TR-115

USeg: A Retargetable Word Segmentation
Procedure for Information Retrieval

Jay M. Ponte and W. Bruce Croft

Computer Science Department
Ambherst, MA 01003-4610, USA

Abstract

Many languages, such as Chinese, are
written without interword delimiters. For
these languages, a segmenter is required as
a pre-processing step for information re-
trieval systems. We describe USeg, a plat-
form for word segmentation designed to ful-
fill the requirments imposed by the informa-
tion retrieval task. USeg is based on an
underlying probabalistic automaton which
serves as a simple language model. A de-
scription of the proposed model(s), imple-
menlation issues for these models and ez-
perimental results are presented. The ez-,
periments show that a fairly simple under-
lying model can produce reasonable segmen-
tation results, can do so quickly enough to
be useful for indezing in an information re-
trieval system and can be re-targeted to new
languages without a great deal of human ef-
fort.

1 Introduction

The word segmentation problem consists of
finding the word boundaries in text where they
are not marked (by whitespace for example).
Many languages such as Chinese and Japanese
are written this way and often a sequence of
characters can be grouped in several ways, mak-
ing segmentation a non-trivial problem. Figure
1 shows an example of Chinese segmentation.
The three characters individually mean “lower”,
“middle” and “country”.

The segmentation on the left, meaning
“lower-middle country” is probably not as good

Figure 1: An Example of Chinese Seg-
mentation.

as the one on the right, which cooresponds to
“lower China” .

USeg was designed to work in the context
of the INQUERY information retrieval system
[3) . In order for it to be a useful tool it needs
to satisfy the following requirements:

* Retargetability - The INQUERY system
is designed to be retargetable to different
languages. The segmenter must also be
retargetable to different languages with
minimal effort and without the need for
expensive resources such as large amounts
of hand segmented text. The original
segmenter was written for Chinese and
then was retargeted to Japanese and also
to (corrupted) English text to test retar-
getability of the module.

e Speed - INQUERY'’s indexing procedure
works at a rate of hundreds of megabytes

per hour. A segmenter that cannot run at
similar speeds is not useful.

e Accuracy - Clearly the segmenter should
be as accurate as possible, but experi-
ments need to be done to determine the
exact effects of segmenter accuracy on re-
trieval. For retrieval purposes, it remains
to be seen whether certain types of errors
are more tolerable than others or whether
absolute accuracy is the quantity to max-
imize,

This paper contains some preliminary re-
sults comparing USeg’s Chinese output to hand
segmented Chinese text and some results using
English text. A second measure of performance
would be a comparison of USeg to other seg-
menters in the context of information retrieval
by measuring the retrieval effectiveness using
the standard metrics of recall and precision.
This is left for future work.

In order to fulfill the above requirements,
the underlying model for USeg is a probabilis-
tic automaton. This approach is easily retar-
getable compared, for example, to a language
specific rule based system. In addition, a good
implementation of this model can satisfy the
speed requirements. Finally, the parameters of
the model can be adjusted from training data in
order to improve accuracy. Two different types
of probabilistic automata were used for the un-
derlying model. The first is a simple word based
model suggested by Barnett (9] and the second
is a word bigram model which can be thought of
as a Markov model [1]. The resources required
to build a segmenter for a new language are a
lexicon and some unsegmented text for train-
ing. Some experiments that did not require a
lexicon were also performed.

2 Previous Work

For an overview of Chinese segmentation for in-
formation retricval see [4). Sproat et al 8] de-
scribe a Chinese word segmentation algorithm
based on probabilistic automata. Their ap-
proach includes special recognizers for Chinese
names and transliterated foreign names and a
component for morphologically derived words.
Our approach is to develop the above compo-
nents as post processors to the segmenter. This
leaves the segmenter as a more general module

and allows it to be used alone when such recog-
nizers are not needed.

Barnett [9] uses a word based model for
segmenting Japanese. The model contains
word frequencies and the input is segmented
by adding up the frequencies of possible words
and then subtracting out a per word cost. Ad-
ditional complexity arises from the inflectional
endings. In order to consider a candidate word,
morphological processing is done to find every
possible grouping of characters that form valid
words. This complication does not arise in Chi-
nese to the same degree.

Chang et al [6] describe a method of Chi-
nese lexical acquisition using a small seed cor-
pus, a word based segmenter, and a two class
classifier for words. N-grams of size 2, 3, and
4, were used as candidates in the initial lexi-
con. The word probabilities were updated by
training the word based segmenter on a small
segmented seed corpus. The two class classi-
fier used n-gram frequency, mutual information
and left and right entropy as features in a lin-
ear function. The weights for each feature were
trained on the seed corpus.

A Chinese segmenter was developed at New
Mexico State University (NMSU) as part of the
“Norm” project [10]. For each character in the
input string, a list of candidate words is con-
sidered. The words are compared to the in-
put string and the ones that match are aligned
to determine the segmentation. This segmenter
was used to produce a file which was then hand
corrected and used as a test file in the experi-
ments for this paper. A side by side comparison
of this segmenter with USeg was also done for
both speed and accuracy.

3 Models for Segmentation

As mentioned earlier, experiments were done
using two different underlying models which
can be characterized as word based and bigram
based. Both models use dynamic programming
but they maximize different functions. The two
models are now presented in more detail.

USeg: A Retargetable Word Segmentation Procedure for Information Retrieval

4 The Word Based Model

4.1 Initialization

The word based model is initialized by build-
ing a suffix tree of words in the lexicon. A root
node is associated with each word initial char-
acter. All suffixes (in the string-matching sense,
not the linguistic sense) are represented as sub-
trees. For example, given a trivial lexicon con-
sisting of three words, “A”, “AB" and “B”, A
three node graph will be built as in figure 2.

1 2

Figure 2: A simple suffix tree.

Node 1 is a root node for the character “A”,
an accept state for the single character word
“A”, and has node 2, the accept state for “AB”,
as a one node sub-tree. Node 3 is the start and
accept state for the word “B”. Notice that each
node encodes the entire sub-string of the current
word. Structures of this type can be used to
perform string matching on a large number of
strings at once.

Each word in the lexicon is assigned a
probability estimate based on a longest match
(greedy) segmentation of the training text. The
result is a very simple language model expressed
as a probabilistic automaton.

4.2 Training and Segmenting

Once the model has been initialized, the param-
eter estimates can be refined. As mentioned,

Jay M. Ponte and W. Bruce Croft

the initial estimates are obtained by doing a
greedy segmentation of the training data. A
single pass is made over the training data and
the longest match is used for segmentation. The
words are counted along the way to obtain the
initial probability estimates.

Using the simple example from above and
the following string as the single training se-
quence, “ABABAABB”, initial probabilities
can be estimated as follows. The training se-
quence is ambiguous with respect to the model
but the longest match segmentation is the state
sequence 12121123 corresponding to a segmen-
tation that looks like this: “AB AB A AB B".
From this segmentation, the words “A”, “AB”
and “B”, will be assigned estimated probabili-
ties of 0.2, 0.6 and 0.2 respectively.

The initial model can then be used to seg-
ment the training data via dynamic program-
ming. Again, a single pass is made over the
data, but this time two tables are filled in.
The first table will contain the probabilities of
each possible segmentation. When there is more
than one path leading to a node the one with
the highest probability is used. The second ta-
ble contains the predecessor of each node used
to fill in the probability table. When the end of
the sequence has been reached, this table is used
to backtrack over the states in order to get the
best path through the model. When the text
has been segmented in this fashion, the prob-
ability estimates can be updated by keeping a
count variable for each word in the rexicon.

5 The Bigram Model

5.1 Initialization

The bigram model is slightly more complex. A
state graph is built with a sequence of nodes for
each word in the lexicon, one node per charac-
ter. Next, a single pass is made over the train-
ing data to obtain initial probability estimates.
There are two sets of probabilities to be esti-
mated. The initial state distribution is esti-
mated by counting the number of times each
word starts a sequence. In the case of am-
biguities, every word that could be completed
is given credit. Then, each possible path is
taken through the graph and possible interword
edges are added/updated as they are encoun-
tered. The resulting model has estimates for

the first word in each sequence and estimates
for the conditional probabilities of seeing word
n+1 given that word n was just seen. Note that
the “initial” model is already “trained” in that
non-occurring edges are never added and the
initial estimates are obtained from the training
data.

5.2 Training and Segmenting

The algorithms for training the bigram model
and segmenting with it are similar. For ease of
discussion, they are presented in reverse order,
segmenting first followed by training.

Given the automaton representing word bi-
grams, segmenting some free text means finding
the best path through the model. The Viterbi
algorithm accomplishes this {1}. In order to un-
cover the maximum likelihood state sequence
for a given output sequence, all possible paths
through the model must be considered along
with their probabilities. Clearly, the number
of paths is exponential in the length of the se-
quence. However, since the subsequences over-
lap, this problem lends itself to solution by dy-
namic programming. A table is filled in such
that at each time-step, the probability of a
given state will be the maximum of the prod-
uct of path probabilities from the previous step
and the transition probability from each of the
states at the (current) end of the paths. At the
same time a backtracking table can be filled in
to “remember” the path. The complexity of
this algorithm will then be linear in the length
of the input sequence and linear in the num-
ber of edges in the model or, in general, linear
in the square of the number of states. How-
ever, for this problem, the number of edges to
be considered at each time step is a function
of the current state and the next character so
the number of edges that actually need to be
considered is very small compared to the more
general case.

The model is trained using the Baum-Welch
algorithm, a special case of Expectation Maxi-
mization [1]. Like the Viterbi algorithm, it uses
dynamic programming. In this case, two tables
are filled in, one table of probabilities propa-
gated forward in time and a second set prop-
agated backward. Instead of using the maxi-
mum likelihood path, the sum of all paths is
computed at each step. So, where the Viterbi
algorithm calculates the probability of the max-

imum likelihood path for a sequence given the
model, the Baum-Welch algorithm calculates
the probability of the sequence (over all pos-
sible paths) given the model. Since this is done
in both directions, the two tables contain the
probabilities of getting to each point in the se-
quence and the probabilities of finishing the rest
of it for each state at each time-step. The edge
probabilities are updated incrementally based
on the probability of traversal until the model
converges to a local maximum [1].

6 Implementation Issues

6.1 Very Sparsely Populated Matri-
ces

The transition matrices are very sparsely popu-
lated since the model graphs are connected in a
very constrained fashion. In addition, the out-
puts for each state are limited, so at each time
step, there will be very few potential transitions.
The algorithms are implemented to take advan-
tage of these facts.

6.2 Suffix Tree Implemented as a
Hash Table

When each character is read, the only edges
that need to be considered are those that come
from the present node(s) and which go to a node
with the new character. Essentially, the struc-
ture needed for this task is a suffix tree. Each
node should have all of its edges available by
the character of the next node. However, the
alphabet size is large and there is considerable
variance in the number of edges out from each
node. Because of this, a single hash table is
used to look up edges by current node and next
character, effectively implementing a suffix tree
via hash lookups. For the Baum-Welch algo-
rithm, a second hash table of pointers hashed
by node and previous character is used for the
backward pass. The probability and backtrack-
ing tables will also be very sparsely populated,
so they are implemented as hash tables to con-
serve memory.

For the word based model, no interword
edges are explicitly represented. The model
graph is considered to be fully connected. Upon
reaching a word end, the start node of words be-
ginning with the next character will be added

USeg: A Rctargetable Word Segmentation Procedure for Information Retrieval

to the list of candidate nodes.

6.3 Sorting

When the potential edges for a step have been
found, they need to be sorted in order of the
second node (the ’to’ node) in order to calculate
the table entries. Since there are generally very
few edges (under ten), a simple in line shell sort
is used to avoid the overhead of a more compli-
cated sort.

6.4 Scaling

As mentioned in (1), there is a potential prob-
lem in the probability calculations. Since at
each step, numbers significantly less than one
are being multiplied together, the values will
approach zero at an exponential rate, quickly
exceeding the precision of the machine. There
are two methods of getting around this problem.
As mentioned, the calculations for the Viterbi
algorithm proceed in the following way. At each
time-step, the value for each possible node is
obtained by multiplying the probability of the
path of maximum value from the previous time-
step by the values of the edges into the node be-
ing calculated. Since there is no summing, this
calculation lends itself to logarithmic computa-

tion. Rather than using the edge probabilities, ,

the log probabilities are used, so that at each
step it is a simple matter of adding the loga-
rithms, This replaces floating point multiplies
with floating point adds and solves the problem
without doing any extra calculations.

The forward and backward calculations for
the Baum-Welch algorithm are a little differ-
ent. In this case, the sum of the probabilities
over all paths into a node is used. Since we
are summing, we will use a scaling factor rather
than using logarithmic computation. At each
time step, all of the values are increased by a
scaling factor which is calculated as the sum of
all of the values added at that time step. In the
re-estimation phase, these scaling factors will
cancel out yielding the correct results.

7 Experiments in Chinese

7.1 Available Text

Two large collections of unsegmented text were
available for training. The first set consisted of

Jay M. Ponte and W. Bruce Croft

8.6 MB of text from the “Xinhua” newswire.
The second set was 132 MB total, 105 MB of
which was made up of of Chinese characters.
This text was a superset of the first with the
additional text coming from the “People’s Daily
News”.

A third set, consisting of 61 KB of text seg-
mented using the NMSU segmenter and cor-
rected by hand, was used for testing. The out-
put file was compared to the hand corrected file
using the metrics of recall and precision. Recall
is measured to be the percentage of words in the
hand corrected file that were correctly identified
by the segmenter. Precision is the percentage of
words identified by the segmenter that occurred
in the hand corrected file (in the corresponding
position). These metrics provide a reasonable
indication of performance, however they do not
measure the quality of segmentation with re-
spect to retrieval performance nor do they ac-
count for the fact that even native speakers of
Chinese do not always agree on the correct seg-
mentation [8].

|_Segmenter Recall | Precison |
Word Based 87.80 | 84.40
Perfect Lexicon | 93.63 | 95.87
Bigram 86.77 | 80.64
NMSU 87.53 | 80.78

Table 1: Recall and precision results.

As mentioned earlier the models are initial-
ized from a Chinese lexicon. Two different Chi-
nese lexicons were tried. The first was the lex-
icon from the NMSU segmenter consisting of
42197 words [10]. This is a small to medium lex-
icon made up of common words, proper nouns
and idioms. The second consisted of all and
only the words that occurred in the test data.
This was done to measure the contribution of
the lexicon to performance since it is effectively
a perfect lexicon.

As shown in Table 1, the bigram segmenter
performs about as well as the NMSU segmenter.
The word based segmenter is approximately the
same in terms of recall and 3.6% better in terms
of precision. This result was little bit surpris-
ing at first since one would expect bigrams to
be a better language model. The short answer
to why the word model works better than the

bigram model is that the bigram model has too
many parameters to estimate from the avail-
able training data. The bigram model con-
tains 85,882 interword edges out of a possible
1.8 x 10°. One might expect that there would
be many important edges that did not occur
in the training data at all and that is exactly
what happened. Comparing the output of the
two models on the test data, there are 216 dif-
ferences. All of these differences are caused by
the same problem, the bigram model puts in a
break prematurely.

pigs)

ﬁ.
L

Figure 3: Example of an Error Made
by the Bigram Model.

In figure 3, the word model produced the
correct segmentation on top while the the bi-
gram model has broken these characters into
two words. The reason for the break is that the
bigram model does not have an edge from the
previous word into the start state of the cor-
rect word because no character sequence cor-
responding to that edge occurs in the training
data. As a result the bigram segmenter never
considers the correct word. One way around
this problem is to smooth the probability dis-
tribution using a small default weight for the
non-occuring edges. This has the effect of fully
connecting the bigram model. This workaround
fixes the problem in figure 3 and while the total
net result is slightly better than the original bi-
gram model, it still is not as good as the word
model. Since we are guessing at this point, the
weight of the non-occuring edges can also be
set randomly. The result, again, is somewhere
in between the original bigram model and the
word model. When there is no estimate for an
edge, we can guess and sometimes get lucky,
giving us better performance than setting the
non-occurring edges to zero. Any edge that
is not estimated reliably is a potential source
of errors for the bigram model and, with the

huge number of possible edges, this problem
outweighs the benefits we might expect from the
finer grained representation.

One way to obtain a better language model
without the huge number of parameters is to
place words into equivalence classes (part of
speech tags being the obvious choice), but the
performance of the word model using the ideal
lexicon suggests that this should not be the top
priority.

Even if a better model could be estimated
reliably, the lexicon was, by far, the most im-
portant factor. Using a near perfect lexicon con-
sisting of all and only the words that occurred
in the hand corrected test set, the recall goes up
to 93.63% and the precision to 95.87%. This is
clearly cheating and in a real application, such
a lexicon will certainly not be available. The
point of the experiment was to see if the segmen-
tation errors were due to the two major inherent
limitations of the model. The first limitation is
that the probability estimates are far from per-
fect. This is a much bigger problem with the
bigram model. The second is that these sim-
ple automata are not perfect language models.
The word model, in particular, is a very poor
way to model a natural language. The “perfect
lexicon” experiment shows that the limitations
of the models were not as critical as the limi-
tations of the lexicon. This suggests that auto-
matically acquiring a good lexicon for the word
based segmenter would be more important than
using a more complex model. An additional
reason to acquire the lexicon from the training
text is that many modern words, such as words
used for concepts in science and technology, are
very different in Chinese as spoken in Mainland
China and in Taiwan (7).

7.2 Automatic Lexical Acquisition
From Text

The lexical acquisition process was done in a
manner similar to [6). Statistics were collected
for n-grams of size 2, 3, and 4 since most Chi-
nese words are of those lengths. The frequency
of occurrence, mutual information and entropy
were the statistics used [6}.

Informally, an n-gram is assumed to be a
word if it:

¢ Occurs frequently

USeg: A Retargetable Word Segmentation Procedure for Information Retrieval

¢ Has a high degree of mutual information
- i.e. The characters occur together more
often than would be expected by chance.

¢ Has a high degree of entropy with its sur-
roundings - i.e. If the characters that sur-
round the n-gram tend to have a high de-
gree of randomness.

These three measures were combined in a
linear classifier function.

The results, 60.55% recall and 60.21% preci-
sion, show that the automatically acquired dic-
tionary does not seem to work as well as the
manually constructed one. Nevertheless, it is
encouraging since many of the selected n-grams
that were not words turned out to be either sub-
sequences of words or frequently occurring word
pairs {7]. While such non-words are not desir-
able for many natural language tasks, it is pos-
sible that they would work well for the purpose
of information retrieval since they have good
statistical properties.

7.3 Segmentation Speed

Timing figures were collected for USeg and
the NMSU segmenter for comparison purposes.
Both segmenters were run on a DEC AlphaSta-
tion 250 with no competing processes and with
the data on a local disk.

Segmenter | Time
USeg 42 sec.
NMSU 6 min. 46 sec.

Table 2: Timing figures for 8.6 MB
Xinhua collection.

As shown in table 2, USeg is faster than
the NMSU segmenter by an order of magnitude
on the 8.6 MB Xinhua collection. More im-
portantly, USeg operates at reasonable speeds
for indexing in an information retrieval environ-
ment. An additional timing run for USeg was
done on the larger 132 MB collection and the
result was 8 min. 16 sec., a linear increase in
exccution time with respect to collection size.

7.4 Error Analysis

Figure 4 shows some common errors. The top
segmentation in each example is from the hand-

Jay M. Ponte and W. Bruce Croft

corrected file and the bottom is from Useg.

a 48 b # ® B
4 A & B =
cC42ES d EBFR
2S¢ BEEFRH
e & R
B

Figure 4: Examples of segmentation
differences.

Figure 4-a is a simple problem, the top seg-
mentation is correct and means the month of
April. This is a trivial error to fix within the
segmenter and could also be handled as part of
a special purpose date recognizer. In figure 4-b,
the output from USeg is better than the “cor-
rect” version. The first two characters mean
“body” and “committee” respectively and to-
gether they refer to a specific organization, a
ministry of fitness. The last three characters
mean “assistant director” and can be segmented
either way. Figure 4-c is another win for USeg,
the three characters form a proper noun that
refers to a national sporting event. In figure 4-
d, the opposite happened, these four characters
together are a transliteration of “Barcelona.”
USeg failed to recognize this because it did
not occur in the lexicon. To correct this type
of error, a special recognizer for transliterated
foreign names could be used. Without such
a recognizer, this strategy of breaking up un-
segmentable sub-sequences is reasonable for re-
trieval purposes since it provides full coverage
of the data. The example in figure 4-e could
be segmented either way. The three characters
mean “total score.”

8 Preliminary Work in Japanese

Segmenting Japanese seems to be a harder
problem due to the inflectional endings. Verbs
and adjectives are given inflectional endings to
indicate their function in the sentence as com-
pared to an un-inflected language where much
of this information is deduced from the syn-
tax. The current Japanese version of INQUERY
uses the JUMAN morphological analyzer for
segmentation. JUMAN employs sophisticated
morphological analysis to handle the inflec-
tional endings [5]. In principle, the underlying
model of USeg is general enough to incorporate
morphological rules, but it would require con-
siderable human effort. Instead, our approach
was to use the lexical acquisition procedure
from the Chinese experiments. The procedure
was the same, but a larger window size was used
to account for the longer average word length
in Japanese. The resulting segmenter does not
produce a valid segmentation from a natural
language perspective, but it will segment text
into pseudo-words with good statistical proper-
ties. Our intention is to test the performance of
the segmenter for information retrieval purposes
by doing a set of experiments that compare
retrieval performance using INQUERY on the
Japanese Tipster data with USeg and with the
JUMAN segmenter. Due to time constraints,
this has been left for future work, however, it
seems that the model can be retargeted easily
enough. The proof will be in the retrieval per-
formance.

9 Experiments in English

Recently, the question was posed to us whether
similar segmentation methods could be used for
English text that had been corrupted with re-
spect to whitespace. This may also be useful
for automated transcription of Morse code or
a similar task. The results are interesting be-
cause they show the effects of a large amount of
segmented training data. For English, only the
word based model was used. The word proba-
bilities were estimated from 1 Gigabyte of data
from the Tipster collection [3]. The lexicon con-
sisted of 558,238 words obtained by “dumping”
INQUERY’s inverted index file. This produces
a list of all of the words in the collection along
with frequency information. The list was fil-

tered by throwing away any word that occurred
less than one hundred times. The probability
estimates for those that were left were calcu-
lated from the term frequency scores.

This lexicon is much larger than the lexi-
con used in the Chinese experiments, however,
the probability estimates are very good due to
the volume of data and the fact that it is cor-
rectly segmented. The segmenter was tested on
a 500 KB of text from the Wall Street Jour-
nal. Recall for this task was 93.56% and preci-
sion was 90.03%. Even though the lexicon was
very large, the availability of good probability
estimates allows the word based segmenter to
perform quite well.

the unit of New York-based Loews Corp that
makes Kent cigarettes stopped using crocidolite
in its Micronite cigarette filters in 1956.

theunitofNewYork-basedLoewsCorpthatmakesK
entcigarettesstoppedusingcracidoliteinitsMicron
itecigarettefiltersin1956.

the unit of New York-based Loews Corp that
makes Kent cigarettes stopped using c roc id o
lite inits Micron it e cigarette filters in 1956.

Figure 5: An example using English
text.

Figure 5 shows a sentence fragment from
the original text at the top, the same text with
whitespace removed in the center, and the same
text again, segmented with USeg, at the bottom
(linebreaks in center were inserted to make the
text fit). The words “crocidolite”, a form of
asbestos and “Micronite”, a type of cigarette
filter did not occur in the training text. The
non-word “inits” was present in the original text
as were many combinations of short words such
as “ofa” and “ofthe”. Most of these non-words
were removed in the filtering step. For example,
“ofa™ occurred 67 times and “ofthe” occurred
60 times while “inits” occurred 172 times and
so was not filtered out. The present cutoff value
of one hundred was chosen in an admittedly ad
hoc fashion for this experiment, but since ample
training data is available for this task, the cutoff
value could be set in a more principled manner

USeg: A Retargetable Word Segmentation Procedure for Information Retrieval

to optimize performance.

10 Conclusions and Future Work

The basic methodology and implementation of
USeg fulfill the requirements as a component of
an information retrieval system. The segmenter
runs at reasonable speeds for text indexing and
is retargetable with minimal effort. The accu-
racy of the Chinese version is comparable to a
competing segmenter.

The Chinese experiments showed that a
simpler word based model worked better than
a more complex bigram model. The major rea-
son for this is that the much larger parameter
space of the bigram model makes it difficult to
get reliable estimates even from a fairly large
training corpus. One way around this would be
to place the words into equivalence classes such
as part of speech in order to make use of a bet-
ter language model without the huge number of
parameters. However, the Chinese experiments
also showed that even more important than the
underlying language model is the lexicon. So
far, attempts to acquire a lexicon from unseg-
mented text have not yielded very good segmen-
tation results but it remains to be seen whether
this approach would be useful in the context of
information retrieval because non-words might
still be reasonable document features if they
have good statistical properties.

The preliminary Japanese experiments are
encouraging because of the ease of retargeting
the segmenter but not much more can be said
at this point. In the near future, when com-
parisons of the Japanese (and Chinese) seg-
menter(s) can be done in the context of re-
trieval, a good indicator of performance will be
available. The English experiments show that
if a large amount of segmented text is available,
a lexicon along with good parameter estimates
are easy to obtain and a simple segmentation
model can work quite well.

In the future, the effect of the segmenter on
retrieval performance needs to be investigated.
Depending on the results of those experiments,
some refinement of the lexical acquisition tech-
nique may need to be done. The next method
to try will be to start with a reasonable lexicon,
and analyze only the portions of text where the
segmenter fails.

Jay M. Ponte and W. Bruce Croft

Acknowledgments

Thanks to Hideo Fujii for supplying native
speaker intuitions for the Japanese experiment.
Thanks to Chengfeng Han for additional help
with Japanese. Special thanks to Jinxi Xu for
doing likewise for the Chinese experiments and
for his patience. Thanks to James Callan for
reviewing an early draft of this paper and for
many helpful discussions. Thanks to Jim Bar-
nett for his very valuable suggestions. Thanks
to Mike Crystal for providing the hand cor-
rected text. Finally, special thanks to the Chi-
nese text processing group at the New Mexico
State University Computing Research Lab for
the use of their segmenter.

References

[1] Rabiner, L.R. A Tutorial on Hidden
Markov Models and Selected Applications
in Speech Recognition. Proceedings of the
1EEE vol. 77, no. 2, Feb. 1989.

[2] King, S.F. Syntactic Pattern Recogni-
tion and Applications Prentice Hall, 1982

(3] Broglio, J., Callan, J. P., and Croft, W. B.
INQUERY System Overview Proceedings
of the TIPSTER Tezt Program (Phase
I) San Francisco, CA. Morgan Kaufman,
47-67.

(4] Wu, Z., Tseng, G. Chinese Text Segmenta-
tion for Text Retrieval Achievements and
Problems. JASIS, Oct, 1993.

[5] Matsumoto, Y., Kurokashi, S., Myoki, Y.,
User's Guide for the JUMAN System -
A User-Extensible Morphological Analyzer
for Japanese. Nagao Lab, Kyoto Univer-
sity, 1991.

[6] Chang, J.S. , Lin Y. C. and Su, K.
Y. Automatic Construction of a Chinese
Electronic Dictionary. Proceedings of the
Third Workshop on Very Large Cor-
pora June 1995.

[7) Xu, Jinxi. Personal Communication.

(8] Sproat, R. Shih, C., Gail, W. and Chang,
N. A Stochastic Finite State Word Segmen-
tation Algorithm for Chinese.

(9] Barnett, J. Personal Communication.

(10} Jin, Wanying. A Case Study: Chinese Seg-
mentation and its Disambiguation. NMSU
CRL Memo Number MCCS-92-237, 1992,

USeg: A Retargetable Word Segmentation Procedure for Information Retrieval

