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Abstract

This paper introduces the multinomial model of text
classification and retrieval. One important feature of
the model is that the ¢f statistic, which usually ap-
pears in probabilistic IR models as a heuristic, is an
integral part of the model. Another is that the vari-
able length of documents is accounted for, without
either making a uniform length assumption or using
length normalization. The multinomial model em-
ploys independence assumptions which are similar
to assumptions made in previous probabilistic mod-
els, particularly the binary independence model and
the 2-Poisson model. The use of simulation to study
the model is described. Performance of the model is
evaluated on the TREC-3 routing task. Results are
compared with the binary independence model and
with the simulation studies.

1 Introduction

Probabilistic models of information retrieval have
usually focused on binary features, such as the pres-
ence or absence of an index term in a document.
They have had limited success at directly incorpo-
rating the number of occurrences of a term, although
the tf statistic has long been recognized as a very im-
portant component of practical retrieval functions.
In fact, tf.idf weights are perhaps the biggest suc-
cess story in IR. The theory developed here takes a
different point of departure from most previous ap-
proaches, namely, the process by which text is gener-
ated. Otherwise, the development is similar to that
of most other probabilistic models. The discriminant
function for the model and its derivation turn out to
be relatively simple.

We begin by assuming that text is generated by
a stochastic process. A source outputs a sequence
of symbols, conceptually infinite, which for our pur-
poses are words. A document is a sample, that is,
a particular sequence, taken from some source. The
statistical properties of documents are therefore de-
termined by the nature of the stochastic processes
which generated them. Furthermore, a class of doc-
uments is considered to be generated by a single
source. Discrimination between document classes is
based on computing the probability that a document
was generated by a particular source.

By specifying different kinds of stochastic pro-
cesses, this framework gives rise to a family of mod-
els. The simplest process is the discrete memoryless
source, which leads to the multinomial model. A
discrete memoryless source generates symbols with
fixed probability; that is, the probability that the
next word generated will be a particular term de-
pends only on the term, and is independent of any-
thing that was generated previously. An example of
a more complex process is a Markov chain in which
each term is conditionally dependent on the previous
n terms generated, for some fixed window size. The
“upgrade path” for the multinomial model thus in-
volves relaxing the independence assumptions which
have always been an issue in probabilistic IR. We
hope in this way to incorporate the notion of condi-
tional dependence on context into our models. Also,
giving the source a limited memory will allow us to
work with compound features such as phrases. The
utility and feasibility of models based on more com-
plex stochastic processes will depend on their math-
ematical tractability, as well as the feasibility of es-
timating parameters for them.

The multinomial model is thus a first-order model,



which makes the simplest possible assumptions. In
this respect, it is comparable to the binary indepen-
dence model [5].

2 The Multinomial Model

2.1 Text Generation

Formally, we begin with a finite lexicon £, each el-
ement of which is a term. Following the common
practice in IR, we consider words to be the basic
units of text, ignoring punctuation, etc. Two docu-
ments consisting of the same sequence of terms are
considered identical.

A discrete memoryless source S emits a sequence
of elements of £ according to a probability distribu-
tion {@;}. A source is completely specified by a lex-
icon and a distribution. Each term #; in the lexicon
has a fixed probability «; of being generated at each
time step. Thus {a;} is subject to the constraint
> ;o; = 1. This process is the same as repeatedly
rolling a die with | £ | faces, where «; is the proba-
bility that the die will come up indicating term ¢;.

A discrete memoryless source can also be thought
of as a collection of Poisson processes. A stochastic
process consisting of a separate Poisson process for
each term ¢; in the lexicon, each with Poisson rate «;,
is equivalent to the discrete memoryless source de-
scribed above. To see this, suppose that each Poisson
process emits words at real-valued times, and sup-
pose we order all the words emitted by their times of
emission. The resulting sequence is equivalent to the
output of a discrete memoryless source. The proba-
bility that any particular term in the output is ¢; is
its Poisson rate, and each token is independent of its
predecessors. The present theory is thus related to
the 2-Poisson model [1], a model of term distribution
in which the #f statistic plays an important role.

For any class of documents C, we posit a source
S, which generates that class. For example, in an
IR application, we would say that the relevant set is
a sample of documents taken from one source, and
the rest of the collection is a sample taken from an-
other. A given document could have been gener-
ated by many different sources; but it is much more
likely to have been generated by some than by oth-
ers. Sources are thus an abstraction used to encode
the statistical properties of a document class.

We don’t require that all documents generated by
S are in C, nor that documents in C' can only be
generated by §. Nor do we require S to be memo-
ryless; it could be a more complex process. S itself
is in general inaccessible, and the primary informa-
tion we have about it is obtained from a sample. For
any finite sample {D;} of documents from C, there
is a maximum likelihood memoryless source S which
generates the sample. This source is one which max-
imizes P({D;} | S), the probability that the given
sample will be generated by the source. The dis-
tribution {«;} for the maximum likelihood source is
obtained by dividing the number of times each term
t; occurs by the size of the sample.

A good analogy is modelling a coin-flipping pro-
cess with a binomial random variable. The real-
world process could be very complicated. It could
even have strong deviations from independence, as
long as the effects are local, that is, there is some
number of flips after which the effects disappear. A
binomial random variable is a good model for such
a process, and the maximum likelihood estimate of
the probability of heads is given by the number of
heads in a large sample divided by the sample size.

2.2 Document Representation

A document is a sequence of n tokens taken from a
particular source. We do not explicitly model the
details of the sampling process, such as how the be-
ginning and end of a document are chosen. We stip-
ulate only that a document is a particular sequence
generated by a single source; this rules out taking ev-
ery other word, for example. This restriction is not
necessary for the multinomial model. However, in
future elaborations of the model which will give the
source some memory, the actual sequence of symbols
will matter.

Having said what a document is, we now come
to the matter of representation. The representation
we will use is the vector x where the component
x; Indicates the number of times term t¢; occurs in
the document. By comparison, the component z;
of the binary representation vector x indicates the
presence or absence of term ¢;. This choice turns
out to be pivotal, because it leads to the multinomial
distribution.



2.3 Discrimination

We now derive the discriminant function for the
multinomial model. The following analysis is com-
mon to classification and retrieval, although the mo-
tivation is slightly different for the two problems.
In IR, the probability ranking principle says that
the optimal way to present documents to the user
is to rank them by decreasing order of P(Rq | D),
the probability of relevance to the query. The text
classification problem is to decide whether a docu-
ment D belongs to a class C; or its complement Cs.
(7 is analogous to the relevant set Rg. The opti-
mal way to decide whether a document belongs to
a class is given by Bayes’ decision rule: decide C} if
P(Cy | D) > P(Cy | D), otherwise decide Cy. So
for both IR and classification, our initial goal is to
compute P(C | D).

In practice, we condition not on D, but on its
representation x. The desired probability may be
computed using Bayesian inversion. For simplicity,
we use the odds form of Bayes’ theorem:

O(C1 | x) = L(x | C1)0(Ch) (1)

where L is the conditional likelihood ratio

and O(C1) is the prior odds of Cy, which is

0(Cy) = (3)

For IR, it is sufficient to rank by L(x | Ci) or
log(L(x | C1), since O(C1) doesn’t depend on x, and
L(x | C1) is a monotonic function of P(Cy | x). For
classification, we additionally need to estimate the
prior odds O(Ch).

Now suppose we define S; as the source which
emits documents in Cf; likewise, documents in Co
come from source S9. These sources are charac-
terized by term probability distributions {aq;} and
{ag;}. In effect, what we are saying is that we in-
tend to discriminate between C; and C9 based on
the difference in term frequencies in the two classes.

We have chosen the representation such that the
probability of observing a particular x from a source

S1 is given by the multinomial distribution:
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where 7 is the length of the document in words, and
x; is the number of occurrences of term ¢;. By itself,
this formula is not very useful. It is easy to see that
P(x | C1) is always extremely small. However, this
difficulty is resolved when we compute the likelihood
ratio. Substituting Eq. 4 into Eq. 2, we get
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and taking logs, we have

g9(x) =log L(x | C1) = 3_ i log (ﬂ) (5)
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This discriminant function g(x) may be used for
ranking in IR, or for decision in classification. In
this paper, we use routing as our test environment,
and we assume that ample training data is available
for estimating ay; and ag;. Also, our discriminant
functions are purely inductive; we don’t include a
component derived from an original query or a topic
description.

2.4 Discussion

This linear discriminant function g(x) has a term
for each t; in the lexicon. It is symmetrical with
respect to the two classes; the roles can be reversed
by exchanging «; and as. Each term in the sum is
the product of a part that depends on the document
(z;) and a part that depends on the classification
problem (log(a;/a3)). These factors correspond to
document weights and query weights in IR. Since the
query weight can be negative, g(x) can be positive
or negative. For arbitrarily large documents, | g(x) |
can be arbitrarily large.

For every term that occurs in a document, g(x) is
increased if the term has a higher rate in S; than in
So, or decreased if the converse is true. If the term
is equally common in C; and Cs, then the presence
of that term contributes nothing to g(x), no matter
what z; is. There is no contribution to g(x) for any
term that is absent from the document.



An important characteristic of g(x) is that it in-
corporates z; directly. In IR, z; is usually denoted
by tf;, the “within-document frequency” of ¢;.1 Al-
though tf is known to be extremely important in
retrieval functions, it has usually come into proba-
bilistic models of retrieval in a more or less ad hoc
manner. It appears here as a direct consequence of
the document representation.

Another important feature of this discriminant
function is the way it incorporates document length.
Previous models have usually assumed that docu-
ments were roughly the same length. Most proba-
bility estimation schemes for IR include some form of
document length normalization. Here, the multino-
mial distribution gives us the probability for a doc-
ument of any length. So length is accounted for,
without having either to make the dubious assump-
tion of uniform document length (see Figure 3), or
perform a length normalization.

Consider how this function estimates g(x) for two
documents x and x/, where x/ consists of two repe-
titions of x. Rather than normalizing the difference
away, this discriminant function finds more evidence
for C; in x/ than in x, specifically g(x/) = g(2x) =
2g(x).

2.5 Independence Assumptions

In both the binary independence model and the
present model, independence is not something we
really believe, except as a very coarse approxima-
tion. We make the assumptions for mathematical
convenience; if they become an obstacle, we try to
relax them (although this has not proved easy for
the binary independence model; see [9]).

Cooper [2] describes the assumption of the binary
independence model as “linked dependence”, which
he argues is considerably weaker than a true inde-
pendence assumption. That argument does not ap-
ply to the multinomial model. For each of the two
discrete memoryless sources, the symbols generated
are assumed to be strictly independent. Perhaps
more importantly, the present model makes an as-
sumption of independence at a finer level of granu-

"We prefer to call z; the term’s count, or its number of
occurrences, rather than its frequency, which implies normal-
ization; normalized counts will be referred to as rates (e.g.,
Poisson rates).

larity. In the binary independence model, the events
assumed independent are the occurrence or non-
occurrence of terms in a document. In the multi-
nomial model, each time a word is generated by the
source, that event is independent of all other such
events. Thus the multinomial model’s independence
assumption is stronger than that of the binary inde-
pendence model.

Much could be said about the relationship be-
tween the multinomial model and the 2-Poisson
model, which can only be sketched here. In the
2-Poisson model, each term which has a 2-Poisson
distribution partitions the collection: in some docu-
ments, the term has a high rate; in the rest, it is low.
In the multinomial model, the partition is given by
the classification problem. Some terms will be found
to have a high rate in one class and a low rate in the
other. For other terms, the rates will not be appre-
ciably different.

2.6 Document Length and Term Selec-
tion

In order to understand better how document length
is accounted for in this model, it is interesting to con-
sider the term selection problem. The model spec-
ifies that g(x) is a sum over all terms. In practice,
some subset of the lexicon must be chosen. This
is necessary not only for efficient query processing,
but also because we can’t always estimate o accu-
rately. One might be tempted to simply eliminate
the deselected terms from the sum, by making the
assumption a3 = a9 for those terms. This is the
approach used in the binary independence model,
where it is perfectly appropriate. We can’t do that
here, because it would violate the model.? Instead,
the model requires that all terms not explicitly in-
cluded in the sum should be conflated into a single
“default term”, with its own Poisson rate. Thus at
each time step, the source emits either one of the
selected terms or the default term. If there are n
selected terms, the model becomes an n+ 1-outcome
multinomial. The length of a document is therefore
preserved, regardless of the number of terms selected
for inclusion in g(x). The revised formula is

2Consider what would happen if only one term were chosen.
Then the model would be a binomial.
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where 7T is the set of selected terms, x4 is the number
of occurrences of the default term, and a4 and asq
are the Poisson rates of the default term in classes
C1 and C) respectively. As before, we require that
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Many issues related to term selection are still un-
resolved. In particular, the best way to select a small
subset of terms, and how to determine the number
of terms to use, are unknown.

2.7 Parameter estimation

Initially, it appears we need to estimate «y; and ao;
for all terms in the lexicon. For IR purposes, we can
reduce this to the set of terms which occur in the
relevant set.

The maximum likelihood estimate of «;, using a
set of training documents for a single class, is to
divide the total number of occurrences of ¢; in the
training set by the size of the training set in words.
Another approach is to compute «; for each docu-
ment, and then average the results. This gives equal
weight to each document, rather than weighting doc-
uments by their length, as the first approach does.
We adopted this approach for the experiments re-
ported here (for the relevant sets only), because of
concerns about the extremely skew distribution of
document lengths.

The term selection problem is eased by eliminat-
ing terms for which O‘; is close to 1. In the work
reported here, we used a significance test on the dif-
ference rather than the ratio. Treating each « as a
mean, the well-know z test computes the probabil-
ity that the observed difference in means could have
arisen by chance.

3 Simulation studies

One of the virtues of probabilistic models is that it
is often easy to simulate them. Properties of the
models which could not be derived analytically can

then be determined empirically by running the simu-
lation. For example, it is reasonable to ask what the
expected performance of a model would be, once the
parameters it uses have been determined. We would
also like our model to predict how performance de-
pends on the method of term selection and the num-
ber of terms used. These questions can be explored
through simulation.

Simulations of both the multinomial model and
the binary independence model were implemented.
We simulated performance on the TREC-3 routing
task [3], using disk 1 for training data. We computed
term statistics from the relevant and non-relevant
document sets for each topic. All terms occurring
in the relevant set were considered. All documents
not in the relevant set were considered non-relevant.
Terms were selected by the same method used in
the actual performance studies reported below, and
sixteen terms per query were used.

The design of the simulation programs is straight-
forward. Both are small standalone programs; no
retrieval engine is needed. The multinomial model
simulation will be described. The binary indepen-
dence version is similar.

The input required for simulating performance on
a single topic is the set of selected terms, each with
its Poisson rate in the relevant and non-relevant sets
(R and NR) respectively. Also, the sizes of R and
NR are required. In the first phase of processing,
distributions of g(x) in R and NR are computed.
The second phase is to compute an estimated recall-
precision table from the distributions. This outline
is repeated in more detail in Figure 3.

One detail that deserves mention is the way doc-
ument length is determined. Since the value of the
discriminant function depends strongly on document
length, it is important to model the distribution of
lengths accurately. We do this by picking a length
at random from a large sample of actual document
lengths taken from disk 1. In the simulation, there-
fore, document lengths have approximately the same
distribution as the documents of the training set.

Figure 3 shows the distribution of lengths for
TREC Disk 1. The median length is 104 words (after
stopword removal). Not shown is the very heavy tail.
Almost two percent of the documents have lengths
over 1000 words. The variance of document lengths
is a major source of variance in g(x) for the multino-



SIMULATE
for each query
for each class C;

SIMULATE_SOURCE

for j = 1 to samplesize
pick a length [ from disk 1 lengths
get a sequence of | words from source
compute its representation x

Gilj] + g(x)
EVALUATE

SIMULATE_SOURCE
for each t; in query
E(n;) « a; X source_size
put E(n;) copies of t; in source array
scramble source array

EVALUATE
sort each array G;
for each standard recall point
compute precision

Figure 1: Pseudocode for multinomial model simu-
lation

mial model simulation. For the binary independence
model, this effect does not show up in the simula-
tion, since documents are assumed to have uniform
length. However, it does have an effect in the real
world, since any term is more likely to occur in a
longer document.

It should also be noted that in the simulation of
the binary independence model, the independence
assumption is stronger than “linked dependence”.
That is

P(ti,tj | R) = P(t; | R)P(t; | R) (8)

and
P(ti,tj | R) = P(t; | R)P(t; | R) (9)

We have not yet devised a method of modelling
linked dependence directly. It would of course be
quite interesting to know how linked dependence
compares to true independence under simulation.
The expected performance for the two models is
shown in Table 1. The comparison is not as infor-
mative as we had originally hoped, since both mod-
els are wildly optimistic, predicting almost perfect
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Figure 2: Distribution of document lengths in TREC
data (disk 1)

performance. So we cannot say on the basis of simu-
lation studies which model we would expect to per-
form better; nor can we believe the predicted perfor-
mance. Because expected precision is already satu-
rated, the simulations are not likely to be a good
way to explore term selection methods. We hope
this situation will change as the models improve.

The simulations predict the performance their dis-
criminant functions would give, for the parameters
of the TREC-3 routing topics, if terms were really
distributed as the models assume. The wide gap be-
tween predicted and actual performance reflects the
difference between the statistical properties of our
simple models and those of real documents.

4 Performance Evaluation

A program to retrieve documents using the multi-
nomial model was implemented by modifying the
Inquery retrieval engine. For comparison, we also
implemented the binary independence model. Both
implementations used Inquery’s lexical analysis, con-
sisting of case folding, stemming, and stopword re-
moval.

The programs were evaluated using a variant of
the TREC-3 routing task. Our experiments used
the documents of disk 1 for training and disk 2 for
evaluation. The discriminant function was encoded
as a query consisting of a set of terms with weights.

A number of runs were done to compare term
selection methods and to vary query length. The
term selection methods consisted of ranking terms
by various statistics, and picking the top n. The
best performer for both models, which was used for



Recall Precision
BIM | MM
0 | 100.0 | 100.0
10 | 100.0 | 100.0
20 | 100.0 | 100.0
30 | 99.9 | 100.0
40 | 99.9 | 100.0
50 | 99.7 | 100.0
60 | 97.6 | 100.0
70| 96.1 | 99.9
80| 94.0 | 96.1
90 | 89.0 | 79.0
100 | 24.5 0.1
avg | 91.0 | 88.6

Table 1: Simulated performance of binary indepen-
dence and multinomial models on the TREC-3 Rout-
ing task

the results reported here, was an ad hoc function,
ratio X rdf, where ratio = & and rdf is the num-
ber of relevant documents containing ¢;. The runs
reported in Table 2 used 16 terms per query.
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Figure 3: Average precision vs. number of terms per
query

Figure 3 shows that the binary independence
model is more sensitive to query length than the
multinomial model. Overall, however, the results
show that performance of the multinomial model on
this task is substantially lower than that of the bi-
nary independence model. We hypothesize that this
is primarily due to the stronger independence as-
sumptions of the multinomial model. It can be ar-
gued that the binary statistics used in the binary

Recall | Precision
BIM | MM
0| 81.5 | 60.0
10 | 56.1 | 40.6
20 | 43.4 | 35.8
30 | 37.2 | 29.8
40 | 32.0 | 25.2
50 | 27.5 | 214
60 | 23.0 | 17.1
70 | 18.7 | 13.6
80 | 14.5 | 9.5
90 | 10.6 | 6.1
100 4.1 1.4
avg | 31.7 | 23.7

Table 2: Actual performance of binary independence
and multinomial models on TREC-3 Routing

independence model are more robust than the ones
used in the multinomial model. The violations of the
multinomial model’s independence assumption may
well be more detrimental than the corresponding vi-
olations for the binary independence model.

In particular, there is one effect to which the
multinomial model is subject which has no counter-
part in the binary independence model. It is likely
that many terms, especially the kind that are likely
to be good discriminators, are strongly dependent on
their own occurrence. That is, knowing that ¢; has
occurred once in a document, we should be much less
surprised to see it a second time than we were the
first time. Therefore, if we treat each occurrence of
such a term as independent, we are likely to seriously
overestimate the importance of that term. This con-
sideration is related to the use in many IR systems
of a function of #f which grows more slowly than tf
itself. Some of these are:

(0.5 + 0.5 x tf /maztf) [8]
log(tf + 1)
tf /(¢f + const) [7]

Ultimately, we would like any modification to f to
come from changes in the model; and if the model
changes, the entire discriminant function is likely to
be affected. As noted in the introduction, addressing
the term-dependence problem will be a high priority



in future versions of the theory.

5 Related Work

The 2-Poisson model [1] introduced the idea of mul-
tiple Poisson distributions. That work was primarily
concerned with the problem of automatic indexing,
that is, identifying a set of terms by which a doc-
ument could be represented. Documents were as-
sumed to be of uniform length, and the theory was
developed using Poisson means rather than Pois-
son rates, where the mean is the rate times docu-
ment length. The TPI model [6] is a combination of
the binary independence model and the 2-Poisson
model. A previous approach which extended the
binary independence model to cover multiple term
occurrences is described in [11] and [12]. Another
approach in which text is generated by a stochas-
tic process is [4], which employs a hidden Markov
model.

6 Conclusions and future work

The multinomial model gives a simple account of
how tf can come into probabilistic models, through
modeling the generation of text by a stochastic pro-
cess. It also takes document length into account in
a new and well-justified way. Actual performance of
the model on the TREC-3 routing task is too low for
the model to be used in practical applications in its
present form. The independence assumptions which
give the model simplicity appear to be its weakness
as well. Nevertheless, this work sheds some light on
the role of ¢f and document length in probabilistic
IR. It also prepares the way for better models based
on more complex stochastic processes.

Simulation of probabilistic models is shown to be
a fruitful way of extending probabilistic theories be-
yond the realm of analytic technique. Simulation
shows a huge gap between expected and actual per-
formance for both the binary independence model
and the multinomial model.

The role of conditional dependence will be a cen-
tral focus of future work. Specifically, we want to
investigate models in which the probability of gen-
erating a term may depend on the local context in
various ways.
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