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Abstract

Entropy regularization is a straightforward

and successful method of semi-supervised

learning that augments the traditional con-

ditional likelihood objective function with

an additional term that aims to minimize

the predicted label entropy on unlabeled

data. It has previously been demonstrated

to provide positive results in linear-chain

CRFs, but the published method for cal-

culating the entropy gradient requires sig-

nificantly more computation than super-

vised CRF training. This paper presents

a new derivation and dynamic program

for calculating the entropy gradient that

is significantly more efficient—having the

same asymptotic time complexity as su-

pervised CRF training. We also present

efficient generalizations of this method

for calculating the label entropy of all

sub-sequences, which is useful for active

learning, among other applications.

1 Introduction

Semi-supervised learning is of growing importance

in machine learning and NLP (Zhu, 2005). Condi-

tional random fields (CRFs) (Lafferty et al., 2001)

are an appealing target for semi-supervised learning

because they achieve state-of-the-art performance

across a broad spectrum of sequence labeling tasks,

and yet, like many other machine learning methods,

training them by supervised learning typically re-

quires large annotated data sets.

Entropy regularization (ER) is a method of semi-

supervised learning first proposed for classification

tasks (Grandvalet and Bengio, 2004). In addition to

maximizing conditional likelihood of the available

labels, ER also aims to minimize the entropy of the

predicted label distribution on unlabeled data. By in-

sisting on peaked, confident predictions, ER guides

the decision boundary away from dense regions of

input space. It is simple and compelling—no pre-

clustering, no “auxiliary functions,” tuning of only

one meta-parameter and it is discriminative.

Jiao et al. (2006) apply this method to linear-

chain CRFs and demonstrate encouraging accuracy

improvements on a gene-name-tagging task. How-

ever, the method they present for calculating the

gradient of the entropy takes substantially greater

time than the traditional supervised-only gradient.

Whereas supervised training requires only classic

forward/backward, taking time O(ns2) (sequence

length times the square of the number of labels),

their training method takes O(n2s3)—a factor of

O(ns) more. This greatly reduces the practicality

of using large amounts of unlabeled data, which is

exactly the desired use-case.

This paper presents a new, more efficient entropy

gradient derivation and dynamic program that has

the same asymptotic time complexity as the gradient

for traditional CRF training, O(ns2). In order to de-

scribe this calculation, the paper introduces the con-

cept of subsequence constrained entropy—the en-

tropy of a CRF for an observed data sequence when

part of the label sequence is fixed. These meth-

ods will allow training on larger unannotated data

set sizes than previously possible and support active



learning.

2 Semi-Supervised CRF Training

Lafferty et al. (2001) present linear-chain CRFs, a

discriminative probabilistic model over observation

sequences x and label sequences Y = 〈Y1..Yn〉,
where |x| = |Y | = n, and each label Yi has s differ-

ent possible discrete values. For a linear-chain CRF

of Markov order one:

pθ(Y |x) =
1

Z(x)
exp

(

∑

k

θkFk(x, Y )

)

,

where Fk(x, Y ) =
∑

i fk(x, Yi, Yi+1, i),
and the partition function Z(x) =
∑

Y exp(
∑

k θkFk(x, Y )). Given training

data D = 〈d1..dn〉, the model is trained by

maximizing the log-likelihood of the data

L(θ;D) =
∑

d log pθ(Y
(d)|x(d)) by gradient

methods (e.g. Limited Memory BFGS), where the

gradient of the likelihood is:

∂

∂θk

L(θ;D) =
∑

d

Fk(x
(d), Y (d))

−
∑

d

∑

Y

pθ(Y |x(d))Fk(x
(d), Y ).

The second term (the expected counts of the features

given the model) can be computed in a tractable

amount of time, since according to the Markov as-

sumption, the feature expectations can be rewritten:
∑

Y

pθ(Y |x)Fk(x, Y ) =

∑

i

∑

Yi,Yi+1

pθ(Yi, Yi+1|x)fk(x, Yi, Yi+1).

A dynamic program (the forward/backward algo-

rithm) then computes in time O(ns2) all the needed

probabilities pθ(Yi, Yi+1), where n is the sequence

length, and s is the number of labels.

For semi-supervised training by entropy regular-

ization, we change the objective function by adding

the negative entropy of the unannotated data U =
〈u1..un〉. (Here Gaussian prior is also shown.)

L(θ;D,U) =
∑

n

log pθ(Y
(d)|x(d)) −

∑

k

θk

2σ2

+ λ
∑

u

pθ(Y
(u)|x(u)) log pθ(Y

(u)|x(u)).

This negative entropy term increases as the decision

boundary is moved into sparsely-populated regions

of input space.

3 An Efficient Form of the Entropy

Gradient

In order to maximize the above objective function,

the gradient for the entropy term must be computed.

Jiao et al. (2006) perform this computation by:

∂

∂θ
− H(Y |x) = covpθ(Y |x)[F (x, Y )]θ,

where

covpθ(Y |x)[Fj(x, Y ), Fk(x, Y )] =

Epθ(Y |x)[Fj(x, Y ), Fk(x, Y )]

− Epθ(Y |x)[Fj(x, Y )]Epθ(Y |x)[Fk(x, Y )].

While the second term of the covariance is easy

to compute, the first term requires calculation of

quadratic feature expectations. The algorithm they

propose to compute this term is O(n2s3) as it re-

quires an extra nested loop in forward/backward.
However, the above form of the gradient is not

the only possibility. We present here an alternative
derivation of the gradient:

∂

∂θk

− H(Y |x) =
∂

∂θk

X

Y

pθ(Y |x) log pθ(Y |x)

=
X

Y

„

∂

∂θk

pθ(Y |x)

«

log pθ(Y |x)

+ pθ(Y |x)

„

∂

∂θk

log pθ(Y |x)

«

=
X

Y

pθ(Y |x)

 

Fk(x, Y ) −
X

Y ′

pθ(Y
′|x)Fk(x, Y

′)

!

log pθ(Y |x)

+
X

Y

pθ(Y |x)

 

Fk(x, Y ) −
X

Y ′

pθ(Y
′|x)Fk(x, Y

′)

!

.

Since
∑

Y pθ(Y |x)
∑

Y ′ pθ(Y
′|X)Fk(x, Y ′) =

∑

Y ′ pθ(Y
′|X)Fk(x, Y ′), the second summand can-

cels, leaving:

∂

∂θ
−H(Y |x) =

X

Y

pθ(Y |x) log pθ(Y |x)Fk(x, Y )

−

 

X

Y

pθ(Y |x) log pθ(Y |x)

! 

X

Y ′

pθ(Y
′|x)Fk(x, Y

′)

!

.

Like the gradient obtained by Jiao et al. (2006),

there are two terms, and the second is easily com-

putable given the feature expectations obtained by





calculate the lattices for Hα and Hβ . To calculate

the gradient requires one final iteration over all label

pairs at each position, which is again time O(ns2),
but no greater, as forward/backward and the en-

tropy calculations need only to be done once. The

complete asymptotic computational cost of calcu-

lating the entropy gradient is O(ns2), which is the

same time as supervised training, and a factor of

O(ns) faster than the method proposed by Jiao et

al. (2006).

Wall clock timing experiments show that this

method takes approximately 1.5 times as long as

traditional supervised training—less than the con-

stant factors would suggest.1 In practice, since the

three extra dynamic programs do not require re-

calculation of the dot-product between parameters

and input features (typically the most expensive part

of inference), they are significantly faster than cal-

culating the original forward/backward lattice.

5 Confidence Estimation

In addition to its merits for computing the entropy

gradient, subsequence constrained entropy has other

uses, including confidence estimation. Kim et al.

(2006) propose using entropy as a confidence esti-

mator in active learning in CRFs, where examples

with the most uncertainty are selected for presenta-

tion to humans labelers. In practice, they approxi-

mate the entropy of the labels given the N-best la-

bels. Not only could our method quickly and ex-

actly compute the true entropy, but it could also be

used to find the subsequence that has the highest un-

certainty, which could further reduce the additional

human tagging effort.

6 Related Work

Hernando et al. (2005) present a dynamic program

for calculating the entropy of a HMM, which has

some loose similarities to the forward pass of the

algorithm proposed in this paper. Notably, our algo-

rithm allows for efficient calculation of entropy for

any label subsequence.

Semi-supervised learning has been used in many

models, predominantly for classification, as opposed

to structured output models like CRFs. Zhu (2005)

1Reporting experimental results with accuracy is unneces-
sary since we duplicate the training method of Jiao et al. (2006).

provides a comprehensive survey of popular semi-

supervised learning techniques.

7 Conclusion

This paper presents two algorithmic advances. First,

it introduces an efficient method for calculating

subsequence constrained entropies in linear-chain

CRFs, (useful for active learning). Second, it

demonstrates how these subsequence constrained

entropies can be used to efficiently calculate the

gradient of the CRF entropy in time O(ns2)—
the same asymptotic time complexity as the for-

ward/backward algorithm, and a O(ns) improve-

ment over previous algorithms—enabling the prac-

tical application of CRF entropy regularization to

large unlabeled data sets.
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