverted file at

the appropriate locations, avoiding the use of linked lists or sorting. For large document

collections, the text is partitioned into chunks. An inverted file for each chunk is is built in

main memory as before. A skeleton of the final inverted file is laid out on disk. At the end

of each chunk, the main memory inverted file is flushed to disk, filling in the final inverted

file skeleton at the appropriate locations.

If we do not store term occurrence locations and do not use stopping, our indexing

system requires 5 hours 13 minutes of wall-clock time to index the 3.2 GB TIPSTER

collection on a DECSystem 3000/600 (a rate of 614 MB per hour). Of this wall-clock time,

4 hours 54 minutes is CPU time, for a rate of 654 MB per CPU hour. For a very rough

comparison to Witten et al.’s system, we can project the indexing speed they might obtain

on the machine we used by scaling their reported time based on the difference in machine

performance as measured by the SPEC (Standard Performance Evaluation Corporation)

benchmark. The SPECint92 numbers for the DECSystem 3000/600 and Sun SPARC 10

Model 512 (one processor) are 114.1 [81] and 65.2 [80], respectively, suggesting that the

DECSystem is 1.75 times as fast as the Sun. We speculate, therefore, that Witten et al.’s

89

scheme would index at a rate of 753 MB per CPU hour on our platform, or 15% faster than

our indexing system.

This comparison suggests that our indexing system still has room for improvement.

Recall that a profile of the Parser showed that most of the time is spent scanning and

parsing. System tuning efforts aimed at scanning and parsing promise to close the gap

between the speed of our system and that of Witten et al.’s. Even if a performance gap

remains, our system offers other advantages. First, as we have already seen, the modular

design of the Parser and Merger allow them to be used “as is” in a system that supports

dynamic document collections. Second, if multiple processors or machines are available,

the parsing process can be parallelized by partitioning the document collection into sub-

collections and parsing all sub-collections simultaneously (followed by a single merge of

all temporary file blocks). Third, we can easily extend our indexing system to handle

a “real-time” stream of new documents augmented with specific indexing deadlines and

availability constraints (this is pursued further in Section 5.1.1).

Our second indexing hypothesis is that document additions can be efficiently supported

by an inverted list data structure that minimizes access to the existing inverted file during

the update. Support for such an inverted list data structure was obtained by using the

Mneme persistent object store as a foundation for our inverted file implementation. The

object data model provided by Mneme allowed us to create an inverted file organization

that met the functionality requirements specified in the hypothesis. By continuing to adhere

to the design principles stated in the first hypothesis, an incremental indexing scheme was

designed and implemented that can add new documents to an existing large document

collection by accessing less than 30% of the existing inverted file and requiring temporary

disk space equal to 30% to 40% of the size of the new document batch. We obtained an

overall indexing rate of 265 MB per hour when indexing a 3.2 GB document collection

in 100 MB batches. While the incremental indexing costs of this scheme are not entirely

independent of the existing document collection, they are significantly better than the

90

alternative schemes considered, and the trends observed in our experiments indicate good

potential for scale. Furthermore, the impact of incremental indexing on query evaluation

speed was shown to be negligible. In fact, document-at-a-time style query evaluation can

actually benefit from the inverted file locality created by an incremental indexing scheme.

These results led us to accept our second hypothesis.

Our last indexing hypothesis is that a general, “off-the-shelf” data management system

can be used to manage an inverted file if the system provides the appropriate data model

and extensibility mechanisms. We conducted an in-depth exploration of the functionality

requirements of an inverted file and concluded that a persistent object store could best satisfy

these requirements. A full design and implementation was described, and experimental

results related to indexing were presented to validate the feasibility of the implementation.

Results pertaining to query evaluation are presented in the following chapter. All of these

results combined led us to accept this last hypothesis. While the full potential of this

architecture in terms traditional database functionality (e.g., concurrency control, recovery,

transactions) is yet to be explored, the work described here lays a strong foundation for the

pursuit of a comprehensive information management system.

91

92

CHAPTER 4

QUERY EVALUATION

In this chapter we turn to the second main topic addressed in this dissertation—

improving execution performance during query evaluation. Query evaluation speed has

always been an important factor in the success and acceptance of information retrieval sys-

tems. If an information retrieval system is too slow it will be intolerable to use, regardless

of its ability to identify relevant documents. Recent trends in the volume and availability of

information suggest that system speed will continue to become more important. Commer-

cial document collections already contain tens of gigabytes of data, and projects involving

digital libraries forecast document collections containing hundreds of gigabytes of data. Re-

call the conflicting system goals depicted in Figure 1.1. As document collections become

larger, document retrieval inevitably becomes more expensive. Moreover, more sophis-

ticated retrieval techniques are necessary to identify relevant documents. Unfortunately,

more sophisticated retrieval typically implies more expensive retrieval, compounding the

problem of providing answers quickly and efficiently.

Resolution of the conflict between these competing system goals can be found through

the use of query optimization techniques. A query optimization can be targeted at reducing

computation, I/O, or both, and is generally intended to result in an overall reduction in

running time. A number of query optimization techniques have been proposed for the

Boolean, vector-space, and probabilistic retrieval models. Optimizations for the Boolean

retrieval model focus on identifying an evaluation order that will constrain the result set

as quickly as possible. This is accomplished by considering the collection frequency of

each term and distributing any conjunctive operators such that potential result set sizes are

93

minimized. Optimizations for the vector-space and probabilistic retrieval models generally

focus on identifying term weights that can be eliminated from the final document score

calculation, saving computation and possibly the I/O that would otherwise be required to

retrieve the term weights. Selection of term weights for elimination is often done in such a

way that guarantees can be made about the quality of the final document ranking.

While a number of query optimization results have been published for the three retrieval

models just mentioned, comparatively little has been published on optimizations for a

fourth class of retrieval models, namely statistical ranking retrieval models that support

structured queries. These retrieval models are characterized by a statistical or probabilistic

term weighting function and a query language that provides a variety of query operators

for combining term weights, proximity information, and the results of nested operators.

Although many of the optimization techniques proposed for other retrieval models are

applicable to retrieval models in this fourth class, the extent to which they can be applied

and the effectiveness of their application has not been thoroughly evaluated. Moreover,

few optimization techniques have been suggested specifically for statistical ranking retrieval

models that support structured queries. We begin to address this situation with the work

presented here. We consider a number of issues related to reducing the cost of evaluating

structured queries in a ranking retrieval model and present a new optimization technique

that yields a dramatic reduction in evaluation time with no noticeable impact on retrieval

effectiveness.

Our exploration of structured query optimization techniques uses INQUERY as an

experimental framework. INQUERY supports a rich, structured query language and has

been shown to produce good levels of retrieval effectiveness [39, 40]. Moreover, the

inference network-based retrieval model provides a general framework for representing a

variety of retrieval strategies, suggesting that the results reported within this experimental

framework will have applicability beyond that of just the inference network-based model.

94

We begin with an overview of structured queries, including background information on

the probabilistic retrieval model, its generalization in the inference network-based retrieval

model, and INQUERY’s implementation of this model. We then consider the issues

involved in optimizing structured queries and present our new optimization technique.

This is followed by implementation details and a performance evaluation of the technique.

Extensions to the basic optimization technique are considered, and its effectiveness on

short, unstructured queries is explored. Finally, the chapter ends with conclusions.

4.1 Structured Queries

A retrieval model supports structured queries if its query language provides a variety

of operators that can be nested to create a query tree1. This definition includes the Boolean

retrieval model, but excludes the vector-space model, which supports flat queries only. We

further restrict the retrieval models of interest by requiring support for statistical ranking.

This last restriction eliminates the simple Boolean retrieval model from consideration.

The best example of a statistical ranking model that supports structured queries is

the inference network-based retrieval model as implemented by INQUERY. The inference

network-based retrieval model is rooted in the probabilistic retrieval model.

4.1.1 Probabilistic Retrieval

Maron and Kuhns [56] first suggested the probabilistic retrieval model in 1960. The

basic idea is to rank the documents in a collection based on their probability of being relevant

to the current information need. This is expressed as P(relevant ✄ d), or the probability that

the information need is met given document d. A user’s information need is something

internal to the user and cannot be expressed exactly to the system, so this probability must

1In fact, the query can form a DAG, although a tree structure can be obtained by duplicating nodes or

subtrees as necessary.

95

be estimated using the terms supplied by the user in a query. The estimation is simplified

using a version of Bayes’ theorem to rewrite the probability as

P(relevant ✄ d) =
P(d ✄ relevant)P(relevant)

P(d)

Document d can be represented as a binary vector x = (x1, x2, . . . , xv), where xi = 1 if term i

appears in document d, xi = 0 otherwise, and the terms are (typically) limited to those that

appear in the query. Now the estimation task amounts to estimating the probability of the

terms appearing in a relevant document, P(x ✄ relevant), and the a priori probability of a

document, P(x). P(relevant) will be constant for a given query and so may be ignored.

Robertson and Sparck Jones [71] revised the probabilistic model into its current form.

They observed that a document should be retrieved if its probability of being relevant is

greater than its probability of being not relevant, P(relevant ✄ d) > P(not relevant ✄ d). For

the purposes of ranking the documents in a collection, this can be restated as a cost function

g(x) = log
P(x ✄ relevant)

P(x ✄ not relevant)
+ log

P(relevant)

P(not relevant)

where document d is expressed as the binary vector x, Bayes’ theorem has been used, and

the logs have been introduced to linearize the function.

If we assume that terms appear independently in the relevant documents, we can rewrite

P(x ✄ relevant) as P(x1 ✄ relevant)P(x2 ✄ relevant) ☎✏☎✑☎ P(xv ✄ relevant), and similarly for the

not relevant case. Let pi = P(xi = 1 ✄ relevant) and qi = P(xi = 1 ✄ not relevant), then

P(x ✄ relevant) = ✒
i

pxi

i (1 ✓ pi)
(1 ☞ xi)

and

P(x ✄ not relevant) = ✒
i

qxi

i (1 ✓ qi)
(1 ☞ xi)

Our cost function can now be rewritten as

g(x) =

✔✖✕
i

xi log
pi(1 ✓ qi)

(1 ✓ pi)qi ✗ +

✔✖✕
i

log
1 ✓ pi

1 ✓ qi ✗ +
P(relevant)

P(not relevant)

96

The last two terms will be constant for a given query (since xi does not appear in them),

so we are left with the first term as our ranking function. This is known as the binary

independence model.

We are still faced with the problem of estimating pi and qi. The solution is to use

some other technique to return an initial set of documents to the user and obtain feedback

about the relevant and non-relevant documents in the set. The distribution of query terms

in the relevant and non-relevant documents in this sample is then used to estimate p i and

qi, and the query is re-evaluated probabilistically. Croft and Harper [22] showed how the

probabilistic model could also be used for the initial search. They assume that pi is the

same for all terms and qi can be estimated with ni/N, where ni is the number of documents

in which term i occurs and N is the number of documents in the collection. The ranking

function now becomes

g(x) = C

✕
i

xi +

✕
i

xi log
N ✓ ni

ni

(4.1)

This is referred to as the combination match, which applies the constant factor C times the

number of matches between the terms in the query and the terms in the document, plus

what is essentially the inverse document frequency of each query term that appears in the

document.

Equation 4.1 assumes that a term is either fully assigned to a document, or not at all. The

mere appearance of a term in a document, however, does not necessarily mean that the term

is indicative of the contents of the document. Rather than make such extreme judgments,

we would prefer to use a finer granularity when expressing the degree to which a term

should be assigned to a document. This was accomplished by Croft [19, 20] who expressed

this degree as the probability of a term being assigned to a document, P(xi = 1 ✄ d), such

that documents should now be ranked by the expected value of Equation 4.1, or

g(x) =

✕
i ✘ P(xi = 1 ✄ d) ✙ C + log

N ✓ ni

ni ✚✜✛
P(xi = 1 ✄ d) is then estimated using the normalized within document frequency of the

term, ntfid = tfid/max tfd, where tfid is the number of occurrences of term i in document d,

97

and max tfd is the maximum of ✁ tf1d, tf2d, . . . ✂ . To increase the significance of even a single

occurrence of a term in a document, a constant K in the range 0 to 1 is applied to yield the

final probabilistic ranking function

g(x) =

✕
i ✘ (K + (1 ✓ K)ntfid) ✙ C + log

N ✓ ni

ni ✚✜✛ (4.2)

4.1.2 Inference Network-based Retrieval

The Bayesian inference network model generalizes the probabilistic retrieval model by

treating retrieval as an evidential reasoning process where documents are used as evidence to

estimate the probability that a user’s information need is met. An inference network consists

of nodes and directed edges between the nodes forming a directed acyclic graph (DAG).

The nodes represent binary valued (i.e., true or false) propositional variables or constants

and the edges represent dependencies between the nodes. If the proposition represented by

a given node p implies the proposition represented by node q, then a directed edge is drawn

from p to q. Node q will also contain a link matrix that specifies the probability of q given

p, P(q ✄ p), for all possible values of p and q. Since p and q may each be either true or false,

this link matrix will contain four entries. If q has multiple parents (✢ q), the link matrix

will specify the conditional probability of q on the set of parents, P(q ✄✖✢ q). Typically the

network is large such that storing the entire link matrix for a node is impractical. Instead,

the link matrix is represented in a canonical form and we store only the information required

to compute each matrix entry from the canonical form.

If the probabilities of the root nodes in the network are known, Bayesian inference rules

can be used to condition these probabilities over the rest of the network and compute a

probability, or belief, for each of the remaining nodes in the network. Moreover, if our belief

in any given proposition should change, its probability can be adjusted and the network can

be used to update the probabilities at the rest of the nodes.

The application of Baysien inference networks to information retrieval was advanced

by Turtle and Croft [86, 88, 87]. The inference network used for information retrieval is

98

I

d1 d2 dn

t1 t2 tk

r1 r2 r3 rv

c1 c2 c3 cj

q1

document

network

query

network
q2

Figure 4.1 Inference network for information retrieval

divided into two parts, a document network and a query network, shown in Figure 4.1. The

document network consists of document nodes (di’s), text representation nodes (ti’s), and

concept representation nodes (ri’s). A document node represents the event that a document

has been observed at an abstract level, while a text node represents the event that the actual

physical content of a document has been observed. This distinction is made to support

complex documents which may have multiple physical representations (e.g., multimedia

documents with text and video), and sharing of the same physical text by multiple documents

(e.g., if two documents are merely different published forms of the same text). In the first

case, a document node will have multiple children text nodes, while in the second case, a

text node will have multiple parent document nodes. Typically, each document has only

99

one text representation and the text representations are not shared by multiple documents,

such that the document network may be simplified by eliminating the text nodes.

A concept representation node represents the event that a document concept has been

observed. Document concepts are the basic concepts identified in the document collection.

Commonly these are the terms in the document collection, but they may also be more se-

mantically meaningful concepts extracted from the text by sophisticated indexing methods.

The conditional probability P(ri ✄ dj) stored in a concept representation node quantifies our

estimate of the degree to which the concept should be assigned to the document, as well

as the ability of the concept to describe the information content of the document. This

estimate can be borrowed from the probabilistic retrieval model, using Equation 4.2 as the

foundation of the estimate.

The query network consists of query concept nodes (ci’s), query nodes (qi’s), and a

single information need node (I). Node I represents the event that a user’s information need

has been met. Query nodes are a representational convenience that allow the information

need to be expressed in multiple query forms. They represent the events that particular

query forms have been satisfied, and could be eliminated by using more complicated

conditional probabilities at node I. Query concepts are the basic concepts used to represent

the information need. A query concept node describes the mapping between the concepts

used in the document representation and the concepts used in the query representation, and

will have one or more document concept representation nodes for parents. In the common

case, each query concept node will have a single parent.

The document network is constructed once at indexing time. The links between the

nodes and the link matrices stored within the nodes never change. The query network

is constructed when the query is parsed. The link matrix stored in a query node will be

based on the query operator represented by the node. Such operators might include the

boolean operators, simple sums, or weighted sums where certain query concepts have been

identified as being more significant and consequently given more weight. The link matrix

100

in the information need node will describe how to combine the results from the different

query representations. Unlike the document network, the conditional probabilities in the

query network may be updated given additional information from the user, as might occur

during relevance feedback.

The inference network is used by attaching the roots of the query network to the leaves

of the document network. To produce a score for document dj, we assert dj = true and

dk = false for all k ✣= j, and condition the probabilities through the network to obtain

P(I ✄ dj). If a document provides no support for a concept (i.e., it doesn’t contain that term),

a default belief is assigned to that concept node when conditioning over the network. A

score is computed in this way for all documents in the collection, which are then ranked

based on their scores. In practice, we need only compute scores for documents which

contain at least one of the query concepts. As the query is evaluated, a default document

score is computed which is then assigned to all documents that contain none of the query

terms.

4.1.3 INQUERY

In INQUERY, a user’s information need is satisfied by expressing that need as a query

and evaluating the query against a collection of documents. Evaluating the query for a

given document produces an estimate of the probability of that document satisfying the

information need, expressed as a final belief score. After all of the documents in the

collection have been evaluated, they are ranked based on their final belief scores. A ranked

document list is then returned to the user.

A query consists of indexed concepts, belief operators, and proximity operators. These

elements are combined in a tree structure with indexed concepts at the leaves and operators

at the internal nodes. An example query is shown in Figure 4.2, where operators are prefixed

with a hash mark (#). An indexed concept is a term or other special object identified at

indexing time. A proximity operator produces constructed concepts by combining indexed

101

#sum

#phrase

information retrieval

performance optimization

proximity proximity

belief

belief

belief

final belief score

Figure 4.2 Example query in internal tree form

concepts and other constructed concepts at query processing time.2 Concepts contribute

belief values for every document in which they appear. Belief operators describe how to

combine these belief values to produce the final belief score.

Belief operators operate on belief values and return belief values. The belief operators

include and, or, not, sum, weighted sum, and maximum. The first three are probabilistic

implementations of the traditional boolean operators. The next two return the average and

weighted average, respectively, of their children’s belief values. The last operator returns

the maximum of the belief values from its children.

Proximity operators operate on proximity lists and return either a new proximity list or a

belief value. A proximity list contains the locations where its associated concept occurs in

a given document. For example, in Figure 4.2 the proximity list for the term “information”

in document j would contain the locations of each occurrence of “information” in document

j. When the #phrase operator combines that proximity list with the proximity list for the

term “retrieval” in document j, a new proximity list for the phrase “information retrieval” is

constructed that contains the locations where “information retrieval” appears in document

2This definition of concept is a slight departure from the formal definition in the inference network [88].

The distinction between indexed and constructed concepts is emphasized here to facilitate discussion from an

implementation perspective.

102

j. This may be returned to a parent proximity operator, or a belief value may be computed

from the proximity list and returned to a parent belief operator.

The proximity operators include phrase, ordered distance n, unordered window n,

synonym, and passage sum. The ordered distance n operator identifies documents that

contain all of the operator’s child concepts ✁ c1 . . . ck ✂ with the constraint that the concepts

must appear in order and be spaced such that the distance between ci and ci+1 is less than

or equal to n. The unordered window n operator is similar except that all of the child

concepts must appear within a window of size n and they may appear in any order. The

phrase operator is initially evaluated as an ordered distance n with n = 3. However,

depending on the quality of the resultant phrase, the operator may ultimately be evaluated

as an ordered distance n with n = 3, a sum, or a maximum of these two.

The synonym function combines two or more proximity lists into a single proximity

list by taking the union of the locations for each document in the lists. The new proximity

list represents a constructed concept that occurs anywhere any of the child concepts occur.

The last function, passage sum, calculates a belief for a document as follows. First, the

document is divided into fixed size overlapping passages, where the last half of each passage

overlaps the first half of the subsequent passage. Next, a belief score for each passage is

calculated based on the number of occurrences of each of the child concepts within the

passage and any weights associated with the child concepts. Finally, the maximum passage

belief is returned as the belief for the document. Proximity lists are required from the

children to determine concept occurrences within each passage, and a belief list is returned

from the passage operator itself.

The belief value contributed by a concept for a given document is calculated using

a probabilistic version of the tf ☎ idf score. The tf weight is directly proportional to the

within document frequency of the concept, such that the more times the concept appears in

the document, the greater the belief value. The idf weight is inversely proportional to the

concept’s document count (the number documents in which the concept appears), such that

103

the greater the document count, the smaller the belief value. Specifically, the belief value

for concept i in document j is calculated with the following formula:

beliefij = C + (1 ✓ C) ntfij nidfi (4.3)

where

ntfij = KH + (1 ✓ K)

✔
log(tfij + 0.5)

log(max tfj + 1.0) ✗
nidfi =

log((N + 0.5)/ni)

log(N + 1.0)

ntfij is the normalized within document frequency

nidfi is the normalized inverse document frequency

tfij is the within document frequency

max tfj is the maximum of ✁ tf1j, tf2j, . . . ✂
N is the # documents in the collection

ni is the # documents in which concept i appears

The constants C and K both default to 0.4 in INQUERY, although they may be specified

by the user. C is the default belief value returned for documents that do not contain the

given concept. K acts to increase the significance of even a single occurrence of a concept

in a document. H is used to reduce the influence of document length for long documents.

If max tfj is greater than 200, then H is set to 200/max tfj. Otherwise, H is set to 1.0.

Additionally, if tfij is equal to max tfj, then ntfij is set to 1.0. Note that a belief value will

always be between 0 and 1.0 inclusive.

The document counts, within document frequencies, and proximity lists for indexed

concepts are extracted and stored in an inverted file when the document collection is indexed

(see Chapter 3). An inverted file consists of a record, or inverted list, for every indexed

concept that appears in the document collection. A concept’s inverted list contains its

document count and an entry for every document in which that concept appears, identifying

the document and giving the within document frequency and proximity list of the concept

within the document.

To facilitate locating information about a particular document in an inverted list, the

document entries are stored in document id order. This naturally leads to the following

104

query processing strategy. First, each node in the query tree is initialized with the next

document id (NID) to be processed at that node. For indexed concept (leaf) nodes, this is

simply the id of the first document that appears in the inverted list for that concept. Operator

(internal) nodes are classified as either union or intersection style operators. Union style

operators calculate a result for the current document if at least one of its children contributes

a result for that document (e.g., weighted sum). Intersection style operators calculate a

result for the current document only if all of its children contribute a result for that document

(e.g., ordered distance n). A union style operator is initialized with the minimum of its

children’s NIDs, while an intersection style operator is initialized with the maximum of its

children’s NIDs.

Processing is performed document-at-a-time with the current document to process de-

termined by the NID at the query tree root. The query tree is evaluated in a depth-first

fashion for the current document. When a node representing a concept is encountered, a

belief value for the current document is computed using Equation 4.3. The belief values

flow from the leaves to the root, being combined according to the belief operators along the

way. In addition, as each node is evaluated the node’s NID is updated appropriately from

its children. When the root node returns the final belief score for the current document,

it is saved in a list for later ranking. This process repeats until the NID at the root node

indicates that all documents have been processed. The list of final belief scores can then

be sorted and the ranked listing returned. Note that the only documents evaluated are those

that appear in the inverted lists for the indexed concepts in the query. All other documents

receive a default final belief score.

It turns out that an extra query processing step is required. In order to calculate a belief

value for a constructed concept (e.g., a phrase), we need the concept’s idf weight. The idf

weight depends on the number of documents in which the concept occurs. This is unknown

until the constructed concept has been evaluated for all of the documents. Therefore, a

preprocessing step is needed to fully evaluate the constructed concepts and determine their

105

idf weights. The results of this preprocessing step are saved in temporary inverted lists,

allowing proximity lists and belief values to be obtained immediately from constructed

concepts during the final query evaluation phase.

4.2 Structured Query Optimization

Optimization techniques for information retrieval systems that support statistical ranking

may be classified as either safe or unsafe. Safe techniques have no impact on retrieval

effectiveness, while unsafe techniques may trade retrieval effectiveness for execution speed.

We consider a number of safe optimizations and introduce a new unsafe optimization below.

4.2.1 Safe

The first safe technique is intended to improve execution performance by eliminating

unnecessary I/O. In the traditional inverted list organization, an inverted list document entry

stores its term weight and proximity list together. We saw in the last section, however, that

proximity lists are not required when processing a belief operator. The traditional inverted

list organization results in unnecessary I/O when processing a belief operator. To remedy

this situation, we can use an inverted list organization that separates term weights from

proximity lists and allows selective access to one or the other. If belief operators no longer

need to read proximity lists from disk, they will be less expensive to process and execution

performance will improve.

The next safe technique can generally be called an intersection optimization, and is

borrowed from the Boolean retrieval model. In that model, a query consisting of a con-

junction of terms can be evaluated in the following fashion. First, a candidate document set

is created consisting of the set of documents in which one of the terms appears. Then, for

each of the remaining terms, the set of documents in which that term appears is intersected

with the set of candidate documents. After all terms have been processed, the candidate

document set will consist of the documents which satisfy the conjunction. This process can

106

be improved by starting with the term that appears in the smallest number of documents

and processing the remaining terms in increasing order of document frequency. At each

intersection, it is only necessary to check if the current term appears in the documents in the

candidate set, since the candidate set can only shrink or stay the same. Therefore, savings

can be realized if we can access just the portions of the inverted list for the current term that

might contain an entry for a candidate document. Furthermore, if the candidate set should

become empty, processing can stop immediately.

Unfortunately, the conjunction operation in the probabilistic retrieval model is not a

strict intersection, so this optimization is not applicable to the and operator. However, the

proximity operations described above are strict intersections in the sense that every term in

a proximity must appear in a document (and satisfy any ordering and window constraints)

in order for the document to satisfy the proximity. Therefore, the exact same technique

can be used to improve execution performance for proximity operations. This technique

requires the ability to access just that portion of an inverted list that might contain an entry

for a given document, i.e., selective access to the contents of an inverted list.

The final safe technique for improving execution performance is inverted list compres-

sion. Assume that we have u bytes of data that can be compressed down to z bytes, z < u.

If the cost of decompressing z bytes of data is less than the cost of reading u ✓ z bytes from

disk, then execution performance will improve. Note also that if the cost of decompressing

z bytes exceeds the cost of reading the u ✓ z extra bytes in an uncompressed inverted list,

then execution performance will deteriorate.

Compression techniques for inverted lists have received a fair amount of attention in the

literature [90, 57, 51, 2, 6, 95]. We do not claim anything novel with respect to compression.

Rather, for completeness we merely describe how it fits into an overall optimization strategy

and give a necessary condition for providing benefit with respect to execution performance.

Note that compression clearly has other desirable side effects, e.g. reduced disk space

requirements, whose benefits may outweigh any additional execution costs.

107

4.2.2 Unsafe

While the previous techniques will always guarantee a correct answer to a query, they

generally depend on the particular operators used in the query. We now introduce a more

general technique that attacks the evaluation costs inherent in any structured query [7].

There are two factors that determine the cost of query evaluation. First, there is the

complexity of the query. The discussion in Section 4.1.3 suggests that queries may be quite

complex. The more complex the query, the more processing required for each document

in order to evaluate the document’s final belief score. The second factor is the size of the

set of documents that must be evaluated, or the candidate document set. This set may be

quite large. Moffat and Zobel [58] found that for queries containing around 40 terms, using

the terms’ inverted lists to populate the candidate document set caused nearly 75% of the

documents in the collection to be placed in the candidate document set. This is consistent

with our results reported below, where our unoptimized candidate document set typically

contained over half of the documents in the collection.

Given the relatively small number of top documents a user might actually review in an

interactive system, such a large candidate document set seems exorbitant. If our document

collection contains one million documents, the system may have to evaluate over five

hundred thousand documents, while the user will rarely consider more than the top one

thousand documents. Therefore, the goal of our optimization technique is to constrain the

set of candidate documents. If we can reduce the size of the candidate document set, we

will reduce the number of per document evaluations of the query tree, reducing overall

query processing time. Moreover, if we are no longer processing every document that

appears in the inverted lists, we may be able to skip portions of inverted lists [60]. If

the skipped portions are large enough and our inverted list implementation provides the

necessary functionality, the overall number of disk I/Os might be reduced.

To constrain the set of candidate documents, we want to add just those documents that

have a strong chance of satisfying the user’s information need. Without actually evaluating

108

the query, the best we can do to estimate this chance for a given document is to consider

the belief contributions from the indexed concepts in the query. Recall that the belief value

for concept i in document j is a product of the idf weight for concept i and the tf weight for

concept i in document j. This leads to the following two observations and corresponding

rules:

1. Due to their large idf weights, rarely occurring concepts are likely to make large

contributions to a document’s final belief score. Therefore, they will identify highly

ranked candidate documents. For a concept whose idf weight exceeds some threshold,

add to the candidate document set all documents that contain the concept (i.e., all

documents that appear in the concept’s inverted list).

2. More frequently occurring concepts may still contribute significant belief values for

the documents in which they appear frequently (i.e., have a large tf weight). For a

concept that does not exceed the idf weight threshold, add to the candidate document

set the documents associated with the concept’s top n tf weights.

An indexed concept’s idf weight is inversely proportional to the length of its inverted

list. Rather than establish an idf weight threshold for candidate set population, we use an

inverted list length threshold. An inverted list is short if it can be obtained in a single disk

read, otherwise it is long. From our first rule, all of the documents that appear in a short list

will be used to populate the candidate document set. The cost associated with this activity

is a single disk read per short inverted list. Since one disk read is required anyway to access

an inverted list for later processing, populating the candidate document set with a short list

will incur no extra I/O costs.

From our second rule, we need to obtain the documents associated with the top n tf

weights in the long inverted lists. This suggests that the inverted lists should be sorted by

tf weight. However, query evaluation is document driven and requires that the inverted

lists be sorted by document identifier. Instead, if n is defined to be relatively small, we can

109

maintain a separate list of the documents associated with the top n tf weights for each long

inverted list. Zipf’s Law [94] suggests that there will be relatively few long inverted lists,

but they will consume the majority of the space in the inverted file. If each top document

list is constrained to be smaller than a disk page, then the overhead associated with the top

document lists will be a small percentage of the total space occupied by the long inverted

lists. Furthermore, obtaining the top document list for a long inverted list will require a

single disk read.

Using our two rules, the candidate document set is created in a final preprocessing

pass over the query tree, after the constructed concepts have been built. When an indexed

concept with a short list is encountered, all of the documents in that list are added to the

candidate set. When an indexed concept with a long list is encountered, the documents

with the top n tf weights from that list are added to the candidate set. When a constructed

concept built by a proximity operator is encountered (e.g., a phrase), it could be handled in

the same way as an indexed concept. However, for simplicity in the current implementation,

constructed concepts are treated like short lists and all of the documents in a constructed

concept’s inverted list are added to the candidate set.

One special case is the not operator. In this case, we ignore the subtree below the not

altogether. The not operator returns 1 ✓ beliefc, where beliefc is the belief value returned

by c, the child of the not operator (i.e., the negated concept). beliefc will be greater than

or equal to the default belief value at c, such that the largest possible belief value returned

by the not operator will be for documents that do not contain the negated concept. In other

words, documents identified by inverted lists in the subtree below the not can only have

their final belief scores reduced by the not. Therefore, it is sufficient to ignore the not when

establishing the candidate set and simply evaluate the not on the candidate set established

from the rest of the query tree.

The final candidate document set is used to drive the document evaluation process.

Rather than choose the current document to evaluate based on the NID at the root of the

110

query tree, we simply evaluate each of the documents in the candidate set. Otherwise, query

evaluation proceeds as described in Section 4.1.3. Each document in the candidate set is

fully evaluated and receives an accurate final belief score. The final relative ranking of the

documents in the candidate set will be the same as if no optimization had been used. The

only difference will be that documents that were not added to the candidate set will receive

the default document score and may appear lower in the final ranking than they would have

had they been evaluated.

4.3 Implementation

The optimization techniques described above place certain functionality requirements

on the inverted file implementation. The safe optimizations require separation and isolated

access of proximity and belief information and the ability to skip portions of an inverted list

when reading the list from disk. The new unsafe optimization requires storage of the top

document lists for the long inverted lists and the ability to distinguish between the different

types of lists and handle them accordingly at indexing time, query processing time, and

collection modification time.

Fortunately, we can easily extend the Mneme-based inverted file implementation de-

scribed in Chapter 3. Recall that short lists are defined to be 8 KB or less. Since a single

file read will obtain an entire short inverted list, it is not profitable to support disk access

of short lists in granularities smaller than the entire inverted list. Short lists, therefore, are

stored as before using fixed length objects, ranging in size from 16 bytes to 8 KB by powers

of 2 (i.e., 16, 32, 64, . . ., 8K). The same small-object, fixed-object, and page-object pools

are used to create and manage these objects.

Long inverted lists must satisfy all of the functionality requirements stated above.

The simple linked list implementation for long inverted lists described in Section 3.2.3 is

inadequate. Instead, long inverted lists are stored as shown in Figure 4.3. A long inverted

list is split into two distinct lists: a frequencies list and a locations list. The frequencies

111

directory

directory

Frequencies
 Head

Locations
 Head

top doc
list

frequencies
 list

locations
 list

Figure 4.3 Long inverted list structure

list contains the document id and frequency statistics from each of the document records

in the original inverted list. The locations list contains the locations (proximity lists) from

the document entries. Each of these new lists is stored in 8 KB objects accessed through

a directory. A directory entry contains a pointer to an object, along with the document

id for the first list entry in the object. To obtain the information for a specific document,

the directory is used to identify and directly access the objects that contain the desired

information.

The directory for the frequencies list is compressed and stored in a special 8 KB object

called the Frequency Head. When the inverted list is first accessed, the Frequency Head

is obtained and the directory is decompressed. This is all that is needed to access the

frequencies list and satisfy requests for belief values from parent belief operators. If a

proximity list is required, the Locations Head must be obtained. The Locations Head is

another special 8 KB object that contains the compressed directory for the locations list.

112

Both the frequencies list and the locations list are accessed simultaneously to return the

desired proximity list.

The Head objects will store the tails of their respective lists if there is enough room.

In addition, the Frequencies Head contains the top document list stored in a compressed

format. For our initial implementation, we set the number of top documents n to 1000.

Within inverted list i, documents are ranked based on their tf weights, calculated as the

normalized term frequency ntfij (see Equation 4.3). This produces a floating point number

between 0.0 and 1.0. To increase the amount of compression possible on the top document

list, each document’s normalized term frequency was multiplied by 16383 (i.e., 214 ✓ 1)

to produce an integer guaranteed to fit in two bytes or less using our variable length

compression technique. This reduces the precision of our within list ranking function, but

yields a significant space savings. The lost precision is seen only at the boundary score

for the worst document in the top document list, where we may not be sure that we have

the best document mapped to that integer. All documents with larger integer scores are

guaranteed to have a larger ntfij.

Our use of normalized term frequency to rank documents within an inverted list has one

drawback. Recall that if term i is the most frequent term in document j (i.e., tfij = max tfj),

then ntfij is set to 1.0. All of the documents in which term i is the most frequent term will

have a normalized term frequency of 1.0 for term i. These documents will be arbitrarily

ranked relative to each other within the inverted list for term i. If term i is the most

frequent term in more than 1000 documents, the top document list for i may not contain

i’s “best” 1000 documents. In cases such as this, however, term i will have a very low idf

weight; i is less likely to identify relevant documents and more likely to act as a fine tuning

adjustment on final document scores, reducing the need for accuracy in i’s top document

list. If the calculation for normalized term frequency were modified to differentiate between

documents in which term i is the most frequent term, then we would expect our optimization

technique to perform even better.

113

This inverted file implementation furnishes all of the functionality necessary to support

the safe optimizations described above as well as our new unsafe optimization technique.

The split long inverted lists allow the selective access of inverted list contents required

by the first safe optimization described above. The directory based access into the long

inverted lists supports skipping through the lists due to a reduced candidate document set or

from application of a safe intersection style optimization in a proximity operator. The long

inverted lists provide storage of the top document lists. Finally, the customized Mneme

object support described in Section 3.2.3 facilitates the distinction between short and long

inverted lists and simplifies appropriate handling of each.

4.4 Performance Evaluation

We now evaluate the effectiveness of the optimization techniques considered above. For

safe optimization techniques, it is sufficient to merely measure their impact on execution

speed. For unsafe optimizations, we must additionally assess the impact of the optimiza-

tion technique on the system’s retrieval effectiveness. We describe our evaluation below,

including the platform on which we ran our experiments, the test collections and query sets

used, the performance measured, and the levels of retrieval effectiveness observed.

4.4.1 Platform

All of our experiments were run as superuser with logins disabled on an otherwise idle

DECSystem 3000/600 (Alpha AXP CPU clocked at 175 MHz) running OSF/1 V3.0. The

system was configured with 64 MB of main memory, one DEC 1.0 GB RZ26L Winchester

SCSI disk, and one DEC 2.0 GB RZ28B Winchester SCSI disk. The executables were

compiled with the DEC C compiler driver 3.11 using optimization level 2. All of the data

files and executables were stored on the larger local disk, and a 64 MB “chill file” was read

before each query processing run to purge the operating system file buffers and guarantee

that no inverted file data was cached by the file system across runs (see Section 3.3.1 for

114

Table 4.1 Test collection statistics

Collection Size (MB) Docs Terms Postings

Tip1 1206 510343 639914 112812693

Tip12 2069 741562 859121 191742705

Tip123 3181 1077872 1090896 281417622

verification of the chill procedure). In all cases we allocated 15 MB of Mneme buffer space

to cache memory resident inverted list objects.

4.4.2 Test Collections

For our experiments we used three test collections drawn from the three volume TIP-

STER document collection used in the TREC [39] evaluations. This is the same test

collection described in Chapter 3, although here it is divided into three separate volumes.

Statistics for the test collections can be found in Table 4.1, where Terms is the number of

unique indexed concepts and Postings is the total number of occurrences of the indexed

concepts. Tip1 is volume 1, Tip12 is volumes 1 and 2, and Tip123 is all three volumes.

The test collections were indexed automatically, using stemming to reduce words to

common roots and a stop words list to eliminate words too frequent to be worth indexing.

Feature recognizers were also used to identify city names, company names, foreign country

names (i.e., not the United States), and references to the United States.3 Statistics for the

inverted files generated during the indexing process can be found in Table 4.2. For each

file the table gives the size of the inverted list data after compression, the overheads in the

file, and the total file size. Top Docs is the space required for the top document tables, Free

Space is unused space at the end of an object that could be allocated in the future, and Other

is data structure and Mneme overhead. Most of the free space appears in the Head objects

of long inverted lists, indicating that a better implementation could be more space efficient.

3Note that feature recognizers were not used during the indexing experiments in Chapter 3, which explains

why the posting and term counts reported there do not reconcile with those reported here.

115

Table 4.2 Inverted file space requirements (MB)

Collec- IL Overheads (% of IL data) Total

tion Data Top Docs Free Space Other

Tip1 338 22 (6.5) 89 (26.4) 9 (2.7) 458

Tip12 574 30 (5.3) 122 (21.2) 11 (1.9) 737

Tip123 836 39 (4.6) 154 (18.4) 14 (1.7) 1043

Regardless, the overall inverted files are still only 33%–38% of the size of their respective

document collections.

The more complicated long inverted list structure described in Section 4.3 does impose

an additional time overhead when the inverted file is being built. The top document tables

must be built, inverted list entries must be separated into frequencies and locations lists, and

directories must be created for both of these lists. Fortunately, the overhead is restricted

to the merge phase of indexing; the dominant cost of indexing—parsing—is the same

regardless of the final inverted list structure.

For comparison to the results presented in Section 3.3.3, we measured the time required

to build an inverted file employing the complex long inverted list structure for the 3.2 GB

TIPSTER collection using the temporary file blocks produced during our bulk indexing

experiment (see Table 3.2). On the platform described in Section 3.3.1, the Merger required

76 minutes to merge the temporary file blocks and build the final inverted file employing the

complex long inverted list structure. This is nearly twice the time required by the Merger

when the simpler linked list long inverted list structure is used (described in Section 3.2.3).

The Parser requires 5 hours 21 minutes in either case, however, so the overall increase in

indexing time is just 10%. Even with our more complex long inverted list implementation,

we achieve a bulk indexing rate of 484 MB per hour.

116

4.4.3 Query Sets

The query sets used in these experiments were generated locally from topics provided

for the TREC evaluations. The first query set, Query Set 1, was generated from TIPSTER

topics 51–100 using automatic and semi-automatic methods. The resultant fifty queries

consisted primarily of weighted sums of terms, phrases, and ordered proximities, with an

average of 39 terms per query.

The second query set, Query Set 2, was generated from TIPSTER topics 151–200 in a

series of steps. First, a base query set was created using automatic methods. Next, each

base query was run against a PhraseFinder [46] database built from TIPSTER volumes 1

and 2. PhraseFinder returns a set of phrases extracted from the supporting database based

on the given query. Thirty new phrases were automatically added to each query, forming

an augmented query. The augmented queries were then interactively modified to simulate

changes an end user might make to automatically generated queries. The changes were

limited to the deletion of words judged spurious by the user, changes in weighting based on

perceived relative importance, and the addition of proximity constraints. Approximately

five minutes was spent on each query. Finally, each modified query was duplicated and one

copy was placed inside a passage sum operator with a passage size of 200, which in turn

was added to the other copy in a weighted sum. The final set of fifty queries contained an

average of 105 terms per query.

The third query set, Query Set 3, was generated from TIPSTER topics 51–100 by

taking the text of the description section from each topic and placing it inside a sum

operator. Rudimentary manual processing was performed to remove stop phrases, resulting

in short, flat (i.e., unstructured) queries with an average of 8 terms per query. Query Set 3

is essentially a simplified version of Query Set 1.

117

4.4.4 Performance Results

4.4.4.1 Safe

To evaluate the impact of the safe optimization techniques on execution speed, a com-

parison was made between the original linked list list implementation for long inverted lists

described in Section 3.2.3 and the split list implementation for long inverted lists described

in Section 4.3. The linked list implementation does not support the safe optimizations that

are based on selective access of inverted list contents, while the split list implementation

does. Two versions of the inverted file for Tip12 were constructed, one using the linked

list implementation, the other using the split list implementation. The three query sets

were then run against each of these inverted file implementations and the execution time

was measured using the GNU time command. Each query set was run five times and the

average of the five runs is reported below. In all cases, the range between the best and worst

times recorded for a given query set/implementation configuration was less than 1.3% of

the average. Note that Query Sets 1 and 2 were measured on the platform described in

Section 4.4.1, while Query Set 3 was measured on the platform described in Section 3.3.1.4

Figure 4.4 shows the wall-clock times broken down into CPU and I/O time for each of

the configurations.5 The labels in the figure are interpreted as follows: Qn stands for Query

Set n, Linked stands for the linked list implementation, and Split stands for the split list

implementation. The impact of the safe optimizations is generally disappointing. In Query

Set 1, the split list implementation is able to skip a total of 1,254 long list objects when

“intersecting” proximity operators. This, combined with selective access of term weights

and proximity information, leads to a reduction in object faults of 29% over the linked list

implementation. An object fault occurs when a non-memory resident object is accessed

and must be read from disk. The reduction in object faults translates into a reduction in I/O

time of 14%. This would be notable, except that the increased complexity of the split list

4Note that no comparisons are made across platforms
5CPU time is the sum of the user and system CPU times returned by the GNU time command. I/O time

is estimated by subtracting total CPU time from wall-clock time.

118

Query Set, Inverted List Implementation

T
im

e
 (

s
e
c
)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Q1,

Linked

Q1,

Split

Q2,

Linked

Q2,

Split

Q3,

Linked

Q3,

Split

CPU Time

I/O Time

Figure 4.4 Linked versus Split inverted lists wall-clock time

implementation causes an increase in CPU time of 8% over the linked list implementation,

for a net wall-clock time reduction of 0. In Query Set 1, the safe optimizations are a wash.

In Query Set 2, the situation is even worse. The split list implementation is able to skip

2,302 long list objects when “intersecting” proximity operators. However, recall that each

query in Query Set 2 has a core component that is duplicated, with one copy placed inside

a passage operator. Since the passage operator requires proximity lists, and every term in a

query will appear inside a passage operator, proximity lists are required for every term. No

gains will be made from selective access of term weights and proximity information. This

is reflected in the number of object faults recorded for each implementation—58,746 for

the linked list implementation versus 58,471 for the split list implementation. Similarly,

the I/O time required by both implementations is the same. The split list implementation,

however, requires 6% more CPU time, resulting in a 5% increase in wall-clock time.

In Query Set 3 we finally see a benefit to the split list implementation. There are

no proximity operators in this query set, so no proximity lists are required during query

119

processing. The selective access of term weights provided by the split list implementation

leads to a reduction in I/O time of 20%. The increase in CPU time caused by the split list

implementation is only 2%, leading to an overall reduction in wall-clock time of 7%.

There is one more safe optimization technique that is specific to evaluation of proximity

operators but independent of the inverted list implementation. In our discussion of query

evaluation in INQUERY (Section 4.1.3), we noted that a preprocessing step is required

to fully evaluate constructed concepts and compute their idf values. The results of this

preprocessing step are saved in inverted lists constructed on the fly, which are used during

the final query evaluation step and then discarded. Construction of these temporary inverted

lists for constructed concepts can be viewed as a safe optimization. If these inverted lists

were not built, the constructed concepts would have to be redundantly evaluated in full

during the final query evaluation phase.

To see the effect of this optimization, we measured the wall-clock time required to

evaluate Query Sets 1 and 2 on Tip12 both with and without temporary inverted lists

for constructed concepts.6 For Query Set 1, 2336 seconds are required to evaluate the

query set without using temporary inverted lists. 36% of the terms appear inside proximity

operators, and 255 seconds (11% of the total time) are spent in the preprocessing step.

When temporary inverted lists are used, an average of 6 temporary inverted lists occupying

a total of 188 KB are built per query, reducing the total evaluation time by 137 seconds

(6%). This entire savings is due to a reduction in CPU time, indicating that when temporary

inverted lists are not built, the inverted list data read during the preprocessing step is cached

until the final evaluation step (i.e., no I/O is required during the redundant evaluation of the

constructed concepts).

For Query Set 2, 4923 seconds are required to evaluate the query set when temporary

inverted lists are not used. 54% of the terms appear inside proximity operators, and 594

seconds (12% of the total time) are spent in the preprocessing step. When temporary

6For these results, all experiments were run on the platform described in Section 3.3.1.

120

inverted lists are used, an average of 27 temporary inverted lists occupying a total of

449 KB are built per query, reducing the total evaluation time by 662 seconds (13%). Here,

roughly 12% of the total savings is due to reduced I/O, while the remainder is due to reduced

CPU time. The large number of terms and proximity operators per query in Query Set

2 makes it impossible to cache all of the inverted list data read during the preprocessing

step, such that, in addition to the CPU savings, building temporary inverted lists yields a

noticeable savings in I/O during the final evaluation phase.

Curiously, the optimization reduces total evaluation time by more than the cost of the

preprocessing step to evaluate the constructed concepts. This is unexpected, given that the

optimization replaces the redundant evaluation of the constructed concepts (the equivalent

of the preprocessing step) in the final evaluation phase with another computation—belief

calculation from the temporary inverted lists. Belief calculation, however, is substantially

less complex than proximity evaluation and causes much less data to be processed during

evaluation. For the very large queries in Query Set 2, we speculate that this leads to better

cache locality and a further reduction in execution time.

4.4.4.2 Unsafe

To evaluate our new unsafe optimization technique, we leave the linked list implementa-

tion behind and focus on the split list implementation. The new optimization was evaluated

using a variety of experimental configurations, where each configuration involved three

variables: query set, document collection, and level of optimization. Query Set 1 was

run against all three document collections, while Query Set 2 was run against just the first

two document collections (relevance judgements were not available for topics 151–200 on

volume 3). (Query Set 3 is evaluated separately in Section 4.6 below.) For a given query

set and document collection, performance was measured at three levels of optimization:

all, 1000, and 100. all is the unoptimized baseline, where the candidate document set is

defined by the original query processing strategy described in Section 4.1.3. 1000 is the

121

Table 4.3 Number of documents evaluated

Collec- Qry Documents (% change)

tion Set All 1000 100

Tip1 1 13436637 1057900 (✓ 92) 382841 (✓ 97)

2 11131087 977694 (✓ 91) 419740 (✓ 96)

Tip12 1 21207958 1263141 (✓ 94) 559012 (✓ 97)

2 17384562 1181650 (✓ 93) 611787 (✓ 96)

Tip123 1 29763641 1439024 (✓ 95) 710976 (✓ 98)

most conservative level of optimization we considered, where the candidate document set

is populated from constructed concepts, short inverted lists, and the top 1000 documents

from long inverted lists. 100 is a more aggressive level of optimization, where the candi-

date document set is populated from constructed concepts, short inverted lists, and the top

100 documents from long inverted lists. The level of optimization is controllable with a

run-time switch allowing the same inverted file to be used for all optimization levels within

a given configuration.

Our first metric of interest is the size of the candidate document set. Table 4.3 gives

the total number of documents evaluated in each query set configuration. For example,

when Query Set 1 was run against Tip1 with no optimization, scores were calculated for

a total of 13,436,637 documents, or an average of 268,733 documents per query. This

is over half of the documents in the entire collection. However, when only the top 1000

documents from long inverted lists are used to populate the candidate document set, scores

were calculated for a total of 1,057,900 documents, or an average of 21,158 documents per

query. We have reduced the number of documents being evaluated by over 90%. The more

aggressive level of optimization reduces the number of documents being evaluated even

further. From this table it is clear that we have met our first goal of reducing the size of the

candidate document set.

The more important question is how this translates into a reduction in query processing

time. To answer this question, we measured the real (wall-clock) time required to run

122

Table 4.4 Wall-clock times

Collec- Qry Seconds (% change)

tion Set All 1000 100

Tip1 1 1364 632 (✓ 54) 569 (✓ 58)

2 2530 938 (✓ 63) 806 (✓ 68)

Tip12 1 2258 1054 (✓ 53) 980 (✓ 57)

2 4195 1535 (✓ 63) 1394 (✓ 67)

Tip123 1 3300 1518 (✓ 54) 1445 (✓ 56)

each query set configuration. Real time was measured using the GNU time command and

includes all time from start to finish of the query set batch run, including the processing

of relevance judgements. constant overhead, regardless of the optimization configuration.

For example, relevance judgement processing requires 306 wall-clock seconds (41 CPU

seconds, 265 I/O seconds) when evaluating Query Set 1 on Tip12, and 247 wall-clock

seconds (51 CPU seconds, 196 I/O seconds) when evaluating Query Set 2 on Tip12.

Elimination of relevance judgement processing would make query evaluation more CPU

bound and would increase the percent improvement obtained with query optimization (the

same constant reduction would occur in both unoptimized and optimized times, increasing

the percentage difference between the two). While an interactive system does not have this

overhead, it does have other overheads (e.g., document title lookup for display to the user).

Therefore, we include relevance judgement processing in our measurements as a substitute

for these other overheads. ten separate runs for each configuration. In all cases the range

between the best and worst times recorded for a given configuration was less than 3.3% of

the average for the configuration.

The query processing speedup realized even with our most conservative level of op-

timization is quite dramatic. In all cases, query processing time is cut at least in half.

Moreover, most of the improvement is realized in the more conservative 1000 configu-

ration. Optimizing more aggressively in the 100 configuration yields just an additional

123

2%–5% improvement over the baseline. Clearly we have achieved our ultimate goal of

reducing query processing time.

With the candidate document set considerably reduced, we would expect to be able to

skip significant portions of the long inverted lists during query evaluation. To measure

this, we counted the number of whole objects skipped during long inverted list processing.

Perhaps surprisingly, in all 1000 configurations there was no increase in the number of long

list objects skipped. In fact, even at more aggressive optimization levels, the number of

additional objects skipped was minimal. Moreover, the real impact of any skipping was

measured in terms of a reduction in the number of object faults. Even when there was an

increase in skipping, the reduction in object faults was insignificant, indicating that we were

skipping memory resident objects which wouldn’t have required a disk read anyway. An

object will be memory resident if it was referenced during evaluation of a previous query

and not purged from the buffer, or the associated term is used more than once in the current

query, causing multiple references to the same inverted list.

The reason for the limited skipping is twofold. First, the information in the long

inverted lists is very densely packed in order of document id. Second, the membership of

the candidate set is independent of document id, meaning the entries in a long inverted list

that must be accessed during query processing should be arbitrarily distributed over the

entire list. Therefore, even though we are in fact skipping large portions of the long lists,

we still end up accessing at least one document entry in nearly every object in the lists.

To investigate this effect further, we built our inverted files using 2 KB objects in the

frequencies and locations lists. In this version skipping was more noticeable (especially at

more aggressive optimization levels), but again the number of object faults was reduced by

less than 2%. Moreover, since disk reads are 8 KB, we wouldn’t expect to see any reduction

in the number of raw disk I/Os when compared with the version that used 8 KB objects.

The question remains as to where the reduction in wall-clock time is coming from. The

answer can be found by examining the CPU and I/O time components of the wall-clock

124

Collection, Optimization Level

T
im

e
 (

s
e
c
)

0

500

1000

1500

2000

2500

3000

3500

Tip1,

all

Tip1,

1000

Tip12,

all

Tip12,

1000

Tip123,

all

Tip123,

1000

CPU Time

I/O Time

Figure 4.5 Query Set 1 wall-clock time breakdown

Collection, Optimization Level

T
im

e
 (

s
e
c
)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Tip1, all Tip1, 1000 Tip12, all Tip12, 1000

CPU Time

I/O Time

Figure 4.6 Query Set 2 wall-clock time breakdown

125

time. Figures 4.5 and 4.6 give the wall-clock time broken down into CPU and I/O time for

baseline (all) and optimized (1000) versions of the two query sets on each of the three test

collections. The figures show that the optimization reduces CPU time 70% to 75%, but has

essentially no impact on I/O time. CPU time, however, is the dominant component of the

wall-clock time, such that the CPU savings translates into a significant wall-clock savings.

The rate of reduction in CPU time is still less than the rate of reduction in candidate

document set size due to query evaluation overheads common to both the baseline and

optimized versions, with the largest overhead being the preprocessing step to fully evaluate

constructed concepts.

4.4.5 Retrieval Effectiveness

Along with query processing speed, we must also look at the impact on retrieval

effectiveness in order to fully evaluate our unsafe optimization technique. Precision at

standard recall points obtained with different levels of optimization for each of our five

query set/document collection combinations is reported in Tables 4.5–4.9 (the corresponding

Recall-Precision curves are shown in Figures 4.7–4.9). The relevance judgements used to

generate these tables came from the TREC evaluations. We show interpolated precision

based on full rankings at the standard 11 recall points and the 11pt average. As before, all is

the unoptimized baseline version, while 1000 through 50 are optimized versions where the

label indicates the number of top documents taken from long inverted lists to populate the

candidate document set. We show a broader range of optimization levels here than in our

timing test to give a better feel for the impact on retrieval effectiveness as the optimization

becomes more aggressive. In each of the tables, percent change is from the baseline version.

Consider the results for the 1000 configuration in Tables 4.5–4.9. For all query

set/document collection combinations, retrieval effectiveness is remarkably good. At recall

levels up to 70%, there is no noticeable degradation in precision. The implication here is

that the high end of a document ranking returned by the optimized system, or the docu-

126

Table 4.5 Precision at standard recall pts for Tip1, Query Set 1

Precision (% change) – 50 queries

Recall all 1000 500 300 100 50

0 83.5 83.7 (+0.2) 83.9 (+0.5) 83.9 (+0.5) 83.9 (+0.5) 83.9 (+0.5)

10 60.3 60.5 (+0.2) 60.9 (+1.0) 60.8 (+0.8) 61.4 (+1.7) 61.6 (+2.1)

20 52.7 53.0 (+0.6) 53.3 (+1.2) 53.4 (+1.3) 53.5 (+1.5) 53.1 (+0.8)

30 46.8 47.1 (+0.6) 47.0 (+0.4) 46.7 (✤ 0.3) 46.1 (✤ 1.7) 44.3 (✤ 5.5)

40 40.6 40.9 (+0.7) 40.9 (+0.8) 41.0 (+1.0) 38.9 (✤ 4.2) 38.4 (✤ 5.5)

50 34.9 35.2 (+1.0) 35.1 (+0.8) 35.1 (+0.7) 33.1 (✤ 5.0) 32.4 (✤ 7.1)

60 30.4 30.6 (+0.6) 30.7 (+1.1) 30.1 (✤ 1.0) 28.1 (✤ 7.6) 27.2(✤ 10.4)

70 25.3 25.7 (+1.7) 25.6 (+1.3) 24.0 (✤ 5.1) 20.9(✤ 17.1) 20.4(✤ 19.4)

80 19.9 19.8 (✤ 0.1) 18.3 (✤ 7.9) 17.7(✤ 10.9) 15.8(✤ 20.7) 14.6(✤ 26.4)

90 12.1 11.6 (✤ 4.6) 11.3 (✤ 6.9) 9.6(✤ 20.9) 8.6(✤ 29.4) 7.6 (✤ 37.1)

100 2.4 1.7(✤ 29.2) 1.5(✤ 38.7) 1.6(✤ 36.2) 1.6(✤ 36.1) 1.6 (✤ 33.3)

average 37.2 37.3 (+0.2) 37.2 (✤ 0.1) 36.7 (✤ 1.2) 35.6 (✤ 4.2) 35.0 (✤ 5.8)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
1000

500
300
100

50

Figure 4.7 Recall-Precision curves for Tip1, Query Set 1

127

Table 4.6 Precision at standard recall pts for Tip12, Query Set 1

Precision (% change) – 50 queries

Recall all 1000 500 300 100 50

0 83.6 83.7 (+0.1) 83.5 (✤ 0.1) 83.3 (✤ 0.4) 83.3 (✤ 0.3) 83.6 (+0.0)

10 57.2 57.5 (+0.6) 57.7 (+0.9) 57.7 (+0.9) 56.8 (✤ 0.6) 56.5 (✤ 1.2)

20 49.0 49.5 (+1.0) 49.7 (+1.4) 49.6 (+1.1) 48.7 (✤ 0.7) 48.1 (✤ 1.9)

30 43.1 43.4 (+0.8) 43.5 (+0.9) 43.2 (+0.4) 42.0 (✤ 2.5) 40.3 (✤ 6.4)

40 37.7 38.1 (+1.0) 38.0 (+0.9) 37.3 (✤ 1.0) 34.9 (✤ 7.5) 34.4 (✤ 8.8)

50 32.4 32.9 (+1.5) 32.5 (+0.3) 32.0 (✤ 1.3) 29.2 (✤ 9.8) 28.7(✤ 11.3)

60 27.7 27.9 (+0.6) 27.2 (✤ 1.8) 26.0 (✤ 6.1) 23.9(✤ 13.6) 23.2(✤ 16.5)

70 22.5 22.8 (+1.4) 21.7 (✤ 3.8) 20.2(✤ 10.4) 17.7(✤ 21.5) 17.2(✤ 23.7)

80 17.3 17.0 (✤ 1.6) 15.0(✤ 13.4) 13.8(✤ 20.0) 12.2(✤ 29.3) 12.1(✤ 29.9)

90 11.2 10.0(✤ 10.6) 8.5(✤ 24.2) 7.8(✤ 30.3) 7.8(✤ 30.7) 7.8 (✤ 30.1)

100 1.2 0.5(✤ 59.3) 0.6(✤ 54.0) 0.6(✤ 55.4) 0.7(✤ 47.5) 0.7 (✤ 42.2)

average 34.8 34.9 (+0.1) 34.3 (✤ 1.3) 33.8 (✤ 3.0) 32.5 (✤ 6.7) 32.1 (✤ 7.9)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
1000

500
300
100

50

Figure 4.8 Recall-Precision curves for Tip12, Query Set 1

128

Table 4.7 Precision at standard recall pts for Tip123, Query Set 1

Precision (% change) – 50 queries

Recall all 1000 500 300 100 50

0 84.3 84.3 (+0.0) 84.2 (✤ 0.1) 84.1 (✤ 0.2) 84.7 (+0.5) 84.5 (+0.3)

10 54.6 54.8 (+0.4) 55.0 (+0.8) 54.8 (+0.4) 53.6 (✤ 1.8) 53.2 (✤ 2.5)

20 47.1 47.3 (+0.5) 47.3 (+0.4) 47.0 (✤ 0.2) 45.4 (✤ 3.5) 43.9 (✤ 6.6)

30 40.6 40.9 (+0.7) 40.5 (✤ 0.3) 39.7 (✤ 2.3) 37.2 (✤ 8.4) 36.4(✤ 10.3)

40 35.3 35.5 (+0.5) 34.9 (✤ 1.3) 33.4 (✤ 5.4) 30.7(✤ 12.9) 30.0(✤ 14.9)

50 30.3 30.4 (+0.6) 29.5 (✤ 2.6) 27.9 (✤ 7.9) 25.7(✤ 15.0) 25.7(✤ 15.2)

60 25.7 25.7 (+0.1) 24.0 (✤ 6.7) 22.4(✤ 13.0) 21.1(✤ 18.0) 20.9(✤ 18.5)

70 20.7 20.0 (✤ 3.6) 18.1(✤ 12.6) 17.2(✤ 17.2) 16.7(✤ 19.2) 16.6(✤ 19.9)

80 15.5 13.3(✤ 14.3) 11.8(✤ 24.1) 11.3(✤ 27.0) 10.2(✤ 34.0) 10.2(✤ 34.2)

90 9.1 7.2(✤ 20.9) 6.1(✤ 32.6) 5.8(✤ 35.9) 6.0(✤ 34.2) 6.1 (✤ 33.4)

100 0.5 0.2(✤ 67.2) 0.1(✤ 73.6) 0.1(✤ 73.2) 0.1(✤ 72.7) 0.1 (✤ 72.6)

average 33.1 32.7 (✤ 1.1) 31.9 (✤ 3.4) 31.2 (✤ 5.5) 30.1 (✤ 8.8) 29.8 (✤ 9.9)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
1000

500
300
100

50

Figure 4.9 Recall-Precision curves for Tip123, Query Set 1

129

Table 4.8 Precision at standard recall pts for Tip1, Query Set 2

Precision (% change) – 50 queries

Recall all 1000 500 300 100 50

0 91.1 91.1 (+0.0) 91.1 (+0.0) 91.1 (+0.0) 91.1 (+0.0) 91.1 (+0.0)

10 75.9 75.9 (✤ 0.0) 75.8 (✤ 0.1) 75.8 (✤ 0.1) 75.8 (✤ 0.1) 75.8 (✤ 0.1)

20 66.0 66.0 (✤ 0.0) 65.9 (✤ 0.1) 65.8 (✤ 0.3) 65.8 (✤ 0.3) 65.8 (✤ 0.3)

30 55.6 55.6 (+0.1) 55.2 (✤ 0.7) 55.2 (✤ 0.7) 55.0 (✤ 1.1) 54.9 (✤ 1.3)

40 47.4 47.4 (+0.1) 47.0 (✤ 0.8) 47.0 (✤ 0.8) 46.6 (✤ 1.6) 46.4 (✤ 2.1)

50 41.4 41.3 (✤ 0.2) 41.1 (✤ 0.7) 40.8 (✤ 1.3) 40.3 (✤ 2.7) 40.2 (✤ 2.9)

60 35.1 35.0 (✤ 0.1) 34.8 (✤ 0.8) 34.5 (✤ 1.7) 32.8 (✤ 6.4) 32.4 (✤ 7.5)

70 27.4 27.3 (✤ 0.4) 26.6 (✤ 2.9) 26.1 (✤ 5.0) 24.7 (✤ 9.8) 24.6(✤ 10.2)

80 22.1 21.8 (✤ 1.2) 21.4 (✤ 3.1) 21.4 (✤ 3.1) 19.4(✤ 12.3) 18.6(✤ 15.5)

90 15.5 15.3 (✤ 1.5) 14.6 (✤ 6.1) 13.1(✤ 15.9) 11.0(✤ 29.4) 10.6(✤ 31.8)

100 3.7 2.7(✤ 27.4) 2.3(✤ 37.0) 1.8(✤ 51.9) 1.4(✤ 62.8) 1.3 (✤ 64.6)

average 43.7 43.6 (✤ 0.4) 43.3 (✤ 1.1) 43.0 (✤ 1.8) 42.2 (✤ 3.6) 42.0 (✤ 4.0)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
1000

500
300
100

50

Figure 4.10 Recall-Precision curves for Tip1, Query Set 2

130

Table 4.9 Precision at standard recall pts for Tip12, Query Set 2

Precision (% change) – 50 queries

Recall all 1000 500 300 100 50

0 89.4 89.4 (+0.0) 89.4 (+0.0) 89.4 (+0.0) 89.4 (+0.0) 89.4 (+0.0)

10 73.8 73.8 (✤ 0.0) 73.7 (✤ 0.1) 73.7 (✤ 0.1) 73.7 (✤ 0.1) 73.7 (✤ 0.2)

20 64.3 64.2 (✤ 0.1) 64.1 (✤ 0.3) 64.1 (✤ 0.2) 64.1 (✤ 0.3) 64.1 (✤ 0.3)

30 56.6 56.5 (✤ 0.0) 56.4 (✤ 0.2) 56.2 (✤ 0.5) 56.0 (✤ 1.0) 55.9 (✤ 1.2)

40 49.6 49.6 (✤ 0.0) 49.6 (✤ 0.1) 49.5 (✤ 0.4) 49.0 (✤ 1.2) 48.9 (✤ 1.4)

50 43.6 43.5 (✤ 0.3) 43.2 (✤ 0.9) 43.0 (✤ 1.5) 41.9 (✤ 3.9) 41.8 (✤ 4.2)

60 36.9 36.4 (✤ 1.2) 35.7 (✤ 3.2) 34.7 (✤ 5.8) 33.3 (✤ 9.7) 33.2 (✤ 9.8)

70 30.1 29.5 (✤ 2.1) 28.8 (✤ 4.3) 28.1 (✤ 6.6) 25.8(✤ 14.5) 25.3(✤ 16.0)

80 24.7 24.0 (✤ 3.2) 23.4 (✤ 5.2) 21.1(✤ 14.8) 20.1(✤ 18.8) 20.0(✤ 19.4)

90 16.5 15.4 (✤ 6.7) 13.0(✤ 21.3) 12.7(✤ 22.9) 12.5(✤ 24.2) 12.5(✤ 24.2)

100 2.3 1.4(✤ 37.9) 1.4(✤ 39.4) 1.5(✤ 37.6) 1.0(✤ 56.4) 1.0 (✤ 55.9)

average 44.4 44.0 (✤ 0.8) 43.5 (✤ 1.8) 43.1 (✤ 2.8) 42.4 (✤ 4.3) 42.3 (✤ 4.5)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
1000

500
300
100

50

Figure 4.11 Recall-Precision curves for Tip12, Query Set 2

131

ments most likely to be considered by a user in an interactive system, will be just as rich in

relevant documents as in the unoptimized version. Furthermore, the 11pt averages are not

significantly different from those for the unoptimized version.

Now consider the results in Table 4.5. As the optimization becomes more aggressive

(from 1000 to 50), we see two trends. First, at low recall, precision actually improves a

tiny amount and then falls off. This indicates that the technique is doing a good job of

identifying the very best candidate documents, and is consistent with other results using

similar techniques [65, 58]. Second, at high recall, precision becomes significantly worse

as the optimization becomes more aggressive. This is because we are not considering

documents which have a strong combined belief from all of the query terms, but lack a

single query term belief strong enough to place the document in the candidate set.

In Tables 4.8 and 4.9 we do not see any improvement in precision at low recall as the

optimization becomes more aggressive. This is due to the use of the passage operator in

Query Set 2. The calculation of belief for concept i in document j is slightly modified

inside a passage operator since it is based on a passage of the document, rather than the

entire document. Thus, our ranking of document j within the inverted list for concept i

is slightly inaccurate with respect to the passage operator. This suggests that our retrieval

performance could even be improved.

4.5 Extensions

The optimization technique described above has a large impact on CPU time, but very

little impact on I/O. In the baseline query sets considered above, CPU time accounts for

70% to 90% of the overall running time, such that reducing CPU costs is an appropriate

goal. After the optimization has been applied, however, I/O becomes a larger component

of overall running time. A natural question that arises here is whether or not the amount

of I/O that must be performed during query evaluation can be reduced. Two approaches

132

for explicitly reducing I/O are considered below (from here on the unsafe optimization

described above will be referred to as the original optimization).

The first approach explores the effects of ignoring the bulk of a long inverted list and

using just the term weighting information stored in the inverted list’s top document list.

In the original optimization, a long inverted list l contributes belief scores for all of the

documents in the candidate document set that contain l’s associated term. In other words,

during final query evaluation, l will contribute belief scores not only for the documents

added to the candidate set by l, but also for other documents added to the candidate set by

other parts of the query, where those documents happen to contain the term associated with

l. These other documents appear in l, just not in l’s top document list. The result is that

large parts of l must still be retrieved during final query evaluation to obtain belief scores

for these other documents.

If instead l contributes belief scores for documents in its top document list only, the

rest of l can be ignored and significant I/O savings should be realized. As with the original

optimization, constructed concepts are fully built during the preprocessing step. Moreover,

this extended optimization is applied only to selected long inverted lists in the query. The

selection is made by identifying all of the terms in the query tree reachable from the root

along a path that includes only sum, weighted sum, and, or, and max operators—the other

query operators are either proximity operators that were evaluated in the preprocessing step

anyway, or operators where this approach is inappropriate. The identified terms, called

the optimization candidates, are then sorted in increasing order of weighted idf score (the

weighting is based on any weighted sum operators encountered on the path from the query

root to the term). A percentage of the lowest scoring terms are then selected for application

of the extended optimization, such that the optimization is applied to the terms with the

lowest estimated impact on final document score. This approach is called top-docs-only.

The second approach is a more aggressive version of the first approach. Rather than

obtain belief scores from a selected long inverted list’s top document list, the list is ignored

133

altogether. The lists to ignore are selected in the same way as above—a percentage of

the terms are chosen based on weighted idf score from the optimization candidates. This

approach is similar to the optimization of Buckley and Lewit [10], where entire inverted

lists are ignored during query evaluation. The approaches differ in the way the inverted lists

to ignore are chosen. Buckley and Lewit use upper bound thresholds to decide when an

inverted list can be ignored without affecting the top ranked documents. In our case, query

structure complicates the computation and maintenance of similar upper bounds. Instead,

we ignore an arbitrary percentage of the inverted lists with the lowest estimated impact on

final document score. This approach is called term-elimination.

A preliminary investigation of these two approaches revealed that the retrieval effec-

tiveness obtained with top-docs-only is the same as or inferior to the retrieval effectiveness

obtained with term-elimination. This is shown in Tables 4.10 and 4.11 (the corresponding

Recall-Precision curves are shown in Figures 4.12 and 4.13) for Query Sets 1 and 2 on

Tip12. Each table gives the precision at standard recall points for the baseline version

(all), the original optimization using 1000 top documents from long lists (1000), the orig-

inal optimization extended with top-docs-only on 50% of the terms (1000-50a), and the

original optimization extended with term-elimination on 50% of the terms (1000-50b).

Term-elimination provides a greater execution savings than top-docs-only because selected

terms are completely ignored, rather than evaluated using their top document list. Given the

relative retrieval effectiveness of the two approaches, term-elimination is deemed superior

to top-docs-only, and top-docs-only is not considered further.

Term-elimination is a general optimization technique by itself; it can be applied directly

to the baseline (all) configuration, as well as in combination with the original optimiza-

tion. To determine how these optimizations compare and interact, an evaluation of the

performance of different optimization configurations was conducted using both query sets

on Tip12. The experiments were run on the same platform described in Section 3.3.1.

Note that the large disk drive used in that platform is different from the one used in the

134

Table 4.10 Precision at standard recall pts for Tip12, Query Set 1, extended

Precision (% change) – 50 queries

Recall all 1000 1000-50a 1000-50b

0 83.6 83.7 (+0.1) 85.5 (+2.2) 85.8 (+2.6)

10 57.2 57.5 (+0.6) 59.4 (+3.9) 58.0 (+1.4)

20 49.0 49.5 (+1.0) 49.5 (+1.0) 49.2 (+0.4)

30 43.1 43.4 (+0.8) 44.1 (+2.3) 44.2 (+2.7)

40 37.7 38.1 (+1.0) 38.4 (+1.8) 38.9 (+3.1)

50 32.4 32.9 (+1.5) 33.1 (+2.1) 33.5 (+3.5)

60 27.7 27.9 (+0.6) 27.5 (✓ 0.7) 28.1 (+1.2)

70 22.5 22.8 (+1.4) 21.8 (✓ 3.0) 22.9 (+1.9)

80 17.3 17.0 (✓ 1.6) 16.5 (✓ 4.3) 17.3 (✓ 0.2)

90 11.2 10.0 (✓ 10.6) 10.3 (✓ 7.8) 10.8 (✓ 3.7)

100 1.2 0.5 (✓ 59.3) 0.6 (✓ 53.4) 0.7 (✓ 39.9)

average 34.8 34.9 (+0.1) 35.2 (+1.0) 35.4 (+1.7)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
1000

1000-50a
1000-50b

Figure 4.12 Recall-Precision curves for Tip12, Query Set 1, extended

135

Table 4.11 Precision at standard recall pts for Tip12, Query Set 2, extended

Precision (% change) – 50 queries

Recall all 1000 1000-50a 1000-50b

0 89.4 89.4 (+0.0) 89.1 (✓ 0.4) 89.3 (✓ 0.1)

10 73.8 73.8 (✓ 0.0) 73.6 (✓ 0.3) 73.6 (✓ 0.2)

20 64.3 64.2 (✓ 0.1) 63.9 (✓ 0.6) 63.9 (✓ 0.6)

30 56.6 56.5 (✓ 0.0) 56.4 (✓ 0.3) 56.3 (✓ 0.4)

40 49.6 49.6 (✓ 0.0) 49.5 (✓ 0.3) 49.7 (+0.1)

50 43.6 43.5 (✓ 0.3) 43.7 (+0.1) 43.6 (+0.0)

60 36.9 36.4 (✓ 1.2) 36.3 (✓ 1.5) 35.9 (✓ 2.6)

70 30.1 29.5 (✓ 2.1) 29.5 (✓ 2.1) 29.3 (✓ 2.7)

80 24.7 24.0 (✓ 3.2) 24.0 (✓ 2.9) 24.0 (✓ 3.1)

90 16.5 15.4 (✓ 6.7) 15.4 (✓ 6.7) 15.3 (✓ 7.0)

100 2.3 1.4 (✓ 37.9) 1.5 (✓ 36.0) 1.5 (✓ 35.8)

average 44.4 44.0 (✓ 0.8) 43.9 (✓ 1.0) 43.9 (✓ 1.1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
1000

1000-50a
1000-50b

Figure 4.13 Recall-Precision curves for Tip12, Query Set 2, extended

136

Optimization Configuration

T
im

e
 (

s
e
c
)

0

500

1000

1500

2000

2500

all all

10%

all

25%

all

50%

1000 1000

10%

1000

25%

1000

50%

CPU Time

I/O Time

Figure 4.14 Extended optimization wall-clock times for Tip12, Query Set 1

platform described in Section 4.4.1, so the timing results presented below are not directly

comparable to those presented in Section 4.4.4.

As before, all of the data files and executables were stored on the larger local disk, and a

64 MB “chill file” was read before each query processing run to purge the operating system

file buffers and guarantee that no inverted file data was cached by the file system across

runs. In all cases 15 MB of Mneme buffer space was allocated to cache memory resident

inverted list objects. The timing results were measured with the GNU time command and

the average of 5 runs is reported for each configuration. In all cases the range between the

best and worst times recorded for a given configuration was less than 3% of the average for

the configuration.

The execution performance for Query Set 1 on Tip12 is shown in Figure 4.14. Each

bar gives the wall-clock time broken down into CPU and I/O components for a given

configuration (raw timing figures for all of the query sets considered throughout the rest

of this Chapter are summarized in Table 4.19). The bar label on the x-axis identifies the

137

configuration. For example, all is the unoptimized baseline, all 50% is the baseline plus

50% term-elimination, and 1000 50% is the original optimization using 1000 top documents

from long lists plus 50% term-elimination.

The term-elimination optimization is quite effective when used by itself. Ignoring 50%

of the terms identified as candidates for elimination (all 50%) produces a reduction in wall-

clock time comparable to that achieved in the 1000 configuration. Compared to all, all 50%

produces a reduction in I/O time of nearly 18%, a reduction in CPU time of nearly 68%,

and an overall wall-clock time reduction of 56%. Eliminating terms reduces CPU time by

eliminating the processing that would otherwise be required on those terms. The size of the

candidate document set is also reduced. In all 50%, 5,941,239 documents are evaluated

across the 50 queries—a reduction of 72% from the 21,207,958 documents evaluated in

all. This is still substantially less than the 94% reduction in candidate document set size

afforded by 1000 (see Table 4.3), explaining why the reduction in CPU time obtained with

1000 is better than that obtained with all 50%. In 1000, CPU time is reduced by 75%,

compared to 68% for all 50%.

Recall that the original motivation for this optimization was to reduce I/O. While the

18% reduction in I/O time is notable, it is not exceptional. Since 50% of the optimization

candidate terms are not processed, and these are the terms with the largest inverted lists,

we might expect a much larger reduction in I/O. The reason for this less-than-expected

reduction in I/O is revealed by looking at the object fault rates. Compared to all, all 50%

reduces the number of object faults by only 20%. The number of object references is actually

reduced by 30%, indicating that the optimization is eliminating references to objects that

were already resident in main memory—eliminating these references nets no savings in

I/O. Furthermore, the optimization is eliminating 50% of the optimization candidate terms

only. The selection algorithm does not consider for elimination terms that participate in a

constructed concept (i.e., proximity operator), so the optimization is actually eliminating

less than 50% of the total terms in the query. It is also possible that a term appears more

138

than once in the query with different weighted idf scores, causing it to be selected for

elimination in one part of the query but not the other. No I/O will be saved in this case since

only one copy of the term’s inverted list would have been read in the unoptimized version,

and this copy must still be read in the optimized version.

When term-elimination is combined with the original optimization, the execution per-

formance improvement is even better. 1000 50% produces a reduction in I/O time of 18%,

a reduction in CPU time of 82%, and a reduction in total wall-clock time of 67%. Compared

to all 50%, 1000 50% reduces overall wall-clock time by an additional 25%. This suggests

that term-elimination is complementary to the original optimization and the best execution

performance will be obtained by combining the two techniques.

The term-elimination optimization is unsafe; we must assess its impact on retrieval

effectiveness. Table 4.12 and Figure 4.15 give precision at standard recall points for the

baseline case and selected configurations of the optimization. Surprisingly, precision at

nearly all levels of recall improves up to a certain point as a larger percentage of the high

frequency terms are eliminated. The best precision is found at 50% term-elimination.

At 75% term-elimination, precision has substantially deteriorated. Moreover, adding 50%

term-elimination to the original optimization improves its precision at nearly all recall levels

as well. Although improving retrieval effectiveness is never frowned upon, obtaining the

improvement by removing evidence from the query suggests that the evidence is being

improperly incorporated into the final document belief scores. Rajashekar and Croft [68]

show that retrieval effectiveness generally improves as more evidence is added to the

query. It is likely, therefore, that the query can be expressed better, either with improved

term weighting, different query operators, or an improved retrieval model. We will return

to this issue later in the context of the other query sets.

1000 50% produces the best precision at low recall of all of the configurations listed

in Table 4.12, albeit by an insignificant margin. Low recall corresponds to the top end of

the ranked listing returned to the user; it is the more important end of the recall spectrum

139

Table 4.12 Precision at standard recall pts for Tip12, Query Set 1, optimized

Precision (% change) – 50 queries

Recall all all 50% all 75% 1000 1000 50% 1000 75%

0 83.6 85.8 (+2.6) 87.4 (+4.5) 83.7 (+0.1) 85.8 (+2.6) 87.4 (+4.5)

10 57.2 57.8 (+1.2) 54.8 (✤ 4.1) 57.5 (+0.6) 58.0 (+1.4) 54.8 (✤ 4.1)

20 49.0 49.0 (✤ 0.1) 45.3 (✤ 7.6) 49.5 (+1.0) 49.2 (+0.4) 45.4 (✤ 7.4)

30 43.1 44.2 (+2.6) 38.1(✤ 11.5) 43.4 (+0.8) 44.2 (+2.7) 38.2(✤ 11.2)

40 37.7 38.8 (+2.9) 32.4(✤ 14.1) 38.1 (+1.0) 38.9 (+3.1) 32.5(✤ 13.8)

50 32.4 33.5 (+3.2) 27.5(✤ 15.2) 32.9 (+1.5) 33.5 (+3.5) 27.8(✤ 14.1)

60 27.7 28.0 (+0.9) 22.7(✤ 18.2) 27.9 (+0.6) 28.1 (+1.2) 23.0(✤ 17.0)

70 22.5 23.0 (+2.1) 17.7(✤ 21.4) 22.8 (+1.4) 22.9 (+1.9) 18.4(✤ 18.4)

80 17.3 17.8 (+2.9) 13.0(✤ 24.9) 17.0 (✤ 1.6) 17.3 (✤ 0.2) 12.4(✤ 28.3)

90 11.2 12.0 (+7.2) 8.2(✤ 27.1) 10.0(✤ 10.6) 10.8 (✤ 3.7) 8.0 (✤ 29.0)

100 1.2 1.3 (+7.2) 0.6(✤ 48.8) 0.5(✤ 59.3) 0.7(✤ 39.9) 0.3 (✤ 74.7)

average 34.8 35.6 (+2.1) 31.6 (✤ 9.2) 34.9 (+0.1) 35.4 (+1.7) 31.7 (✤ 9.1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
all 50%
all 75%

1000
1000 50%
1000 75%

Figure 4.15 Recall-Precision curves for Tip12, Query Set 1, optimized

140

Optimization Configuration

T
im

e
 (

s
e
c
)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

all all 50% all *50% 1000 1000 50% 1000 *50%

CPU Time

I/O Time

Figure 4.16 Extended optimization wall-clock times for Tip12, Query Set 2

when considering an interactive system. The precision produced at low recall by 1000

50%, combined with its superior execution performance, indicate that 1000 50% is the

configuration of choice for processing queries like those in Query Set 1 in an interactive

information retrieval system.

Term-elimination was also evaluated for Query Set 2. Recall that each query in this

query set is created by duplicating a core query, placing one copy inside a passage operator,

and combining that with the first copy in a weighted sum. The passage operator presents

a dilemma when identifying the optimization candidate terms because it works to localize

application of the query within the document, changing the impact of high frequency query

terms. When this happens, eliminating high frequency query terms will most likely degrade

retrieval effectiveness.

On the other hand, if term-elimination is applied only to the portion of the query outside

of the passage operator, the reduction in I/O is certain to be insignificant—any term outside

of the passage operator that is eliminated will still appear inside the passage operator and

141

its inverted list will still be read. The optimization, therefore, was applied both ways.

Figure 4.16 shows the execution performance of Query Set 2 on Tip12 using various

optimization configurations, where a star (*) indicates that term-elimination was applied

inside the passage operator as well as outside, e.g., all *50% is the baseline plus 50%

term-elimination applied both inside and outside of passage operators. Note that in all

*50%, twice as many terms are eliminated as in all 50%, since twice as much of the query

is considered for term-elimination.

As predicted, term-elimination applied only outside of the passage operator (all 50%)

yields no reduction in I/O time, only a 19% reduction in CPU time, and an overall 17%

reduction in wall-clock time. Moreover, the size of the candidate document set is not

reduced at all. Applying 50% term-elimination inside the passage operator (all *50%),

however, reduces I/O time by 21%, CPU time by 63%, wall-clock time by 58%, and the

size of the candidate document set by 44%. While the 21% reduction in I/O time is better

than the 0% reduction obtained in 1000, the overall improvement is inferior. 1000 reduces

the candidate document set size by 93%, CPU time by 73%, and wall-clock time by 64%.

Again, combining the two optimizations yields the best overall improvement. 1000 *50%

reduces I/O time by 21%, CPU time by 81%, and wall-clock time by 74%. The reduction

in the candidate document set size is the same as in 1000.

Table 4.13 and Figure 4.17 show the retrieval effectiveness for the various optimized

versions of Query Set 2 on Tip12. Unlike the results seen for Query Set 1, term-elimination

in Query Set 2 leads to a deterioration in precision at most recall levels. The deterioration

is even worse when term-elimination is applied inside the passage operator (the starred

versions). Returning to the point considered earlier regarding the removal of evidence

from a query, the behavior observed in Query Set 2 suggests that the user’s information

need is better expressed in these queries and removing evidence will produce the expected

degradation in retrieval effectiveness.

142

Table 4.13 Precision at standard recall pts for Tip12, Query Set 2, optimized

Precision (% change) – 50 queries

Recall all all 50% all *50% 1000 1000 50% 1000 *50%

0 89.4 89.3 (✤ 0.1) 87.5 (✤ 2.1) 89.4 (+0.0) 89.3 (✤ 0.1) 87.5 (✤ 2.1)

10 73.8 73.7 (✤ 0.2) 72.4 (✤ 1.9) 73.8 (✤ 0.0) 73.6 (✤ 0.2) 72.4 (✤ 1.9)

20 64.3 63.9 (✤ 0.6) 63.6 (✤ 1.1) 64.2 (✤ 0.1) 63.9 (✤ 0.6) 63.6 (✤ 1.1)

30 56.6 56.3 (✤ 0.4) 55.4 (✤ 2.0) 56.5 (✤ 0.0) 56.3 (✤ 0.4) 55.3 (✤ 2.1)

40 49.6 49.7 (+0.1) 48.0 (✤ 3.3) 49.6 (✤ 0.0) 49.7 (+0.1) 48.0 (✤ 3.4)

50 43.6 43.8 (+0.4) 41.6 (✤ 4.8) 43.5 (✤ 0.3) 43.6 (+0.0) 41.4 (✤ 5.1)

60 36.9 36.4 (✤ 1.4) 34.2 (✤ 7.2) 36.4 (✤ 1.2) 35.9 (✤ 2.6) 34.1 (✤ 7.5)

70 30.1 30.0 (✤ 0.6) 28.8 (✤ 4.2) 29.5 (✤ 2.1) 29.3 (✤ 2.7) 28.5 (✤ 5.2)

80 24.7 24.8 (+0.1) 23.5 (✤ 4.9) 24.0 (✤ 3.2) 24.0 (✤ 3.1) 22.7 (✤ 8.1)

90 16.5 16.5 (+0.1) 15.5 (✤ 6.1) 15.4 (✤ 6.7) 15.3 (✤ 7.0) 14.7(✤ 10.8)

100 2.3 2.4 (+4.2) 2.3 (+0.4) 1.4(✤ 37.9) 1.5(✤ 35.8) 1.5 (✤ 34.3)

average 44.4 44.2 (✤ 0.2) 43.0 (✤ 3.1) 44.0 (✤ 0.8) 43.9 (✤ 1.1) 42.7 (✤ 3.7)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
all 50%

all *50%
1000

1000 50%
1000 *50%

Figure 4.17 Recall-Precision curves for Tip12, Query Set 2, optimized

143

At lower recall levels, the deterioration in precision is less marked using just the original

optimization (1000). Adding term-elimination to the original optimization (1000 *50%)

causes a further deterioration in precision at all recall levels, although precision at low

recall in 1000 *50% is still about the same as in all *50%. Compared to term-elimination

alone, 1000 produces the same or slightly better precision at low recall and better execution

performance, making it the optimization of choice for evaluating queries like those in Query

Set 2 in an interactive IR system. Furthermore, if we are willing to sacrifice some precision,

combining the two optimizations in 1000 *50% produces an additional 28% improvement

in wall-clock time over 1000.

4.6 Short Unstructured Queries

Although we are primarily concerned with improving the execution performance of

structured query evaluation, it is worthwhile to investigate how well the optimization

techniques described here perform on short, unstructured queries. Recall that the queries in

Query Set 3 are short and flat, containing an average of 8 unique terms combined in a sum or

weighted sum operator. Using these short, unstructured queries and the same experimental

platform and methodology as in the previous section, the impact of the various optimization

techniques was evaluated. Again, the timing results were measured with the GNU time

command and the average of 5 runs is reported for each configuration. In all cases the range

between the best and worst times recorded for a given configuration was less than 3% of

the average for the configuration.

Figure 4.18 shows the execution performance obtained for Query Set 3 on Tip12 using

a variety of optimization configurations. The trends observed in Query Set 1 generally hold

in this query set as well. Here, 50% term-elimination (all 50%) slightly outperforms the

original optimization (1000), producing a reduction in I/O time of 25%, a reduction in CPU

time of 65%, and a reduction in overall wall-clock time of 51%. The reduction in CPU time

can again be traced to a reduction in the size of the candidate document set. The baseline

144

Optimization Configuration

T
im

e
 (

s
e
c
)

0

100

200

300

400

500

600

700

800

900

1000

all all

10%

all

25%

all

50%

1000 1000

10%

1000

25%

1000

50%

CPU Time

I/O Time

Figure 4.18 Extended optimization wall-clock times for Tip12, Query Set 3

query set evaluates scores for 12,931,770 documents, or an average of 258,635 documents

per query (35% of the documents in the collection). 50% term-elimination reduces the

number of documents scored by 69%, to 80,210 per query.

The original optimization stays competitive by producing a more substantial reduction

in the number of documents scored. In 1000, 7,561 documents are evaluated per query—a

reduction of 97% in the size of the candidate document set. This translates into a reduction

in CPU time of 78% and an overall reduction in wall-clock time of 50% (1000 yields no

reduction in I/O time). Combining 50% term-elimination with the original optimization

(1000 50%) produces the best overall performance, leading to a reduction in I/O time

of 25%, a reduction in CPU time of 84%, and a reduction in wall-clock time of 62%.

These results show that both the original optimization and term-elimination can produce a

substantial execution performance improvement even on relatively short queries.

Given that these queries are so small, we might expect retrieval effectiveness to suffer

considerably when the unsafe optimizations are applied. Table 4.14 and Figure 4.19 show

145

the retrieval effectiveness obtained with Query Set 3 on Tip12 for various optimizations.

Contrary to expectations, application of the optimizations can actually improve retrieval

effectiveness. Term-elimination of up to 50% dramatically improves precision at all levels

of recall. The original optimization improves precision at low recall, but displays its

characteristic deterioration in precision at high recall levels. Adding 50% term-elimination

to the original optimization, however, produces the largest improvement at low recall. Once

again, 1000 50% provides the ideal combination of execution performance and precision

at low recall for an interactive IR system.

We have also encountered another situation where retrieval effectiveness has improved

via the removal of evidence from the queries. To investigate this phenomenon further, an

attempt was made to duplicate this improvement in retrieval effectiveness using a technique

other than optimization. The hypothesis here is that the high frequency query terms are

polluting the final document scores because they have a greater likelihood of occurring many

times within a document. Term-elimination removes this pollution, improving precision.

An alternative is to focus the contribution of high frequency query terms by placing them

in a passage operator. Using the technique proposed by Callan [11] (the same technique

used for Query Set 2), a new query set—Query Set 4—was created from Query Set 3 by

duplicating each core query, placing one copy inside a passage operator, and combining the

passage operator with the first core copy in a weighted sum, where the passage operator’s

weight is twice the weight of the first core copy.

The retrieval effectiveness obtained with the new query set is shown in Table 4.15 and

Figure 4.20. It is compared with the baseline version of Query Set 3 (Q3 all); Query

Set 3 plus 50% term-elimination (Q3 all 50%) is shown for reference. The new query

set (Q4 all) provides a substantial improvement in retrieval effectiveness over the baseline

Query Set 3, supporting the hypothesis that retrieval effectiveness will improve when the

high frequency terms are focused in a passage operator. The improvement in retrieval

146

Table 4.14 Precision at standard recall pts for Tip12, Query Set 3, optimized

Precision (% change) – 50 queries

Recall all all 50% all 75% 1000 1000 50% 1000 75%

0 59.9 64.6 (+7.9) 59.2 (✤ 1.1) 60.6 (+1.2) 65.1 (+8.6) 60.3 (+0.7)

10 33.8 36.6 (+8.5) 33.5 (✤ 0.9) 35.8 (+6.1) 37.3 (+10.6) 34.0 (+0.6)

20 28.6 31.5 (+10.2) 28.4 (✤ 0.9) 30.1 (+5.2) 32.2 (+12.5) 28.2 (✤ 1.5)

30 24.9 27.8 (+11.7) 24.4 (✤ 2.0) 25.0 (+0.5) 27.7 (+11.0) 23.0 (✤ 7.6)

40 22.3 25.2 (+12.9) 21.1 (✤ 5.2) 20.3 (✤ 9.1) 21.7 (✤ 2.6) 17.2(✤ 23.0)

50 18.7 22.0 (+17.2) 18.1 (✤ 3.5) 16.5(✤ 11.8) 17.4 (✤ 6.9) 14.4(✤ 22.9)

60 15.6 18.3 (+17.4) 14.7 (✤ 6.1) 10.6(✤ 32.1) 11.7(✤ 25.0) 9.7 (✤ 38.1)

70 12.8 14.6 (+14.0) 10.5(✤ 17.7) 4.9(✤ 61.7) 5.3(✤ 58.3) 4.0 (✤ 68.7)

80 9.7 10.8 (+12.0) 7.8(✤ 19.0) 2.4(✤ 75.1) 2.7(✤ 71.8) 2.8 (✤ 70.8)

90 5.9 7.2 (+22.0) 5.2(✤ 12.0) 1.1(✤ 81.9) 1.5(✤ 74.5) 1.8 (✤ 70.2)

100 0.8 0.9 (+21.5) 0.4(✤ 47.0) 0.1(✤ 82.3) 0.1(✤ 81.4) 0.2 (✤ 74.7)

average 21.2 23.6 (+11.4) 20.3 (✤ 4.2) 18.9(✤ 10.9) 20.3 (✤ 4.3) 17.8(✤ 16.1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
all 50%
all 75%

1000
1000 50%
1000 75%

Figure 4.19 Recall-Precision curves for Tip12, Query Set 3, optimized

147

Table 4.15 Precision at standard recall pts for Tip12, Query Sets 3 and 4

Precision (% change) – 50 queries

Recall Q3 all Q3 all 50% Q4 all

0 59.9 64.6 (+7.9) 70.3 (+17.4)

10 33.8 36.6 (+8.5) 37.6 (+11.3)

20 28.6 31.5 (+10.2) 31.8 (+11.0)

30 24.9 27.8 (+11.7) 27.5 (+10.3)

40 22.3 25.2 (+12.9) 24.7 (+10.5)

50 18.7 22.0 (+17.2) 21.2 (+13.0)

60 15.6 18.3 (+17.4) 17.5 (+11.8)

70 12.8 14.6 (+14.0) 14.3 (+11.4)

80 9.7 10.8 (+12.0) 11.0 (+13.5)

90 5.9 7.2 (+22.0) 6.9 (+17.3)

100 0.8 0.9 (+21.5) 0.9 (+16.5)

average 21.2 23.6 (+11.4) 23.9 (+13.1)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Q3 all
Q3 all 50%

Q4 all

Figure 4.20 Recall-Precision curves for Tip12, Query Sets 3 and 4

148

Optimization Configuration

T
im

e
 (

s
e
c
)

0

200

400

600

800

1000

1200

1400

1600

1800

all all 50% all *50% 1000 1000 50% 1000 *50%

CPU Time

I/O Time

Figure 4.21 Extended optimization wall-clock times for Tip12, Query Set 4

effectiveness in Q4 all is similar to that obtained in Q3 all 50%—slightly better at low

recall, slightly worse at high recall.

Of course, we can apply our optimizations to Query Set 4 as well. Execution times for

various optimization configurations of Query Set 4 are shown in Figure 4.21 and retrieval

effectiveness is shown in Table 4.16 and Figure 4.22. Under application of the various

optimization techniques, Query Set 4 behaves similarly to Query Set 2 in terms of both

execution performance and retrieval effectiveness. The changes in precision seen across

various optimization configurations of Query Set 4 are essentially “magnified” versions

of those seen in Query Set 2 (compare Table 4.16 with Table 4.13). In Query Set 4,

however, all 50% provides a notable improvement in retrieval effectiveness, while all

*50% is markedly worse. For these relatively short queries (with no structure other than

the passage operator), eliminating high frequency terms outside of the passage operator

improves precision, while eliminating high frequency terms inside the passage operator

worsens precision.

149

Table 4.16 Precision at standard recall pts for Tip12, Query Set 4, optimized

Precision (% change) – 50 queries

Recall all all 50% all *50% 1000 1000 50% 1000 *50%

0 70.3 73.5 (+4.6) 61.4(✤ 12.6) 71.2 (+1.3) 73.4 (+4.4) 63.5 (✤ 9.6)

10 37.6 40.5 (+7.7) 36.3 (✤ 3.5) 37.9 (+0.9) 40.8 (+8.4) 38.2 (+1.7)

20 31.8 34.1 (+7.3) 30.3 (✤ 4.5) 32.9 (+3.6) 34.6 (+9.0) 31.7 (✤ 0.2)

30 27.5 29.7 (+7.9) 26.1 (✤ 5.0) 26.2 (✤ 4.6) 27.9 (+1.4) 25.3 (✤ 7.8)

40 24.7 26.8 (+8.7) 22.5 (✤ 8.8) 20.9(✤ 15.3) 22.3 (✤ 9.8) 19.7(✤ 20.2)

50 21.2 23.6 (+11.4) 18.9(✤ 10.9) 17.5(✤ 17.5) 18.8(✤ 11.4) 15.9(✤ 24.8)

60 17.5 19.5 (+11.8) 15.2(✤ 12.8) 11.2(✤ 35.8) 12.4(✤ 29.0) 10.0(✤ 43.0)

70 14.3 16.2 (+13.3) 12.4(✤ 13.1) 5.6(✤ 60.6) 6.1(✤ 57.2) 4.7 (✤ 67.0)

80 11.0 12.6 (+15.1) 9.0(✤ 17.6) 3.0(✤ 72.5) 3.5(✤ 68.1) 2.3 (✤ 79.3)

90 6.9 8.1 (+17.5) 5.7(✤ 17.8) 1.2(✤ 82.0) 1.6(✤ 77.2) 1.0 (✤ 86.1)

100 0.9 1.2 (+33.2) 0.8(✤ 15.2) 0.2(✤ 83.3) 0.1(✤ 85.2) 0.1 (✤ 84.8)

average 23.9 26.0 (+8.5) 21.7 (✤ 9.4) 20.7(✤ 13.5) 21.9 (✤ 8.4) 19.3(✤ 19.4)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
all 50%

all *50%
1000

1000 50%
1000 *50%

Figure 4.22 Recall-Precision curves for Tip12, Query Set 4, optimized

150

Optimization Configuration

T
im

e
 (

s
e
c
)

0

200

400

600

800

1000

1200

1400

1600

1800

Q3

all

Q3

all

50%

Q3

1000

50%

Q4

all

Q4

all

50%

Q4

1000

50%

CPU Time

I/O Time

Figure 4.23 Extended optimization wall-clock times for Tip12, Query Sets 3 and 4

Although improving retrieval effectiveness through query modification rather than op-

timization is perhaps more “theoretically sound,” the bottom line is which version gives

the best combination of retrieval effectiveness and execution performance. Figure 4.23

compares the execution performance of selected configurations of Query Sets 3 and 4,

and Table 4.17 and Figure 4.24 compare their retrieval effectiveness using the unoptimized

configuration of Query Set 3 (Q3 all) as the baseline. The best execution performance

is obtained in Q3 1000 50%, while the best overall retrieval effectiveness is obtained in

Q4 all 50%. The best compromise is achieved by Q4 1000 50%, which matches the best

precision obtained at low recall and provides the third best overall execution performance.

Although Q3 1000 50% provides an additional 44% reduction in wall-clock time over Q4

1000 50%, the substantially better precision at low recall obtained in Q4 1000 50% makes

it the better choice for an interactive IR system.

While eight term queries are certainly small compared to the much larger queries in

Query Sets 1 and 2, novice information retrieval system users are likely to enter even

151

Table 4.17 Precision at standard recall pts for Tip12, Query Sets 3 and 4, optimized

Precision (% change) – 50 queries

Recall Q3 Q3 Q3 Q4 Q4 Q4

all all 50% 1000 50% all all 50% 1000 50%

0 59.9 64.6 (+7.9) 65.1 (+8.6) 70.3 (+17.4) 73.5 (+22.7) 73.4 (+22.5)

10 33.8 36.6 (+8.5) 37.3 (+10.6) 37.6 (+11.3) 40.5 (+20.0) 40.8 (+20.7)

20 28.6 31.5 (+10.2) 32.2 (+12.5) 31.8 (+11.0) 34.1 (+19.1) 34.6 (+20.9)

30 24.9 27.8 (+11.7) 27.7 (+11.0) 27.5 (+10.3) 29.7 (+19.1) 27.9 (+11.9)

40 22.3 25.2 (+12.9) 21.7 (✤ 2.6) 24.7 (+10.5) 26.8 (+20.1) 22.3 (✤ 0.3)

50 18.7 22.0 (+17.2) 17.4 (✤ 6.9) 21.2 (+13.0) 23.6 (+26.0) 18.8 (+0.2)

60 15.6 18.3 (+17.4) 11.7(✤ 25.0) 17.5 (+11.8) 19.5 (+25.0) 12.4(✤ 20.6)

70 12.8 14.6 (+14.0) 5.3(✤ 58.3) 14.3 (+11.4) 16.2 (+26.2) 6.1 (✤ 52.3)

80 9.7 10.8 (+12.0) 2.7(✤ 71.8) 11.0 (+13.5) 12.6 (+30.6) 3.5 (✤ 63.8)

90 5.9 7.2 (+22.0) 1.5(✤ 74.5) 6.9 (+17.3) 8.1 (+37.8) 1.6 (✤ 73.3)

100 0.8 0.9 (+21.5) 0.1(✤ 81.4) 0.9 (+16.5) 1.2 (+55.2) 0.1 (✤ 82.8)

average 21.2 23.6 (+11.4) 20.3 (✤ 4.3) 23.9 (+13.1) 26.0 (+22.7) 21.9 (+3.6)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Q3 all
Q3 all 50%

Q3 1000 50%
Q4 all

Q4 all 50%
Q4 1000 50%

Figure 4.24 Recall-Precision curves for Tip12, Query Sets 3 and 4, optimized

152

Optimization Configuration

T
im

e
 (

s
e
c
)

0

50

100

150

200

250

300

350

400

450

500

all all 25% all 50% 1000 1000 25% 1000 50%

CPU Time

I/O Time

Figure 4.25 Extended optimization wall-clock times for Tip12, Query Set 5

smaller queries. For completeness, we evaluated our optimization techniques on a fifth

query set, Query Set 5, generated from the title fields of TIPSTER topics 51–100. Each

query is simply a sum of the terms in the corresponding title field, with an average of

3 terms per query. Measurements were made using the same platform and experimental

methodology as above.

Execution performance results are shown in Figure 4.25. With 25% term elimination,

I/O time is reduced by 5%, CPU time is reduced by 24%, and overall time is reduced

by 15%. These improvements are modest because only queries with at least 4 terms are

affected by the optimization. Only 22 of the 50 queries comprise 4 or more terms. 50%

term elimination causes a 17% reduction in I/O time, a 55% reduction in CPU time, and an

overall wall-clock time reduction of 36%. All queries with more than 1 term are affected

by 50% term elimination, and all but 4 of the 50 queries consist of more than 1 term.

When our original optimization is applied (1000), I/O is unchanged, CPU time is

reduced by 61%, and overall time is reduced by 31%. All queries are affected by this

153

optimization, regardless of the number of query terms. Adding term elimination to our

original optimization yields the same reduction in I/O as that obtained with term elimination

alone. 1000 25% provides a 63% reduction in CPU time and a 34% reduction in overall

time, and 1000 50% provides a 65% reduction in CPU time and a 42% reduction in overall

time.

Even with these very short queries, our original optimization is able to improve execution

performance by significantly reducing the size of the candidate document set. In the base

case (all), an average of 119,787 documents are evaluated per query. In 1000, an average

of 3,172 documents are evaluated per query, or 97% less than in the base case, leading to a

31% reduction in execution time. Although this execution time reduction is noticeable, it

is less than the 50+% reductions observed earlier for the larger query sets. Note, however,

that the base query set here takes relatively little time to evaluate in the first place, such

that relevance judgement processing becomes a substantial component of the overall cost.

Relevance judgement processing accounts for 53% of the total time in all and 82% of the

total time in 1000. If this time is factored out in both cases, the reduction in total time

provided by 1000 is actually 73%.

The impact on retrieval effectiveness when optimizing Query Set 5 is shown in Ta-

ble 4.18 and Figure 4.26. Unlike the results obtained earlier, optimization never causes

retrieval effectiveness to improve. 25% term elimination incurs the smallest degradation

in retrieval effectiveness, although less than half of the queries in the query set are affected

by the optimization. 1000 provides the next best level of retrieval effectiveness, includ-

ing good precision up to 30% recall. Adding term elimination to 1000 causes retrieval

effectiveness to deteriorate further with relatively little payback in terms of execution per-

formance. With its good precision at low recall and 31% reduction in execution time (73% if

relevance judgement processing is excluded), 1000 offers the best combination of retrieval

effectiveness and execution performance.

154

Table 4.18 Precision at standard recall pts for Tip12, Query Set 5, optimized

Precision (% change) – 50 queries

Recall all all 25% all 50% 1000 1000 25% 1000 50%

0 66.6 66.6 (+0.0) 58.8(✤ 11.7) 66.2 (✤ 0.6) 64.8 (✤ 2.7) 58.8(✤ 11.6)

10 43.5 42.4 (✤ 2.6) 36.4(✤ 16.2) 42.6 (✤ 2.1) 41.5 (✤ 4.6) 35.2(✤ 19.0)

20 37.0 36.1 (✤ 2.5) 30.2(✤ 18.3) 35.8 (✤ 3.3) 35.2 (✤ 4.9) 28.6(✤ 22.6)

30 32.6 32.0 (✤ 1.9) 25.3(✤ 22.4) 29.4 (✤ 9.7) 28.6(✤ 12.1) 22.2(✤ 31.8)

40 28.6 27.9 (✤ 2.3) 22.3(✤ 22.1) 21.9(✤ 23.2) 21.7(✤ 24.1) 17.0(✤ 40.4)

50 24.5 24.0 (✤ 1.9) 18.9(✤ 22.8) 18.3(✤ 25.2) 18.2(✤ 25.6) 13.5(✤ 44.8)

60 20.9 20.4 (✤ 2.3) 16.0(✤ 23.6) 11.3(✤ 46.0) 11.3(✤ 45.9) 7.3 (✤ 65.0)

70 15.6 15.2 (✤ 3.1) 12.0(✤ 23.6) 5.3(✤ 66.1) 5.3(✤ 65.9) 3.8 (✤ 75.9)

80 12.1 11.8 (✤ 2.7) 9.0(✤ 25.9) 3.1(✤ 74.3) 3.1(✤ 74.3) 2.1 (✤ 82.3)

90 7.8 7.4 (✤ 4.8) 5.5(✤ 29.3) 1.7(✤ 77.6) 1.7(✤ 77.6) 1.4 (✤ 82.4)

100 0.9 0.9 (✤ 0.8) 0.5(✤ 41.1) 0.2(✤ 78.7) 0.2(✤ 78.7) 0.0 (✤ 95.1)

average 26.4 25.9 (✤ 1.9) 21.4(✤ 19.0) 21.4(✤ 18.7) 21.1(✤ 20.1) 17.3(✤ 34.5)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

all
all 25%
all 50%

1000
1000 25%
1000 50%

Figure 4.26 Recall-Precision curves for Tip12, Query Set 5, optimized

155

Table 4.19 Wall-clock time summary for Tip12 (seconds)

Optimization Query Set 1 Query Set 2 Query Set 3 Query Set 4 Query Set 5

Configuration I/O CPU Total I/O CPU Total I/O CPU Total I/O CPU Total I/O CPU Total

all 509 1684 2193 500 3817 4317 331 578 909 433 1208 1641 227 236 463

all 10% 477 1353 1830 n/a n/a n/a 321 540 861 n/a n/a n/a n/a n/a n/a

all 25% 449 932 1381 n/a n/a n/a 290 375 665 n/a n/a n/a 216 179 395

all 50% 418 542 960 505 3088 3593 248 202 450 435 965 1400 188 107 295

all *50% n/a n/a n/a 397 1404 1801 n/a n/a n/a 318 536 854 n/a n/a n/a

1000 508 428 936 499 1043 1542 329 127 456 428 205 633 228 92 320

1000 10% 477 398 875 n/a n/a n/a 320 124 444 n/a n/a n/a n/a n/a n/a

1000 25% 448 356 804 n/a n/a n/a 289 109 398 n/a n/a n/a 217 88 305

1000 50% 419 302 721 504 945 1449 249 94 343 434 181 615 188 82 270

1000 *50% n/a n/a n/a 394 722 1116 n/a n/a n/a 317 124 441 n/a n/a n/a

1
5
6

4.7 Conclusions

In this chapter we have examined a variety of techniques for improving the execution

speed of structured queries, including both safe and unsafe optimizations. The safe tech-

niques explored here generally depend on the inverted file implementation satisfying certain

functionality requirements. It was hypothesized that two inverted list features in particular

would lead to reductions in I/O and execution time. First, separating term weights from

proximity lists would free belief operators from the overhead of accessing proximity lists

and result in better execution performance. This was shown to be the case in Section 4.4.4.1,

where Query Set 3 (which contains no proximity operators) experienced a 20% reduction

in I/O time and a 7% reduction in wall clock time when evaluated using an inverted file

implementation that provides the requisite functionality.

This meager reduction in wall-clock time, however, is barely sufficient to justify the

optimization, especially when we consider the following. In Section 4.6 it was shown

that the retrieval effectiveness obtained with Query Set 3 could be significantly enhanced

through the use of the passage operator. This is consistent with other results [11, 21]

which show that using a passage operator, or proximity operators in general, can improve

retrieval effectiveness. This suggests that the kind of query that will benefit from this

safe optimization is one that should be augmented with proximity operators to improve

its retrieval effectiveness, making the safe optimization no longer applicable. It might be

better, therefore, to simplify the implementation and store term weights and proximity lists

together, since the proximity lists should be used in evaluating the query anyway. A final

answer to this question requires more work in the area of proper query formulation, and is

beyond the scope of this investigation.

The second feature that was hypothesized to be useful is the ability to skip portions

of an inverted list. This comes into play when evaluating an intersection style operator

where one of the terms in the intersection is infrequent and can be used to constrain the

intersection process. While skipping opportunities were found in Query Sets 1 and 2 (see

157

Section 4.6), they only amounted to an average of 25 to 46 long list objects per query.

The small improvement obtained in I/O was generally overshadowed by the extra CPU

costs incurred in the more complex split list implementation. However, given that the

more complex inverted list implementation generally pays for itself, it is still worthwhile

to support this optimization. There will inevitably be situations where an intersection can

be significantly constrained and this optimization will produce a large payback.

We explored a third safe optimization that eliminates redundant evaluation of con-

structed concepts during the final query evaluation phase. As with the other safe optimiza-

tions, the benefit derived from this optimization depends on the makeup of the query. A

greater improvement was obtained in Query Set 2 than in Query set 1 because Query

Set 2 has a larger proportion of proximity operators. In this case, the improvement is

significant—we measured a 13% reduction in total wall-clock time. This optimization is

independent of the inverted file implementation and is always worthwhile. It can also be

extended as follows. The temporary inverted lists built during the preprocessing phase can

be cached across queries, potentially eliminating the need to evaluate the same constructed

concept in the future. Furthermore, frequently accessed temporary inverted lists can even-

tually be written to the inverted file, treating the corresponding constructed concepts as if

they were terms. To fully support this, the document indexing system must be modified

to recognize the saved constructed concepts and appropriately update the corresponding

inverted lists. The net result is automatic indexing of frequently used phrases.

The unsafe optimization introduced in this thesis generated much more rewarding

results. Our experimental results show that for highly structured queries (e.g., Query Sets

1 and 2), our optimization will reduce query processing time by over 50% with no noticeable

degradation in precision until better than 70% recall. The basic hypothesis here was that

the candidate document set could be significantly constrained with minimal effort, which

in turn would produce a significant savings in query evaluation execution time. Using

the heuristics developed in Section 4.2.2 and the inverted list implementation described in

158

Section 4.3, we were able to efficiently reduce the size of the candidate document set by

over 90%. This was shown to produce a significant savings in CPU time and a substantial

improvement in overall execution performance, leading to the acceptance of the hypothesis.

We also applied our optimization technique to short, unstructured queries. The results

in this case were very rewarding as well. On queries comprising an average of 8 terms, the

candidate document set reduction was still better than 90%, leading to a 50% reduction in

wall-clock time. The impact on retrieval effectiveness was somewhat more noticeable. For

example, in Table 4.14, our top 1000 optimization (1000) produces worse precision than

the unoptimized version after 40% recall. Note, however, that the precision at 30% recall

is 25%. Since this result was generated using a query set with an average of 328 relevant

documents per query, 40% recall is over 400 documents down in the ranked listing. In an

interactive system, this level of retrieval effectiveness will still be quite acceptable.

Our optimization technique mainly attacks the CPU costs of evaluating a query. We

considered additional techniques specifically aimed at reducing I/O. In particular, term-

elimination was evaluated. This technique was originally introduced in the context of

the vector-space retrieval model [10]. We have described a novel application of term-

elimination to structured queries, including an adjustable selectivity based on estimated

contribution to final document score. 50% term-elimination alone was found to reduce

I/O time by 17% to 25%. Moreover, in queries without passage operators, it produced

reductions in wall-clock time comparable to our top 1000 optimization. The best execution

performance, however, was obtained by combining our original top 1000 optimization with

50% term-elimination, which reduced wall-clock time by an additional 8% to 38% over

either optimization alone.

Perhaps surprisingly, term-elimination of up to 50% generally caused precision to

improve in query sets without passage operators. The improvement was quite dramatic in

8 term, unstructured queries. We suspected that obtaining such an improvement via the

removal of evidence is actually indicative of a problem in either the query formulation

159

or the retrieval model. This was pursued further by augmenting the 8 term, unstructured

queries with passage operators. The new queries were able to better the improvement in

retrieval effectiveness produced by the optimization, confirming our suspicions. In the very

short, 3 term unstructured queries, optimization never caused an improvement in retrieval

effectiveness, suggesting that when queries are sufficiently short, all terms in the query

must be considered to achieve adequate recall.

In the case of passage operators, term-elimination provides little improvement in exe-

cution performance unless applied within the passage operator. Doing so generally caused

retrieval effectiveness to suffer. Our top 1000 optimization was much more robust with

respect to the passage operator, providing at least a 61% reduction in wall-clock time with

no impact on precision at low recall. Applying 50% term-elimination just on the out-

side of the passage operator was found to actually improve precision markedly on short

queries (Query Set 4). This was less true on larger queries (Query Set 2). Adding 50%

term-elimination just on the outside of the passage operator to the top 1000 optimization

improved its precision as well.

In general, the best combination of execution performance and precision at low recall

was found by combining 50% term-elimination with the top 1000 optimization. In an

interactive system, this optimization is unlikely to impact the user’s perception of the

effectiveness of the system. However, the reduction in query processing time by more than

half is certain to impact the user’s perception of the usefulness of the system. Moreover,

the level of aggressiveness for both of these optimizations is tunable at run-time, allowing

the user to control the tradeoff between speed and precision.

The execution performance improvements obtained with the optimization technique

introduced here compare favorably with results reported by others. The optimization

proposed by Buckley and Lewit [10] produces reductions in CPU time ranging from 37%

to 84%, where the greatest savings are obtained when only the top document in the final

ranking is guaranteed to be correct. These results were obtained using the relatively small

160

CACM and INSPEC document collections, which contain 3,204 and 12,684 documents,

respectively. Buckley and Lewit do not present standardized retrieval effectiveness results,

making it difficult to fully assess the effect of this optimization on retrieval effectiveness.

Their optimization is similar to the term-elimination optimization evaluated here, however,

and we obtained very good retrieval effectiveness with term-elimination on sufficiently

large queries. It is notable that this optimization does not work well on very short queries.

The pruning optimization proposed by Harman and Candela [41] produces a 62%

reduction in candidate set size and a 29% reduction in total search time with essentially

no reduction in average precision. These results were obtained using the Cranfield test

collection of 1,400 abstracts. On the CACM, INSPEC, and 1,033 document MEDLARS

collection, Smith’s [79] list pruning optimization reduces query evaluation time 11% to

51%. The effect of list pruning on retrieval effectiveness is similar to that obtained with our

optimization—precision at low recall is unchanged while precision at higher recall levels

degrades. Smith does not report final candidate document set sizes after pruning.

Using the 2 GB TIPSTER document collection, Moffat and Zobel [58] reduce the

size of the candidate document set nearly 99% by fixing the number of document score

accumulators. This in turn produces a 55% reduction in CPU time during query evaluation,

with no loss in average retrieval effectiveness. Using just the Wall Street Journal documents

in the TIPSTER collection (532 MB), Persin’s [65] optimization reduces the candidate

document set size by 98%, yielding an 80% reduction in query evaluation CPU time with

no loss in average retrieval effectiveness.

Turtle and Flood [89] use a 254 MB document collection to evaluate their max-score

optimization in terms of the number of postings and intermediate document scores read

or written. With document-at-a-time evaluation, max-score reduces the total number of

read and write operations 25% to 74%. The amount of savings depends on the number of

final document scores guaranteed to be correct and whether or not term occurrence location

information is used. The largest savings (74%) occurs when term occurrence locations are

161

used and the top 20 documents in the final ranking are guaranteed. With term-at-a time

evaluation, the savings range from 53% to 85%, with the greatest savings occurring under

the same conditions as before. While the savings in number of postings and intermediate

document scores read or written is clear, it is difficult to infer the real savings in terms of

CPU time, I/O time, and total execution time. Charging the same cost to each posting read

is misleading if the postings are compressed, and elimination of individual posting reads

does not necessarily translate into I/O savings—if the amount of data skipped within an

inverted list does not exceed the file access granularity, then no I/O savings are realized.

Admittedly, elimination of the need to process these postings should result in comparable

CPU savings.

The main characteristic that distinguishes our optimization technique from the ones dis-

cussed above is the way in which the candidate document set is populated. Our optimization

uses information created and stored at indexing time (the top document lists) to establish the

candidate document set before final evaluation of the query. The other optimizations above

establish the candidate document set as query evaluation proceeds, using either upper bound

document scores or candidate document set insertion and modification thresholds to control

the population process. The use of upper bound document scores has the advantage that

guarantees can be made about the final document ranking. Adapting a similar strategy to a

structured query environment is not straightforward, since each query operator will require

a different upper bound calculation. In particular, the not operator is troublesome and may

require that upper and lower bounds (i.e., a range) be calculated. This is an interesting area

for future work. The bottom line here, however, is that our optimization technique produces

competitive reductions in execution time, causes no noticeable degradation in precision at

low recall, and works for structured queries.

One topic not directly addressed in the performance evaluation above is the impact of

our implementation and optimization techniques on main memory usage. Optimization

techniques that reduce the size of the candidate document set provide an immediate main

162

memory savings opportunity for systems that allocate a document score accumulator for

every member of the candidate document set [58, 61]. If the size of the candidate document

set is reduced, the number of document score accumulators can be reduced accordingly.

This main memory savings, however, is advantageous only to systems that evaluate queries

term-at-a-time. For systems that evaluate queries document-at-a-time (such as INQUERY),

the number of document score accumulators can be reduced trivially to the number of final

document scores that will be returned to the user. For example, assume that the user will

be shown n final document scores. The first n final document scores calculated are saved in

the accumulators. Then, as each remaining final document score is calculated, it replaces

one of the saved scores only if it exceeds the smallest currently saved score. Otherwise

it is discarded. This scheme has an additional computational cost to update and maintain

the n final document scores, although the additional cost is similar to that incurred by a

system that uses term-at-a-time evaluation and must locate and update document scores in a

constrained accumulator space. Furthermore, a sorted search structure (e.g., binary search

tree) allows the document-at-a-time implementation to bypass the final sorting step required

by the term-at-a-time implementation to present the final document scores in ranked order.

Another potential main memory savings is provided by our Mneme-based inverted file

implementation. In this implementation, even if a term appears more than once in a query,

only one copy of the inverted list for that term will be read into main memory. Each

occurrence of the term in the query tree will refer to the term’s inverted list using the object

identifier for the Mneme object that contains the inverted list (or the head of the inverted

list). Mneme always resolves multiple references for the same object to a single copy of that

object in main memory. This is a basic but central concept in a persistent object store. A

simpler inverted file implementation might very well retrieve as many copies of an inverted

list as there are occurrences of the term in the query.

Finally, while our implementation and experimental evaluation have been carried out in

the context of an inference network-based retrieval model, the techniques described here are

163

generally applicable to any statistical retrieval model that supports structured queries. As

these retrieval models are applied to larger and larger document collections, optimization

techniques such as these will become ever more crucial to the success of these systems.

164

CHAPTER 5

CONCLUSIONS

The goal of this thesis was to provide solutions to the challenges in information re-

trieval created by large, dynamic document collections, and to lay the foundation for a

comprehensive information management system that incorporates sophisticated document

management. We have addressed a number of issues related to indexing and modifying

a document collection in Chapter 3, including the design, implementation, and evalua-

tion of an inverted file architecture based on a persistent object store. Our design and

implementation was guided by the following principles:✆ Localize sort and insert operations.✆ Build intermediate results in main memory.✆ Minimize I/O.✆ Favor sequential I/O over random I/O.✆ Minimize access to the existing inverted file.

We described an indexing system that provides a bulk indexing rate of 530 MB per hour,

provides an incremental indexing rate of 265 MB per hour, and supports a fully dynamic

document collection. These results lead us to conclude that our indexing system design

principles are sound and a persistent object store provides an effective solution for inverted

file management.

In Chapter 4, we addressed the problem of providing fast evaluation of structured

queries in information retrieval and presented a new, unsafe optimization technique that

165

returns a 50% reduction in execution time with no noticeable degradation in retrieval

effectiveness. We explored a variety of other optimization techniques and presented a

comprehensive evaluation of the tradeoffs between optimization aggressiveness, speed,

and retrieval effectiveness.

Our safe optimizations dealt primarily with the overheads imposed by storing and

processing term occurrence locations. Storing term occurrence locations increases the size

of the inverted file by 78% and adds an additional 6% to the total indexing time. Proximity

operators that use term occurrence locations require an extra preprocessing step during

query evaluation, although this was measured to be only 12% of the total query evaluation

time for queries with 36% to 54% of their terms appearing inside proximity operators.

Moreover, the temporary inverted lists built during the preprocessing step can be cached

for future use.

The additional indexing and retrieval overhead imposed by proximity operators appears

to be small in terms of computation. Attempts at further reducing these overheads through

the use of more complex inverted list structures were generally ineffective. Compared

to a simple linked list implementation for long inverted lists, a directory based split list

implementation served only to increase indexing time with little payback during retrieval

for the queries that we considered. The greatest cost of storing term occurrence locations

is a near doubling in the size of the inverted file. However, given the generally better

retrieval effectiveness obtained through the use of operators that require term occurrence

locations (e.g., the passage operator), the additional overheads of storing and processing

term occurrence locations are well worthwhile.

Our results lead us to conclude that:✆ Safe optimizations are generally ineffective, although they provide contingency so-

lutions.✆ Candidate set reduction is a general, robust optimization for structured queries.

166

✆ Term-elimination is almost as good.✆ A combination of candidate set reduction and term-elimination is best.

The contributions of this thesis work are primarily practical in nature, with implications

for information retrieval system implementation. The main contributions are summarized

below:✆ Implementation and evaluation of a fast, scalable indexing system.✆ Design and implementation of an inverted file management architecture using “off-

the-shelf” data management technology, providing opportunities for all aspects of

an information retrieval system to benefit from traditional database management

features, such as buffer management and efficient low-level storage management.✆ Development and evaluation of an incremental indexing strategy enabled by the

above architecture.✆ Ground work for a comprehensive information management system where informa-

tion retrieval is a full-featured component.✆ Development and evaluation of a structured query optimization that reduces execution

time by over 50% with no noticeable impact on retrieval effectiveness.✆ An investigation of the impact of high frequency query terms in short, unstructured

queries and how to handle them for best retrieval effectiveness and execution perfor-

mance.

5.1 Future work

A significant contribution of this thesis work was the integration of INQUERY and

Mneme. The product of this integration is an information retrieval system positioned to

167

explore a number of new issues in scalable, multi-user information retrieval. We consider

possible future directions here.

5.1.1 Small updates

The solution presented in Chapter 3 for supporting document additions works best when

the new batch of documents is relatively large. If small batch updates are more common,

the solution must be extended. The first possible extension is straightforward. If the partial

inverted lists for the entire batch of new documents can be buffered in a single batch buffer

(Figure 3.3), the Merger can be bypassed and the partial inverted lists can be handed directly

to the Inverted File Manager for addition to the existing inverted file. In this case, there

will only be a single temporary file block, obviating the merge step. This also eliminates

the I/O that would otherwise be required to write the temporary file block after the batch is

parsed and read the temporary file block during the merge.

If the batch buffer is large, it may take a while before a document presented to the system

for indexing actually becomes visible in the inverted file. To accommodate environments

where documents must be indexed and available immediately, the system can be extended

to take advantage of the following observation: once a document has been parsed and

flushed to the batch buffer, partial inverted lists for that document are available in the batch

buffer. The batch buffer in main memory is essentially an extension of the existing inverted

file on disk. Documents that have been parsed and added to the batch buffer can be made

visible during query processing by modifying the Inverted File Manager to check the batch

buffer for relevant inverted list information.

For example, suppose a query is being processed involving the term “cat”. The Inverted

File Manager will first retrieve the inverted list for “cat” from the existing inverted file.

When the end of that list is reached, the batch buffer is checked to see if it contains a

partial inverted list for “cat”. If it does, query processing continues with this additional

information. Since the partial inverted list in the batch buffer will eventually be appended

168

to the existing inverted list on disk, the sequential processing of inverted list contents during

query processing transitions smoothly from the on-disk version to the batch buffer version.

This solution assumes that document indexing and query processing can run simulta-

neously and share main memory. A reasonable way to support this configuration is with

threads. A document indexing thread handles requests to add new documents to the docu-

ment collection. The new documents are parsed, inverted, and their partial inverted lists are

added to the batch buffer. When the batch buffer is full, it is flushed directly to the existing

inverted file, as described in the first extension above. Meanwhile, a query evaluation

thread handles requests to process queries and interacts with the Inverted File Manager as

usual. The main issues are coordination of the threads with suitable concurrency control

mechanisms and proper interaction with the Inverted File Manager.

5.1.2 Multi-user support

Although the current implementation does support concurrency control, recovery, and

transactions, these issues have yet to be explored in a systematic fashion. In particular,

an information retrieval system offers opportunities to relax the consistency and coherency

constraints typically imposed by traditional data processing applications. For example,

since query results are actually estimates based on the information available in the inverted

file, as long as a result is internally consistent, it is reasonable to return this result to the

user. If the underlying inverted file management system can identify (and retrieve) the last

consistent version of the database before the current write transaction began, then during

query evaluation the retrieval engine need never block on inverted list data that is locked

for update [69]. This scheme must be tailored to suit the particular visibility requirements

of the system (i.e., how soon new documents must be available in the system) and the rate

of new document additions.

Other issues worth pursuing involve log file management for transactions and recovery.

The kind of updates that an inverted file will experience are relatively constrained, and

169

include append operations to existing objects, creation of new objects, and rewriting of

the majority of the objects in the database. The first two activities occur during document

additions and are the most common. The last activity occurs during the occasional purge

of deleted documents. This characterization of modification behavior combined with a pre-

dictable occurrence rate can be used to customize transaction and recovery log management

and improve performance.

5.1.3 Hardware based optimization

The final area for future work that we propose here is based on our relative lack of success

at significantly reducing I/O costs during query evaluation. In fact, since our optimization

technique provides such a significant reduction in CPU time, it shifts the query evaluation

cost model from being CPU bound to being I/O bound. Our attempts at attacking these I/O

costs with sophisticated data structures and algorithms were minimally successful.

This suggests that lower-level hardware support must be pursued to obtain true scala-

bility. Techniques such as disk striping [14], parallel processing, and distributed computing

need to be investigated more thoroughly. Previous work has been done in this area [83],

but not in the context of the sophisticated retrieval models considered here. Using the

architecture that has been built for this thesis work, substantial insights can be gained into

the efficacy of these hardware techniques.

Improvements in I/O speed, either through the approaches suggested above or through

advances in magnetic disk speed, will shift the dominant cost back to CPU time and increase

the importance of optimization techniques such as ours. Reductions in I/O speed, on the

other hand, decrease the benefit derived from these optimization techniques. In particular,

optical disk environments introduce a substantially different query evaluation cost model

and require a reevaluation of inverted file implementation and query optimization decisions.

While an investigation of these issues is beyond the scope of this dissertation, we note that

our inverted file architecture is well suited to such an investigation. The ability to customize

170

the inverted file implementation and control the low level storage and access mechanisms

will greatly facilitate an exploration of appropriate file organizations and optimizations for

optical disk environments.

171

172

BIBLIOGRAPHY

[1] Belkin, N. J. and Croft, W. B. Retrieval techniques. In M. E. Williams, editor, Annual

Review of Information Science and Technology, volume 22, pages 109–145. Elsevier

Science Publishers, New York, 1987.

[2] Bell, T. C., Moffat, A., Nevill-Manning, C. G., Witten, I. H., and Zobel, J. Data

compression in full-text retrieval systems. J. Amer. Soc. Inf. Sci., 44(9):508–531, Oct.

1993.

[3] Biliris, A. An efficient database storage structure for large dynamic objects. In Proc.

8th IEEE Inter. Conf. on Data Engineering, pages 301–308, Tempe, AZ, Feb. 1992.

[4] Biliris, A. The performance of three database storage structures for managing large

objects. In Proc. of the ACM SIGMOD Inter. Conf. on Management of Data, pages

276–285, San Diego, CA, June 1992.

[5] Blair, D. C. An extended relational document retrieval model. Inf. Process. & Mgmnt.,

24(3):349–371, 1988.

[6] Bookstein, A., Klein, S. T., and Ziff, D. A. A systematic approach to compressing a

full-text retrieval system. Inf. Process. & Mgmnt., 28(6):795–806, 1992.

[7] Brown, E. W. Fast evaluation of structured queries for information retrieval. In Proc.

of the 18th Inter. ACM SIGIR Conf. on Research and Development in Information

Retrieval, pages 30–38, Seattle, WA, July 1995.

[8] Brown, E. W., Callan, J. P., and Croft, W. B. Fast incremental indexing for full-text

information retrieval. In Proc. of the 20th Inter. Conf. on Very Large Databases

(VLDB), pages 192–202, Santiago, Sept. 1994.

[9] Brown, E. W., Callan, J. P., Croft, W. B., and Moss, J. E. B. Supporting full-text

information retrieval with a persistent object store. In Proc. of the 4th Inter. Conf.

on Extending Database Technology (EDBT), pages 365–378, Cambridge, UK, Mar.

1994.

[10] Buckley, C. and Lewit, A. F. Optimization of inverted vector searches. In Proc. of the

8th Inter. ACM SIGIR Conf. on Research and Development in Information Retrieval,

pages 97–110, June 1985.

[11] Callan, J. P. Passage-level evidence in document retrieval. In Proc. of the 17th Inter.

ACM SIGIR Conf. on Research and Development in Information Retrieval, pages

302–310, Dublin, July 1994.

173

[12] Callan, J. P., Croft, W. B., and Harding, S. M. The INQUERY retrieval system. In

Proc. of the 3rd Inter. Conf. on Database and Expert Systems Applications, Sept. 1992.

[13] Carey, M. J., DeWitt, D. J., Richardson, J. E., and Shekita, E. J. Object and file

management in the EXODUS extensible database system. In Proc. of the 12th Inter.

Conf. on Very Large Databases (VLDB), pages 91–100, Kyoto, Aug. 1986.

[14] Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., and Paterson, D. A. RAID:

High-performance, reliable secondary storage. ACM Comput. Surv., 26(2):145–185,

June 1994.

[15] Comer, D. The ubiquitous B-tree. ACM Comput. Surv., 11(2):121–137, 1979.

[16] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction fo Algorithms. The

MIT Press/McGraw-Hill Book Company, Cambridge, MA, 1990.

[17] Crawford, R. G. The relational model in information retrieval. J. Amer. Soc. Inf. Sci.,

32(1):51–64, 1981.

[18] Crawford, R. G. and MacLeod, I. A. A relational approach to modular information

retrieval systems design. In Proc. of the 41st Conf. of the American Society for

Information Science, 1978.

[19] Croft, W. B. Document representation in probabilistic models of information retrieval.

J. Amer. Soc. Inf. Sci., 32(6):451–457, Nov. 1981.

[20] Croft, W. B. Experiments with representation in a document retrieval system. Inf.

Tech.: Res. Dev., 2(1):1–21, 1983.

[21] Croft, W. B., Cook, R., and Wilder, D. Providing government information on the

internet: Experiences with THOMAS. In Proc. of the 2nd Annual Conf. on the Theory

and Practice of Digital Libraries (Digital Libraries ’95), Austin, TX, June 1995.

[22] Croft, W. B. and Harper, D. J. Using probabilistic models of document retrieval

without relevance information. J. Documentation, 35(4):285–295, Dec. 1979.

[23] Croft, W. B. and Savino, P. Implementing ranking strategies using text signatures.

ACM Trans. Office Inf. Syst., 6(1):42–62, Jan. 1988.

[24] Cruden, A., Adams, A. D., Irwin, C. H., and Waters, S. A. Complete concordance to

the Holy Scriptures of the Old and New Testaments. Holt, Rinehart and Winston, New

York, 1949.

[25] Cutting, D. and Pedersen, J. Optimizations for dynamic inverted index maintenance. In

Proc. of the 13th Inter. ACM SIGIR Conf. on Research and Development in Information

Retrieval, pages 405–411, 1990.

174

[26] DeFazio, S., Daoud, A., Smith, L. A., Srinivasan, J., Croft, B., and Callan, J. Inte-

grating IR and RDBMS using cooperative indexing. In Proc. of the 18th Inter. ACM

SIGIR Conf. on Research and Development in Information Retrieval, pages 84–92,

Seattle, WA, July 1995.

[27] Deogun, J. S. and Raghavan, V. V. Integration of information retrieval and database

management systems. Inf. Process. & Mgmnt., 24(3):303–313, 1988.

[28] Elmasri, R. and Navathe, S. B. Fundamentals of Database Systems. The Ben-

jamin/Cummings Publishing Company, Inc., Redwood City, CA, 1989.

[29] Faloutsos, C. Access methods for text. ACM Comput. Surv., 17:50–74, 1985.

[30] Faloutsos, C. and Christodoulakis, S. Signature files: An access method for documents

and its analytical performance evaluation. ACM Trans. Office Inf. Syst., 2(4):267–288,

Oct. 1984.

[31] Faloutsos, C. and Jagadish, H. V. Hybrid index organizations for text databases.

In Proc. of the 3rd Inter. Conf. on Extending Database Technology (EDBT), pages

310–327, 1992.

[32] Faloutsos, C. and Jagadish, H. V. On b-tree indices for skewed distributions. In Proc.

of the 18th Inter. Conf. on Very Large Databases (VLDB), pages 363–374, Vancouver,

1992.

[33] Fox, C. A stop list for general text. SIGIR Forum, 24(1-2):19–35, 1990.

[34] Fox, C. Lexical analysis and stoplists. In W. B. Frakes and R. Baeza-Yates, editors,

Information Retrieval: Data Structures & Algorithms, chapter 7, pages 102–130.

Prentice Hall, Englewood Cliffs, NJ, 1992.

[35] Fox, E. A. and Lee, W. C. FAST-INV: A fast algorithm for building large inverted files.

Technical Report TR-91-10, VPI&SU Department of Computer Science, Blacksburg,

VA, March 1991.

[36] Frakes, W. B. Stemming algorithms. In W. B. Frakes and R. Baeza-Yates, editors,

Information Retrieval: Data Structures & Algorithms, chapter 8, pages 131–160.

Prentice Hall, Englewood Cliffs, NJ, 1992.

[37] Graefe, G. Query evaluation techniques for large databases. ACM Comput. Surv.,

25(2):73–170, June 1993.

[38] Grossman, D. A. and Driscoll, J. R. Structuring text within a relational system. In

Proc. of the 3rd Inter. Conf. on Database and Expert Systems Applications, pages

72–77, Sept. 1992.

[39] D. Harman, editor. The Second Text REtrieval Conference (TREC-2), Gaithersburg,

MD, 1994. National Institute of Standards and Technology Special Publication 500-

215.

175

[40] D. Harman, editor. The Third Text REtrieval Conference (TREC-3), Gaithersburg, MD,

1995. National Institute of Standards and Technology Special Publication 500-225.

[41] Harman, D. and Candela, G. Retrieving records from a gigabyte of text on a mini-

computer using statistical ranking. J. Amer. Soc. Inf. Sci., 41(8):581–589, Dec. 1990.

[42] Harman, D., Fox, E., Baeza-Yates, R., and Lee, W. Inverted files. In W. B. Frakes

and R. Baeza-Yates, editors, Information Retrieval: Data Structures & Algorithms,

chapter 3, pages 28–43. Prentice Hall, Englewood Cliffs, NJ, 1992.

[43] Heaps, H. S. Information Retrieval, Computational and Theoretical Aspects. Aca-

demic Press, Inc., New York, 1978.

[44] Hessel, A. A History of Libraries. The Scarecrow Press, New Brunswick, NJ, 1955.

Translated by Reuben Peiss.

[45] Jannink, J. Implementing deletion in B+-Trees. SIGMOD RECORD, 24(1):33–38,

Mar. 1995.

[46] Jing, Y. and Croft, W. B. An association thesaurus for information retrieval. In Proc.

of RIAO 94 Conf., pages 146–160, New York, Oct. 1994.

[47] Knaus, D. and Schäuble, P. Effective and efficient retrieval from large and dynamic

document collections. In Harman [39], pages 163–170.

[48] Kohlenberger, J. R. The NRSV concordance unabridged: including the apocryphal /

deuterocanonical books. Zondervan, Grand Rapids, MI, 1991.

[49] Lamb, C., Landis, G., Orenstein, J., and Weinreb, D. The ObjectStore database

system. Commun. ACM, 34(10):50–63, Oct. 1991.

[50] Lehman, T. J. and Lindsay, B. G. The starburst long field manager. In Proc. of the

15th Inter. Conf. on Very Large Databases (VLDB), pages 375–383, Amsterdam, Aug.

1989.

[51] Linoff, G. and Stanfill, C. Compression of indexes with full positional information in

very large text databases. In Proc. of the 16th Inter. ACM SIGIR Conf. on Research

and Development in Information Retrieval, pages 88–95, Pittsburgh, PA, June 1993.

[52] Lucarella, D. A document retrieval system based on nearest neighbour searching.

J. Inf. Sci., 14(1):25–33, 1988.

[53] Lynch, C. A. and Stonebraker, M. Extended user-defined indexing with application to

textual databases. In Proc. of the 14th Inter. Conf. on Very Large Databases (VLDB),

pages 306–317, 1988.

[54] MacLeod, I. A. SEQUEL as a language for document retrieval. J. Amer. Soc. Inf. Sci.,

30(5):243–249, 1979.

176

[55] MacLeod, I. A. and Crawford, R. G. Document retrieval as a database application.

Inf. Tech.: Res. Dev., 2(1):43–60, 1983.

[56] Maron, M. E. and Kuhns, J. L. On relevance, probabilistic indexing and information

retrieval. J. ACM, 7(3):216–244, July 1960.

[57] Moffat, A. and Zobel, J. Compression and fast indexing for multi-gigabyte text

databases. Australian Comput. J., 26(1):1–9, February 1994.

[58] Moffat, A. and Zobel, J. Fast ranking in limited space. In Proc. 10th IEEE Inter. Conf.

on Data Engineering, pages 428–437, Feb. 1994.

[59] Moffat, A. and Zobel, J. Self-indexing inverted files. In Proc. Australasian Database

Conf., Christchurch, New Zealand, January 1994.

[60] Moffat, A. and Zobel, J. Self-indexing inverted files for fast text retrieval. Technical

Report 94/2, Collaborative Information Technology Research Institute, Department

of Computer Science, Royal Melbourne Institute of Technology, Australia, Feb. 1994.

[61] Moffat, A., Zobel, J., and Sacks-Davis, R. Memory efficient ranking. Inf. Process. &

Mgmnt., to appear.

[62] Moss, J. E. B. Design of the Mneme persistent object store. ACM Trans. Inf. Syst.,

8(2):103–139, Apr. 1990.

[63] Panagopoulos, G. and Faloutsos, C. Bit-sliced signature files for very large text

databases on a parallel machine architecture. In Proc. of the 4th Inter. Conf. on

Extending Database Technology (EDBT), pages 379–392, Cambridge, UK, Mar. 1994.

[64] Perry, S. A. and Willett, P. A review of the use of inverted files for best match searching

in information retrieval systems. J. Inf. Sci., 6(2-3):59–66, 1983.

[65] Persin, M. Document filtering for fast ranking. In Proc. of the 17th Inter. ACM

SIGIR Conf. on Research and Development in Information Retrieval, pages 339–348,

Dublin, July 1994.

[66] Pfeifer, U. and Fuhr, N. Efficient processing of vague queries using a data stream

approach. In Proc. of the 18th Inter. ACM SIGIR Conf. on Research and Development

in Information Retrieval, pages 189–197, Seattle, WA, July 1995.

[67] Putz, S. Using a relational database for an inverted text index. Technical Report

SSL-91-20, Xerox Palo Alto Research Center, Jan. 1991.

[68] Rajashekar, T. B. and Croft, W. B. Combining automatic and manual index rep-

resentations in probabilistic retrieval. J. Amer. Soc. Inf. Sci., 46(4):272–283, May

1995.

[69] Ridgway, J. Personal communication. Mneme design team, University of Mas-

sachusetts, 1995.

177

[70] Robertson, S. E. The probability ranking principle in IR. J. Documentation, 33(4):294–

304, 1977.

[71] Robertson, S. E. and Sparck Jones, K. Relevance weighting of search terms. J. Amer.

Soc. Inf. Sci., 27(3):129–146, May 1976.

[72] Salton, G., Fox, E. A., and Wu, H. Extended boolean information retrieval. Commun.

ACM, 26(11):1022–1036, Nov. 1983.

[73] Salton, G. and McGill, M. J. Introduction to Modern Information Retrieval. McGraw-

Hill, New York, 1983.

[74] Saxton, L. V. and Raghavan, V. V. Design of an integrated information re-

trieval/database management system. IEEE Trans. Know. Data Eng., 2(2):210–219,

June 1990.

[75] Schäuble, P. SPIDER: A multiuser information retrieval system for semistructured

and dynamic data. In Proc. of the 16th Inter. ACM SIGIR Conf. on Research and

Development in Information Retrieval, pages 318–327, Pittsburgh, June 1993.

[76] Shoens, K., Tomasic, A., and Garcia-Molina, H. Synthetic workload performance

analysis of incremental updates. In Proc. of the 17th Inter. ACM SIGIR Conf. on

Research and Development in Information Retrieval, Dublin, July 1994.

[77] Singhal, V., Kakkad, S. V., and Wilson, P. R. Texas, an efficient, portable persistent

store. In Proc. of the 5th Inter. Workshop on Persistent Object Systems, pages 11–33,

San Miniato, Italy, Sept. 1992.

[78] Smeaton, A. F. and van Rijsbergen, C. J. The nearest neighbour problem in information

retrieval. An algorithm using upperbounds. In Proc. of the 4th Inter. ACM SIGIR Conf.

on Research and Development in Information Retrieval, pages 83–87, Oakland, CA,

1981.

[79] Smith, M. E. Aspects of the p-norm model of information retrieval: Syntactic query

generation, efficiency, and theoretical properties. Technical Report TR 90-1128 (Ph.D.

Thesis), Department of Computer Science, Cornell University, May 1990.

[80] Standard Performance Evaluation Corporation (SPEC). SPARCstation 10 model 51.

SPEC Newsletter, 5(2), June 1993.

[81] Standard Performance Evaluation Corporation (SPEC). DEC 3000 model 600. SPEC

Newsletter, 6(1), June 1994.

[82] Stanfill, C. Parallel computing for information retrieval: Recent developments. Tech-

nical Report TR-69 DR88-1, Thinking Machines Corporation, Cambridge, MA, Jan.

1988.

[83] Tomasic, A. and Garcia-Molina, H. Caching and database scaling in distributed

shared-nothing information retrieval systems. In Proc. of the ACM SIGMOD Inter.

Conf. on Management of Data, pages 129–138, Washington, D.C., May 1993.

178

[84] Tomasic, A., Garcia-Molina, H., and Shoens, K. Incremental updates of inverted lists

for text document retrieval. In Proc. of the ACM SIGMOD Inter. Conf. on Management

of Data, pages 289–300, Minneapolis, MN, May 1994.

[85] Turtle, H. R. Natural language vs. boolean query evaluation: A comparison of

retrieval performance. In Proc. of the 17th Inter. ACM SIGIR Conf. on Research and

Development in Information Retrieval, pages 212–220, Dublin, July 1994.

[86] Turtle, H. R. and Croft, W. B. Inference networks for document retrieval. In Proc.

of the 13th Inter. ACM SIGIR Conf. on Research and Development in Information

Retrieval, pages 1–24, Sept. 1990.

[87] Turtle, H. R. and Croft, W. B. Efficent probabilistic inference for text retrieval. In

Proc. of RIAO 91 Conf., pages 644–661, Barcelona, Apr. 1991.

[88] Turtle, H. R. and Croft, W. B. Evaluation of an inference network-based retrieval

model. ACM Trans. Inf. Syst., 9(3):187–222, July 1991.

[89] Turtle, H. R. and Flood, J. Query evaluation: Strategies and optimizations. Inf.

Process. & Mgmnt., to appear.

[90] Witten, I. H., Moffat, A., and Bell, T. C. Managing Gigabytes: Compressing and

Indexing Documents and Images. Van Nostrand Reinhold, New York, 1994.

[91] Wolfram, D. Applying informetric characteristics of databases to IR system file design,

Part I: informetric models. Inf. Process. & Mgmnt., 28(1):121–133, 1992.

[92] Wolfram, D. Applying informetric characteristics of databases to IR system file design,

Part II: simulation comparisons. Inf. Process. & Mgmnt., 28(1):135–151, 1992.

[93] Wong, W. Y. P. and Lee, D. L. Implementations of partial document ranking using

inverted files. Inf. Process. & Mgmnt., 29(5):647–669, 1993.

[94] Zipf, G. K. Human Behavior and the Principle of Least Effort. Addison-Wesley Press,

1949.

[95] Zobel, J. and Moffat, A. Adding compression to a full-text retrieval system. In Proc.

15th Australian Computer Science Conf., pages 1077–1089, Hobart, Australia, Jan.

1992.

[96] Zobel, J., Moffat, A., and Ramamohanarao, K. Inverted files versus signature files for

text indexing. Technical Report CITRI/TR-95-5, Collaborative Information Technol-

ogy Research Institute, Department of Computer Science, Royal Melbourne Institute

of Technology, Australia, July 1995.

[97] Zobel, J., Moffat, A., and Sacks-Davis, R. An efficient indexing technique for full-text

database systems. In Proc. of the 18th Inter. Conf. on Very Large Databases (VLDB),

pages 352–362, Vancouver, 1992.

179

