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Abstract

Geographic indexing is a powerful and effective way to
organize information on the web, but the use of stan-
dardized location tags is not widespread. Therefore,
there is considerable interest in using machine learn-
ing approaches to automatically obtain semantic asso-
ciations involving geographic locations from process-
ing unstructured natural language text. While it is of-
ten impractical or expensive to obtain training labels,
there are often ways to obtain noisy labels. We present
a novel discriminative approach using a hidden variable
model suitable for learning with noisy labels and apply
it to extracting location relationships from natural lan-
guage. We examine the problem of associating events
with locations, where simple keyword matching pro-
duces a small number of positive examples within many
false positives. Compared to a state-of-the-art baseline,
our method doubles the precision of extracting semantic
information while maintaining the same recall.

Introduction

Location-based indexing is a powerful way to organize in-
formation and a variety of compelling systems have been
generating considerable recent attention (Toyama et al.
2003; Google Earth 2006; Google Maps 2006; Wikimapia
2006; Flickr 2006). Many of these systems rely on hand an-
notation or geo-tagging of information and media. However,
there is a tremendous amount of information available on the
web for which semantic association with locations could be
obtained through natural language processing. We are in-
terested in automatically deriving these types of semantic
relationships to enable geo-spatial search and the display of
results within compelling user interfaces such as (Google
Earth 2006). In order to solve these problems, we turn to
natural language processing methods, in particular semantic
information extraction. Semantic information extraction is
the task of identifying relationships of interest between en-
tities mentioned in unstructured text.

Figure 1 illustrates two markers on a 3D Atlas for points
of interest when visiting a town: (top) the birth location of
Emily Dickenson – automatically identified from the text of
a Wikipedia entry and (bottom) a local farmer’s market –
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localized from the caption of images within a Blog. While
our approach should be applicable to a wide variety of fact
extraction tasks, we focus here on extracting location associ-
ations for events. Importantly, we are interested in methods
with high precision as incorrect associations with locations
would add significant noise into a search and browsing sys-
tem.

We use this task to illustrate our contribution, a novel dis-
criminative, hidden variable method for fact extraction that
allows noisy data to be used for training. Our approach al-
lows label noise to be explicitly modeled, effectively identi-
fying false positives during learning. Our results indicate
that this method can double precision for fact extraction
while maintaining the same recall when compared with anal-
ogous models without hidden variables and without a label
noise model.

re 1. The project “WhatDidWeSee?” integrates blogs, personal photo collections, Wikipedia style articles and more sp
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Figure 1: An example of a 3D Geospatial Interface to Wiki
content for the birth place of Emily Dickenson as well as a
entry for a local farmers market. Our algorithms automate
the association of text and image content found on the web
with map based interfaces.

Probability Models & Extraction

Machine learning techniques have proven to be powerful and
effective for automating the construction of Internet Portals
(McCallum et al. 2000). Furthermore, probabilistic machine



learning techniques are particularly attractive as they allow
uncertainty to be treated in a formal and principled way. In
this paper, we are concerned with semantic information ex-
traction, where we are interested in obtaining precise rela-
tionships between entities such as images or events and lo-
cations. Semantic information extraction from the Web has
had a long history, including (Brin 1998) who proposed an
early model for building fact extraction systems using pat-
tern matching. In recent years, general probabilistic models
have been proposed for fact extraction. These methods al-
low larger and more flexible feature sets (Mann & Yarowsky
2005).

We model our problem in the following way: given a sen-
tence s and a candidate relation r, define a set of feature
functions F = {f1, . . . , fn}. We then construct a classifica-
tion model to predict whether the relation of interest is truly
asserted in the sentence. This decision can be encoded as
the binary random variable y(s,r). Consider first a naively
structured random field for a collection of binary random
variables for features. If we take each feature function to
evaluate to a binary value when applied to random variable

x(s,r) associated with that feature, we can write the joint dis-

tribution of labels y(s,r) and inputs x(s,r) as

p(y(s,r), x(s,r)) =
exp(

∑
k θkfk(x

(s,r)
k , y(s,r)))

∑
x′,y′ exp(
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.

(1)
Such models can also be described by naively structured fac-
tor graphs (McCallum et al. 2006; Kschischang & Loeliger
2001) as illustrated in figure 2 (Left). The various variants
of both so-called naı̈ve Bayes models and maximum entropy
models, commonly used the the text processing community,
can be illustrated using similar naı̈ve graphical structures.
However, there are a number of important differences. First,
naı̈ve Bayes models represent joint distributions as the prod-
uct of an unconditional prior distribution on classes and class
conditional distributions, typically discrete distributions for
words or binary distributions for features

p(x(s,r), y(s,r)) =
∏

k

p(x
(s,r)
k |y(s,r))p(y(s,r)). (2)

When naı̈ve Bayes models are used for words encoded as
draws from a discrete distribution it is also possible to ac-
count for exchangeability. To fit such models, the Maximum
Likelihood Estimate (MLE) of the parameters given training

data D = 〈d(1) = {x, y}1, . . . , d(n) = {x, y}n〉 can be
computed by counting or equivalently, by computing suffi-
cient statistics.

Conditional maximum entropy, or multinomial logistic re-
gression models can also be illustrated using naively struc-
tured graphs. However, in contrast with naı̈ve Bayes, such
models are defined and optimized explicitly for the condi-
tional distribution

p(y(s,r)|x(s,r)) =
exp(

∑
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Figure 2: (Left) A Naive log-linear model as a factor graph.
y is the noisy training label, and x1..Mn

are the features.
(Right) A hidden variable h representing the true label has
been added to the naı̈ve log-linear model.

The parameters of these conditional models are found by
maximizing the log conditional likelihood of the training
data

θ̂ = argmax
θ

ℓ(θ; D)

= argmax
θ

∑

d

ln p(y(d)|x(d))).

The optimization of parameters for these models can be
performed with a variety of techniques including iterative
scaling or gradient descent (Malouf. 2002). We use gradient
based optimization and therefore use

∂

∂θk

∝
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(d)
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where x̃ denotes the observed value of variable x. A Gaus-
sian prior on parameters is typically also used to help avoid
over-fitting.

A Hidden Variable Model for Noise Reduction

Often, instead of a human annotating completely accu-

rate labels y(s,r), it is quicker to create noisy labels ŷ(s,r),
where these noisy labels are closely correlated with the cor-
rect human assigned labels but may contain errors. While
this labeling often allows a dramatic reduction in the time
needed to label examples, using noisy labels may result in
lower performance than the comparative correct labeling. In
order to reduce the errors from noisy labeling, we introduce
an intermediate hidden binary random variable h with val-
ues corresponding to the true label assignment. We thus in-
tegrate over this hidden true label to obtain

p(ŷ|x) =
∑

h

p(ŷ, h|x)

=

∑
h exp(

∑
j θjfj(ŷ, h)) exp(

∑
k θkfk(xk, h))

∑
ŷ′,h exp(

∑
j θjfj(ŷ′, h)) exp(

∑
k θkfk(xk, h))

.

Figure 2 depicts the difference between our models with and
without the hidden label. The model is trained using the



noisy input ŷ, and in training it can, in essence, choose to
“relabel” examples. In this way, the model can correct the
errors from the noisy labeling during training by assigning
what it believes to be the correct label h. This process can
be seen as a form of semi-supervised clustering, where the
true negatives and false positives are clustered together as
are the true positives and false negatives. When we use this
model for extraction, we thus integrate out the variable for
the noisy label and use the prediction for the hidden variable
h.

It is important to note that exp(
∑

j θjfj(ŷ, h)) is a po-

tential function that is constant across all examples, and en-
codes the noise model. For example, the potential encodes
the compatibility that an example whose value is ŷ = 1 cor-
responds to the true label h = 1 (Table 1).

true (hidden) label
h = 0 h = 1

y = 0 true negative false negatives

y= 1 false positives true positives

Table 1: Each table entry corresponds to feature functions
fj(ŷ, h) for the hidden variable-label potential which en-
codes the noise model, e.g. the ratio of false positives to
true positives. Later, we shall give example values for θjs
corresponding to each entry in the table.

As the experimental results below demonstrate, this can
be a very effective method for noise reduction when the neg-
ative and positive examples are cleanly separated. In this
case, the model will be able, in training, to identify exam-
ples which have been incorrectly labeled, correct these la-
bels, and train a more precise model.

Parameter Estimation for Hidden Variable Models

Training models with hidden variables is more complicated
than training a fully supervised model. (Salakhutdinov,
Roweis, & Ghahramani 2003) propose the use of an ex-
pected gradient method, where:

∇ℓ(θ; D) =
∑

d

∂
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=
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d
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h
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∑
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−
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p(h, y|x(d))F (x(d), y, h),

where F is the vector of all features. In the final form,
the first term corresponds to the model’s feature expectation
over the hidden variable h given the observed label y, and
the second term is the model’s expectation over the hidden
variables h and y. While models of this form are convex in
the parameters, with hidden labels they become non-convex
and optimization isn’t guaranteed to find the global optimum
on each run.

Event Location from Web Text

For many desirable fact extraction tasks, exhaustive anno-
tation is often unavailable, for example for the “born-in”
relationship. One alternative mode of generating labeled
data is to write down example relations (e.g. born-in(“Andy
Warhol”, “Pittsburgh”)), which consist of a subject (“Andy
Warhol”) and a target (“Pittsburgh”). Next, two types of sen-
tences are selected: sentences which contain both the sub-
ject and target and sentences which contain the subject and
any other location. The former become positive training in-
stances, and the later become negative training instances.

We automatically identify locations by named entity
recognition. Named entity recognition is a well known tech-
nique in the Natural Language Processing (NLP) commu-
nity for identifying members of open classes of nouns, such
as people, organizations, or locations. In this paper, we use
the OpenNLP toolkit (Baldridge, Morton, & Bierner 2002),
which is an open source system for named-entity tagging
that relies on a sequence level maximum entropy based clas-
sification model.

Given this set up, it is straight-forward to build a classi-
fier p(ŷ|x) to predict whether a given sentence x contains
the relation or not. For a new sentence, with a subject and
target indicated, you could then use the classifier to predict
whether or not that pair has the relation of interest. This
method works reasonably well.

However, this is a noisy method for collecting data.
In particular, false positives are common and undetected.
For example, there might be many sentences about “Andy
Warhol” which also contain “Pittsburgh”, but which don’t
say that he was born there (e.g. for the dedication of the
Andy Warhol museum in Pittsburgh). Manual annotation
of which sentences actually contain the relation of inter-
est is prohibitively time consuming, and so previous train-
ing methods have simply ignored false positives in training
and relied on future stages to compensate for low precision.
However, this type of training has two key properties.

• The false positives closely resemble the true negatives.
Mentions of a target by chance with a subject should ap-
pear to be mostly like mentions of anything of that type
with the subject.1

• There are very few false negatives. The violations here
will come from times when the database is deficient or
the text is wrong.

To directly address training with false positives, we use
the hidden variable model proposed above. In this con-
text, the model admits an appealing generative interpreta-
tion: first we decide whether the sentence contains the de-
sired relation and then we decide whether or not the relation-
ship is true without regards for that particular sentence.

Given a set of labeled data D = 〈d(1)..d(n)〉, where each

instance d is marked with a label ŷ(d) and a set of features
x(d), we can then learn the model

∑
h p(ŷ|h)p(h|x). This

1This assumption may be violated in certain cases, where for
example, someone is more likely to be buried where they were
born.



model should have a sharper distribution over true posi-
tives, p(ŷ = 1|h = 1)p(h = 1|x), then the simple model
would for p(ŷ = 1|x), since it can separately model false
positives, p(ŷ = 1|h = 0)p(h = 0|x). Ideally, the learned
distribution over h will yield a ”clustering” on the inputs
x, guided by the noisy labels ŷ. These clusters should ex-
actly discover that {h = 0} when the relationship doesn’t
occur and {h = 1} when the relationship does occur, since
{h = 0} cases will resemble each other, no matter what the
value of ŷ is.

This model could be trained to estimate the label-hidden
variable potentials.Alternatively, given the properties dis-
cussed above, we could construct a probability table ex-
pressing our relative confidences about possible outcomes
and give it directly to the model, and have the model only
learn p(h|x). An example distribution for p(ŷ|h) is shown
in Table 2

p(ŷ|h)
h = 0 h = 1

ŷ = 0 .99 .01
ŷ = 1 .6 .4

Table 2: Noise Model for Fact Extraction Training

This noise model encodes the notion that false negatives
are relatively uncommon p(ŷ = 0|h = 1) = .01, while
false positives are relatively common p(ŷ = 1|h = 0) = .6,
in fact false positives are more common than true positives.
We convert this noise distribution into a corresponding un-
normalized hidden variable-label potential and hold it fixed
in the model for the following experiments.

Experimental Results

In order to evaluate the above model, we selected the rela-
tion “born-in”, and found a database of these facts on line
for a set of celebrities. We then issued a query to Google for
the celebrity’s name, and downloaded the top 150 web pages
for these celebrities. We then applied the named-entity rec-
ognizer described above and selected sentences which con-
tained the celebrity’s name and a location. For each lo-
cation, we created a separate data instance, and marked it
with ŷ = {0, 1}, if it exactly matched the key given in the
database. This constituted a noisy labeling of all of the sen-
tences.

For each data instance, we generated a set of features:

• The words in between the subject of the caption and the
candidate location.

• A window of 1 around the subject and location.

• The numbers of words between the subject of the caption
and the location.

• Whether or not another location appears interspersed be-
tween the subject and the location.

• If the subject and location are less than 4 words apart, the
exact sequence of words between the subject and location.

• The word prior to the target.

NB MaxEnt GModel-1 GModel-2
Accuracy .944 .930 (.005) .937 (.004) .944 (.005)
Precision .500 .254 (.032) .337 (.046) .503 (.144)
Recall .085 .272 (.028) .297 (.072) .291 (.045)
F1 .145 .260 (.011) .311 (.053) .365 (.070)

Table 3: The hidden variable model with fixed label-hidden po-
tentials (GModel-2) has double the precision of the MaxEnt model,
demonstrating a significant noise reduction.

We then sampled some of these sentences and assigned
labels h = {0, 1}, indicating whether or not the sentence
actually contained the relation of interest (e.g. “born”) or
not. We used a strict decision method, only marking h =
1 when the sentence unambiguously stated that the person
in question was born in the marked location. These were
used only for evaluation and are the goal of discovery for
the model.

Next we applied a naı̈ve Bayes model, a maximum
entropy model p(ŷ|x) and the hidden variable model∑

h p(ŷ, h|x) to these sentences. We evaluated the system
with regards to precision, recall, and F1 on the cases where
{h = 1}. Since the goal is to use these extracted locations
for augmenting a geo-spatial interface, the only relevant en-
tities are the cases where the sentence actually mentions the
location fact of interest.

Table 3 summarizes our Accuracy, Precision, Recall and
F1 measures for extracting facts using a naı̈ve Bayes model,
a multinomial logistic regression model (MaxEnt), a hid-
den variable model with free label-hidden variable poten-
tials (GModel-1) and fixed label-hidden variable potentials
(GModel-2). While the naı̈ve Bayes model has a high ac-
curacy, its performance on the desired relations is the worst
among the classifiers. GModel-1 is able to make some im-
provements over the maximum entropy model, the prior
knowledge of the label-hidden variable potentials used for
GModel-2 clearly helps. GModel-2 easily beats the maxi-
mum entropy model trained without a hidden label, and in
the way that was expected, improved precision. This sug-
gests that the model is able to pick out the false positives
and model the true positives with a sharper distribution.

When comparing MaxEnt with GModel-2 we observe that
precision is doubled, .254 for MaxEnt and .503 for GModel-
2. While this level of precision may be low for direct use,
the results of this type of extraction step are typically used
as the input to a subsequent fusion step. For example, since
we know that people only have one birth location we can
pick the most confident location using a variety of means
(Mann & Yarowsky 2005). More sophisticated scenarios
can be thought of as re-ranking extracted facts based on their
consistency with a probabilistic database. Both of these ap-
proaches would directly improve precision.

Table 4 and Table 5 show the highest weighted features
for the associated hidden variable classes. The true posi-
tive class clearly has some very good word features (”born,
birthplace”), and the false positive and true negative class
also has some very good features (”nude”). Along with these
good features are some odd features (e.g. ”Theater”): this is
a consequence of noisy web data.



Feature h=1 Value w
BEFORE , 2.5
BEFORE Theatre 2.4
INTER February 2.3

BEFORE : 2.3
INTER View 2.1
INTER NY 2.0
INTER Born 1.9
INTER Birthplace 1.9
INTER 2005 1.7
INTER 1949 1.7
INTER born 1.6

Table 4: The highest weight, w features for the cluster for hidden
variable state 1. INTER features are words between the subject
and target. BEFORE features come before the subject. DIST-1
indicates that the words are right next to each other. INTC indicates
that another phrase of the target type is between the subject and
target, while NO INTC indicates the opposite.

Feature h=0 Value w
INTER Billy 2.8
INTER $ 2.6
INTER . 2.0
INTER Angelas 1.9
INTER - 1.8
INTER Los 1.7
INTER US 1.7

NO INTC location 1.4
INTER Nude 1.5
INTC to 1.36

DIST-1 1.3

Table 5: The highest weight, w features for the cluster with hidden
variable state 0.

Integrating Facts with Maps

The techniques we have presented here enable our final goal
of associating a large number of facts extracted from the web
with a map based interface. However, there are a number of
ambiguities that may remain when processing natural lan-
guage and extracting place names. For example, if the term
”Springfield” is given in an annotation it is difficult to know
if this refers to Springfield MA or NY, or OH, etc.

Accordingly, we have constructed a database of geo-
referenced Wikipedia content through semi-automated in-
formation extraction techniques. We have also integrated a
database of place names and GPS coordinates for locations
in the United States of America. Using this information
we can automatically associate plain text names with geo-
graphic locations. Subsequently, when names are mentioned
in text we can leverage this information to automatically as-
sociated unstructured text annotations with numerical GPS
coordinates. It is then possible to leverage our database of
geographic locations and their attributes with statistical tech-
niques such as those proposed in (Smith & Mann 2003) to
resolve further ambiguity.

Related Work

Supervised semantic information extraction has been ex-
plored for a long time. (Chieu & Ng 2002) presents a maxi-
mum entropy model similar to what has been presented here
for semantic information extraction. Unlike the models here,
the model is trained on fully supervised data which has been
manually annotated as to whether the sentence contains the
relation or not, and does not have to contend with false posi-
tives in training. Given fully supervised training, these mod-
els can achieve high performance. However, fully super-
vised training is unlikely for the vast numbers of different
types of events and relations of interest to potential users,
and semi-supervised methods appear to be a crucial step in
brining semantic information extraction to the masses.

The most closely related work is prior work in minimally
supervised fact extraction. Models like (Agichtein & Gra-
vano 2000; Ravichandran & Hovy 2002) use ensembles of
weak classifiers, where each classifier has one feature which
corresponds to a phrase. (Mann & Yarowsky 2005) demon-
strated that these weak classifier models have lower recall
and precision than the baseline methods presented in this
paper (naı̈ve Bayes and maximum entropy models). (Et-
zioni et al. 2004) proposes an alternative source of minimal
supervision which contains instead of an example relation-
ship, an example pattern which can extract that relationship,
with some minor changes, the model presented here could
be used in this minimal supervision context as well.

Somewhat more distantly related, (Hasegawa, Sekine, &
Grishman 2004) presents early work on unsupervised se-
mantic information extraction. The methods are typically
more transductive than inductive, opertaing as unsupervised
clustering as opposed to unsupervised classification.

Finally, (Lawrence & Scholkopf 2001) explores a related
model for handling noisy training labels. There are a num-
ber of differences between his model and the one presented
here, perhaps the greatest of them are the model he presents
is a generative model and is applied to modeling gaussian
process noise, as opposed to textual data. It is the analogue
of the naı̈ve Bayes model discussed above, which performs
significantly worse than the maximum entropy model.

Conclusion and Discussion

This paper presents a novel discriminative hidden variable
model. The model uses the given label as noisy training
data, and learns a discriminative classifier for a hidden vari-
able. In evaluation, the model estimates the hidden variable
exclusively in order to classify new data instances.

We evaluate the model in the context of geospatial fact ex-
traction, where the goal is to extract facts which can be ac-
curately integrated into a geospatial interface. In evaluation,
the model achieves double the precision of a similarly state-
of-the-art model trained without the hidden variable while
retaining the same level of recall. This improved precision
reduces the noise presented to the user in the geospatial in-
terface.
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