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ABSTRACT

TANDEM LEARNING: A LEARNING FRAMEWORK FOR
DOCUMENT CATEGORIZATION

MAY 2007

HEMA RAGHAVAN
B.E., VEERMATA JIJABAI TECHNOLOGICAL INSTITUTE, MUMBAI
M.S., UNIVERSITY OF MASSACHUSETTS AMHERST
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

Supervised machine learning techniques rely on the avitijatf ample training data
in the form of labeled instances. However, in text, userst@e a strong intuition about
the relevance of features, that is, words that are indieatia topic. In this work we show
that user prior knowledge on features is useful for textsifecmtion, a domain with many
irrelevant and redundant features. The benefit of featuextsen is more pronounced
when the objective is to learn a classifier with as few trajrégxamples as possible. We
will demonstrate the role of feature feedback in traininggasifier to suitable performance
quickly. We find that aggressive feature feedback is necg$sdocus the classifier during
the early stages of active learning by mitigating the Hugiteshnomenon. We will describe
an algorithm for tandem learning that begins with a coupli&béled instances, and then
at each iteration recommends features and instances fer aousbel. The algorithm con-

tains methods to incorporate feature feedback into Supfemtor Machines. We design



an oracle to estimate an upper bound on tandem learningrperfce. Tandem learning
using an oracle results in much better performance thanileaon only features or only

instances. We find that humans can emulate the oracle to anteékat results in perfor-

mance (accuracy) comparable to that of the oracle. Our erggperimental design helps
factor out system error from human error, leading to a beitelerstanding of when and
why interactive feature selection works from a user persgec\We also design a set of
difficulty measures that capture the inherent instance eaidife complexity of a problem.
We verify the robustness of our measures by showing hownnstand feature complexity
are highly correlated. Our complexity measures serve agléadanderstand when tandem

learning is beneficial for text classification.

Xi



3.2

TABLE OF CONTENTS

Page
ACKNOWLEDGMENT S .o e e e e el V..
AB ST RACT e X
LISTOF FIGURES ... e et aa XVi
LIST OF SYMBOLS AND ABBREVIATIONS . ... ... e XX
CHAPTER
INTRODUCTION ..o e e e e e e aa 1
1.1 Terminology: Analogies from Human Learning . . o
1.2 Machine Learning: The Exemplar Approach and |ts Llrmtat ............ 6
1.3 Towardsfasterlearning............. .ottt 7
1.4 Text Categorization and the Motivation for Tandem Lesgn.............. 9
1.5 Tandem Learning: Proposed Idea and Hypothesis................... 11
1.6 Scopeofthe ThesisS..........coi i e e 12
1.7 Outlineofthethesis ........... i e 13
1.8 Contributionsofthethesis .......... ... i e 14
. THE TANDEM LEARNING ALGORITHM: OUTLINE ~ .................. 15
2.1 AcCtive Learning . ... ... 17
2.2 Our Proposal: Feature Feedback and Instance Feedbdakdem ... ...... 18
2.3 SUMMAIY .ttt e e e 21
RELATED WORK ... e e e e 22
3.1 Information Retrieval ....... ... .. . i 23

3.1.1 User Feedback in Information Retrieval ........ couu.........23
3.1.2 Human Computer Interaction.................iouuueenaen.. 27

Machine Learning and Text Classification . ........ ...t 27

Xil



3.21 ActiveLearning ... ... ..ot e 27

3.2.2 ExplanationBased Learning..............c.iiaamai... 28
3.23 Feature Selection . ........ ... 29
3.24 BudgetedLearning ............cciiriiiiiii 29
3.2.5 Human Prior knowledge for Text Classification. .. .............. 30
3.3 SUMMAIY . .ot e e e 31
METHODS AND MATERIALS . ... e 33
4.1 Text Classification using Support Vector Machines. .................. 33
4.1.1 Why Support Vector Machines?............ .. i imumuion.. 34
4.1.2 ProblemFormulation........... ... .. . 35
4.1.3 The Hard Margin Classifier ............. ... i imumeeaen.. 36
4.1.4 SoftMargin Classifier .............. i 37
4.1.5 Active Learning in Support Vector Machines: Uncertgai
Sampling. ... e 38
4.2 Dala ..o 39
4.3 Evaluation ......... ... e 40
4.3.1 FlforEffectiveness. . ... ...t 41
4.3.2 EffiCIEnCY ... e 42
4.4 TestingtheBase Classifier ...........co i 43
A5 SUMMAIY . ottt et e e e e e e e e 44
. ORACLE EXPERIMENTS ... e e e 46
5.1 Design of the Approximate FeatureOracle ......................... 46

5.2 Extent of Speed Up Possible: Oracle Experiments .. ... . .......... 47

5.2.1 Experimental Setup .. ... 48
5.2.2 Improvements to Active Learning with Feature Setecti ......... 49
5.3 Why s feature selectionuseful? ......... ... . i mmuuiiiiiii... 55
5.3.1 Mitigating Hughes Phenomenon ........................... 55
5.3.2 Feature Selection: Aiding Model Selection or Inseanc
Selection? .. ... 58
5.4 SUMMAIY ..t e e 60
. ASKING FOR AND INCORPORATING FEATURE FEEDBACK  .......... 63
6.1 The Tandem Learning System . ........... .ottt iiamainnnnnnn 64



6.2 Asking for FeedbackonFeatures ............. ... . .o .. 64
6.3 Incorporating Feature Feedback into Support Vectortifes. . ........... 65
6.3.1 Scaling ... .o e 66
6.3.2 Feature Pseudo Documents..................iouuuu.n..... 67
6.3.3 Pseudo Relevance Feedback.............................. 70
6.4 Developing the Final Algorithm . ....... ... ... . i eee .. 71
6.4.1 Lessonsfrompastwork ...............cciiiiiimmmnnenann. 71
6.4.2 Problemdefinition........... ... .. ... .. e 73
6.4.3 Oracle ..... ... 74
6.4.4 Choiceofmethods........ ... i 75
6.5 Notes on the Final System: Experimental Setup, Parasnetie@ ........... 77
6.6 SUMMAIY . .. . e 78
EXPERIMENTS ON A TANDEM LEARNING SYSTEM  ................. 79
7.1 Resultswithanoracle............ ... e 79
7.2 ResultswithRealUsers ... mmmm e, 83
7.2.1 Experimental Setup ...t 83
7.2.2 ReSUIS ... e 86
7.3 Performance onrankingmetrics ............. ..o, 88
TA NVaryiNQB . .. e 90
7.5 Anonlinetask ..........oo i e 91
7.6  Additional EXperiments . ..........oiiii 95
7.6.1 Other Forms of User Input: Forms and Passage Feedback.. ... 96

7.6.2 User Prior Knowledge for Clustering ............ccuuoo...... 97
T.7  SUMMAIY .ttt e e e e e e e e e 98
. THE COMPLEXITY OF CONCEPTS IN TEXT CLASSIFICATION ....... 99
8.1 DaAta ... e 101
8.2 Measuresof complexity ............ i e 101
8.3 Instance Complexity Measures .............ouriiinenenennnnnnnn. 103
8.3.1 Feature Complexity Measures .............ccuiieuenenn.. 107
8.4 RESUIS . ... 109
8.4.1 Correlation of Instance Complexity and Feature Cexipy .. .. ... 109
8.4.2 Difficultyof Domains ............ ... 111

Xiv



8.4.3 A Perspective on Text Classification Problems .............. 116

8.5 Implications for Tandem Learning ..............comuouieiinnenen... 117
8.5.1 EXPeriments ... ... ...ttt e et e 118
8.6 Related WOrK . . . ... 121
8.7 SUMMAIY . .. e e 123
9. CONCLUSIONS AND FUTURE WORK . ... i 125
0.1 ContribUtioNS . . . ... 125
0.2 CONCIUSIONS . .. oo e 126
0.3 Future WOrK . . . ... e 127
9.3.1 Anextensiveuserstudy...............iiiiiiimaia 127
9.3.2 OtherFormsofFeedback ........... .. ... 128
9.3.3 Predicting Complexity ...........ooiiiiii 128
9.3.4 OtherTasksand Domains ... ... e, 128
APPENDICES
A. CLASS KEY .o e 130
B. USER STUDY . .. e 131
B.1 INStrUCLIONS . . ... e 131
B.2 SCreenshotfs . . ... 135
C. USER LABELS . . ... 136
D. INTERPRETING KAPPA . . .. i 141
E. COMPLEXITY TABLES ... . . i 142
BIBLIOGRAPHY .o e 144

XV



Figure

2.1

2.2

4.1
4.2

4.3

4.4

5.1

5.2

LIST OF FIGURES

Page

Algorithm and block diagram for traditional active leeng where the

system asks for feedback on instances o8lysem 3................. 16
An active learning system where feedback on featurdsosaquested

(SYStem ..o 19
Linear Classifiers. . . . ... .o 33
Soft Margin Classifier .. ... i 37
The figure illustratesfficiency the performance metric which captures

rate of learning. The figure on the right illustrates kbs&ning surface

The plot is a measure df1 as a function of the number of features

and training documents. The dotted line traces the regionadiimum

F'1. With few training documents, aggressive feature seladfiew

features) is needed to maintain high accuracy. The thidk loiand

illustrates traditional active learning. .. ............ .. ... L. 44
Comparing the base classifier with the state-of-the-art................ 45

An active learning system where feature selection i®d@fore instance
selection System 3. This is one of the two set-ups used in our oracle
experiments described in Section 5.2. The second set-inovgrsin
FIQUIE 5.7, e 48

The figure illustrates thearning surface The plot is a measure @1 as
a function of the number of featurek)(and training documents)(
The dotted line traces the region of maximufh. With few training
documents, aggressive feature selection (few features)esrded to
maintain high accuracy. The thick dark band illustrateditianal
active learning. . . ... ..ot 49

XVi



5.3

5.4

5.5

5.6

5.7

5.8

6.1

6.2

7.1

7.2

Improvements in efficiency using an oracle to select tbstnmportant
features. For each problem we show efficiencyatotal number of
features for a particular dataset) on the right and effigiett¢he
feature set sizes for which the efficiency is maximizepdn the left.

The class keys are given in AppendixA. ...............¢owu.....B2

Improvements i1, using an oracle to select the most important features.
For each problem we shofl; at V (total number of features for a
particular dataset) on the left aridl ; at the feature set sizes for which
the F'1; is maximized {n) on the right. Remember, the objective is to
maximizeF'1;. The class keys are given in Appendix A. ............... 53

Improvements if'15, using an oracle to select the most important
features. For each problem we shéul,, at N (total number of
features for a particular dataset) on the right &fid, at the feature set
sizes for which the'1,, is maximized ). Remember that the
objective is to maximizé’l,,. The class keys are given in Appendix
A e e 54

Mean accuracy falls withincreasigg. . .. ............... ... ... ....... 57

An active learning system where feature selection i ddter instance
selection System 4. This is one of the two set-ups used in our oracle
experiments described in Section 5.2. The first set-up i&shio
FIgUrE 5. L. o e 59

F'17, F155 and efficiencyFE,, for the Reuters corpus when feature
selection is done before active learning (system 3) and videgtare

selection is done after active learning (System4)..................61
An algorithm for Interactive Feature Selection ......................... 64
Weighted Margin Classifier ........... .. i 68

Consistency of improvements in performance acrosssdpr
classification on the TDT3 corpus. Topic ids are on the X-axid the
Y-axis is the F1 score. The baseline cases are Whenl2............. 82

News filtering performance. All graphs are sorted by theehne
performance. Notice that tandem learning helps boost tesof the
poorly performing topics, sometimes at the expense of ingirti
performance for which the baseline system performs ver{:wel. . . ... 94

XVii



7.3

7.4

8.1

8.2

8.3

8.4

8.5

8.6

8.7

B.1

B.2

C1l

The evolution of terms with time: The informativenessrss of then'"
document on a topic. The x-axis is th® document. The y-axis is the
informativeness score. The thick line traces the average
informativeness score over all topics. Most of the inforineterms
appear in the first 20 documents. ............. ... .. oo, 96

Learning curves fadurricane Mitchwith the x-axis being the number of
labeled documentsandy-axtd .............. i 97

Learning curves for a single classifier on 3 problems................. 105

Normalized learning curves (active learning and fesakearning) for 20
NEWSGIOUPS. .ottt e et e e e e e e e 107

Correlation betweef),. and F,,. using SVM and LARS. Correlation of
instance complexity and feature complexity is independéntethods
used to computethetwo. ... 110

Ranking using,. computed by two different methods results in a similar
ranking of COrpora. ........ ... et e, 113

Instance Complexitylf.) and Feature Complexity ). A higher value
of complexity indicates a difficult problem. Notice how iaste
complexity and feature complexity are correlated. ............... 114

Feature complexity,.) scores of problems in the Reuters-21578 and 20
Newsgroups corpora computed using 2 different methodshédithe
complexity more difficult the problem. ........ ... ... . oo .. ... 114

Difference in speed of active learning and tandem legras a function of
complexity C'y) . ..ooiie 120

Screen-shot of the initial screen shown to the user Eftgying in, with
the instructions and the topic description...........c.e...........133

Screen shot of the interface where the user was askelddbdderm in
one of three categories. Each term was shown with four ctatex. ... 134

Topic description and user marked terms for the tQsama Bin Laden
Indictment Terms in lowercase are those that User 1 marked. Of those
terms that User 1 marked, the ones in italics are ones that2Eeso
marked. Terms that only User 2 marked are capitalized. Threls
+ and - indicate the classes (relevant and non-relevangress$to the
terms. Oracle marked terms are underlined. .. ....... ... ... . 137

Xvili



C.2 Topic description and user marked terms for the tdjubel Peace Prize
Awarded Terms in lowercase are those that User 1 marked. Of those
terms that User 1 marked, the ones in italics are ones that2Jsso
marked. Terms that only User 2 marked are capitalized. Threls
+ and - indicate the classes (relevant and non-relevanigress$to the
terms. Oracle marked terms are underlined. ......... ..............139

C.3 Topic description and user marked terms for the tdpipei mayoral
race Terms in lowercase are those that User 1 marked. Of thoses ter
that User 1 marked, the ones in italics are ones that Usepn?2 als
marked. Terms that only User 2 marked are capitalized. Threls
+ and - indicate the classes (relevant and non-relevangressto the
terms. Oracle marked terms are underlined. .. ......................140

XiX



LIST OF SYMBOLS AND ABBREVIATIONS

F1

F1,(ACT)

F1,(ACT, k)

The threshold of a linear classifier of the foffilX') = w - X + 0.

Allowance or budget of the number features permitted to keds a
given run of active learning.

User specified constant to an SVM training algorithm, spy&wif the
maximum extent of influence of a support vector.

Efficiency of learning, measured aft€rexamples have been actively
picked.

Number of features presented to the user in a tandem leatanagjon.

F = fi...fr, indices of features presented to the user during an iterati
of tandem learning.

Measure of effectiveness. Harmonic mearPodind R.

F1 of a classifier trained onactively picked examples.
F1,(RAND) is similar, but where examples are randomly picked.

F1 of a classifier trained anactively picked examples and withfeatu-
resF'1,(RAN D, k) is similar but where examples are randomly picked.

Number of instances presented in a given active learningtite.
Number of features picked by the user in a tandem learningtita.

The classifier or the model. In our case typically = (w, b).

XX



m v o= E

~

Size of the pool.

Number of features.

Precision of a classifier.

Recall of a classifier.

Number of training examples.

Total number of training examples.

The set of unlabeled examples an active learner can quary fro

w = wy...wy. A vector of weights on features in a linear classifier of therf
f(X)=w-X+0b.

An instance. Also called an example or a documEnt: z;;....x; .
Label of an instancé
Extent of influence of a support vector.

Error tolerated for a misclassified support vector.

XXi



CHAPTER 1
INTRODUCTION

A fundamental task in human reasoning is the grouping ottetungy of similar objects
together and drawing generalizations about them. Categarn involves associating a
semantic label to a group of similar objects. The idea thigmization is fundamental to
knowledge and reasoning goes as far back as Aristotle [8)c€uts are representations of
categories and many inferences that we draw about our swdirmgs — from “a bird is an
animal” to an “atom is the smallest particle of matter” — cantbought of as associating
categories to observations. How concepts are representbé human brain is an inter-
disciplinary field spanning brain and cognitive sciencestimlogy and metaphysics. Many
theories exist with little consensus [84].

Given the growing volume of electronic information on théemmet and in digital li-
braries, one would like computers to be able to automagicaifjanize documents into
groups that are intuitively perceptible to humans like togienre, sentiment and so on.
This organization can be achieved in one of two possible wiéiyysugh unsupervised clus-
tering algorithms or supervised categorization algorghirhe task of grouping documents
by their similarity together, with no human supervision Bformation specifying which
kinds of documents should go together is typically caltegstering. The task of assign-
ing category labels to documents is callegtegorization or classification Labels may
be based on topics e.garthquakesgenre e.g.poetry, geography e.gghinaand so on.
Categorization is typically aupervisedask with a human specifying the categories of in-
terest and some additional information that is used to ge@er general rule that can map

a previously unseen document to one of the pre-specified@ads.



Document clustering as an effective means of storage aridvatof information has
been studied since the 1960s [28, 86, 80, 95]. Traditiorta#ypurpose of such a grouping
in an information retrieval system was indexing, where ed@tument was assigned one
or more key-words or phrases describing its content. Thev&eys were typically part of a
controlled dictionary. Each of these keywords can be vietwdxk a category and the prob-
lem of associating a keyword to a document can be conside@dgous to associating a
class label to it. van Rijsbergen’s classic book on inforaratetrieval [111] has addi-
tional references to some of the early work in automatic ¢kadsification and clustering.
An informal note prepared by Sparck Jones also surveys muble early literature in this
area both in information retrieval and out of it [103]. As gi@nts out, much of the sta-
tistical literature available in the 1970’s was not dirg@pplicable to the task of retrieval.
The field therefore evolved into designing its own techngjiee grouping documents. On
reading some of these early works, the reader will noticettiaterm classification was
often used to refer to the clustering task as defined aboveveldsr in keeping with the
current literature we use the term classification to exeklgimean categorization in our
work.

The AIR/X system built for a large physics database reptssare of the biggest efforts
in information retrieval to build a classification system fiedexing using a controlled vo-
cabulary. Although the main purpose was indexing, the agthave on occasion evaluated
their system on a document classification task [45]. Théairslystems were heavily rule
based [45], but over the years several statistical teclesigeere developed and evaluated
for the indexing task [65, 110, 18].

Research in the task of text categorization gained momeirtdaine 1990s with the de-
velopment of several statistical methods. A survey publishy Sebastiani in 2002 [98]
provides a very good overview of the techniques in automexiccategorization. The field
today lies at the cross-roads of information retrieval amtthine learning. Machine learn-

ing is an area of computer science that concerns itself withrtiques that enable comput-



ers to “learn”, allowing computers to automatically do ®m#kat humans can. Modern day
text categorization algorithm fall into the inductive learg paradigm of machine learning.
Inductive learning algorithms typically take as input sgftexample documents in the cat-
egories of interest and automatically learn a function ¢tlaataccurately map a new unseen
document to one of the many pre-specified categories. Madkarning algorithms, in
striving to solve a more general task, typically limit thadiof input that may be obtained
from a human to labels on training examples. They therefeeecome the primary disad-
vantage of older rule-based systems that typically did eoiegalize well across corpora.
Machine learning techniques however aim to be generabzatiioss domains as well i.e.,
strive to build one classification algorithm that works well text classification, gene clas-
sification, image classification and so on. In doing so, tlosg lout on the benefits that
may be obtained by considering the domain. For some apiplicdbmains there may be
other types of inputs that may be more easily procured, dkizerlabels on training exam-
ples. For example, it may be quite easy for a human to spegifyessimple “soft-rules”
in building a text classifier (and doing so may be much eakgan tlesigning an entire rule
based system).

We argue that if the goal is a task, then we should accorditallg a “task oriented”
approach, as has been adopted by the information retriewazinity. Otherwise we
may lose out on easily available information that is valeabl the learner (classification
algorithm). An important problem for both the human teached the learner in machine
learning is the efficiency or speed of the learning processwiW show that alternate forms
of human computer interaction (other than labels on exashpihat exploit the domain of
the underlying task, can accelerate learning.

Additionally, traditional inductive learning techniquescounter a difficult feature se-
lection problem in the domain of text because of their shegnlver: features of a text
document are often the words that occur in it and often a ciidie of a even few 1000

documents can have ovEl* unique words. We will show that a human can help overcome



the feature selection problem by using their prior knowketiylabel relevant features. A
machine learning algorithm can then use its traditionar@hce mechanism in conjunction
with the knowledge that the human has provided. Informatgbneval has studied various
kinds of information that a human (naive users as well as dogerts) can specify to
a computer in the domain of text. We elaborate further onegheshniques in Chapter 3.
Text categorization being the focus of this thesis, we afguan amalgamated approach
that takes lessons from approaches of the informatiorexetricommunity and that uses
the new techniques from machine learning for text categtdn. We will show that by
bringing in the focus of the task, we can make machine legralgorithms for text classifi-
cation perform even better than the current state of theanttiques. The new framework,
tandem learningaims at learning categories in text faster, that is, wiis leaining effort
from a human.

We will show that a combined approach that exploits macheaening techniques and
methods for feedback as have been done in informationvatnell be most beneficial for
text categorization. In subsequent sections we will exptair ideas and terminology in

greater detail.

1.1 Terminology: Analogies from Human Learning

We begin by discussing learning in humans, firstly becausshima learning and hu-
man learning have many parallels, making it easy to intredaominology, and secondly
because it allows us to use examples developed in this sectimore easily present our
ideas to enhance the standard mode of human computer ind@racmachine learning.

One view of the representation of a concept in the human Isarfdefinitional one”
where the concept is represented as a definition (or a rufeposed of a set of properties
of the category [9]. We use the terrognceptand category interchangeably. An object or
an entity is composed déatures The properties of a category or a class are features that

are likely to occur in an object belonging to that categorycoinplete definition filters all



objects in the world belonging to a category leaving out bjeots that do not. In the case
of a bird, its features are its eyes, feet, feathers, bealsarah and its properties would
consist of features likely to occur in birds (beak, feathet3. If all or at least most of the
important properties are satisfied, an object would be dened a bird. In the real world
most definitions are not complete and even for scientific d&fits one can find exceptions.
For example, an ostrich is an atypical bird since it is flighdl.

Many categories are hard to define by a list of properties ef@mple the concept
“art” is probably not easy to define. The “exemplar view” byntrast, takes a different
perspective and assumes that the brain stores all preyiobskrved examples of objects
belonging to a category. When a new, unseen object comeg,atas compared to all
stored examples, and one infers the category label acgptdithe labels of examples it is
most similar to.

How concepts are learned is another interesting questiearning may beinsuper-
vised where the human learner draws inferences from obsengtmr much of learning
is supervisedr guided by aeacherwho tries to explain her representation of a concept
to a learner. Supervised learning is especially true fotehming of categorjabels that
is learning that a given set of similar objects all belong tpven category (say birds). In
trying to teach (or train) the learner, a teacher often tiwedefine the concept if possible,
and then uses examples leaving the student to develop herepngsentation of the cate-
gory. The number of examples required would depend on theemtrbeing learned. For
example, learning the concept “art” would be difficult withanany examples. Examples
may be intelligently chosen by the teacher so as to includéxaofitypical and atypical
examples. Much of human learning, and especially in they stalges when a new concept
is being taught to the learner, is interactive, with the b@a@nswering questions that the

learner is uncertain about.



1.2 Machine Learning: The Exemplar Approach and its Limitations

There are many parallels to human learning and machineihggand although the two
fields draw from each other [106], there exist many diversemme learning algorithms
all of which are effective at capturing concepts and it isltarsay whether or not they are
emulating the human brain. However, one commonality batvtkem is that like human
learning, learning algorithms fall into two broad categsr unsupervised and supervised.
Unsupervised learning techniques try to learn inferenbesittexamples without associat-
ing categories to them. Clustering objects by their sintifas an unsupervised extreme of
the grouping of documents. Associating category labelsgtances on the other hand is a
supervised learning problem, which is the focus of this work

Most supervised learning algorithms are “exemplar” in matuThe learner here is a
program that takes several examples (and possibly couatepdes) of objects in a cate-
gory labeled by a human, and uses this input to learn someaabstpresentation of the
category. Naive Bayes, support vector machines (SVMs) actsihn trees are examples
of such algorithms and each of them infers properties of egcay in their own way. By
contrast, algorithms like K-nearest neighbors (KNN) [41¢morize all the input exam-
ples, and when a new unseen example is considered, it is cethfaall the memorized
examples, and is assigned a category corresponding to teeammmon category of the
K most similar examples. For many domains KNN may or may noadeffective as
the other approaches [116, 57]. In spite of the differendiéninference mechanism, all
these approaches, be it SVMs or KNN, take labeled examplegpas a reasonable ap-
proach for trying to find a general method for the learningaiégories, where the objects
to be categorized may be as general as images, genes or dusuriiée formalism of
the problem becomes universal if approached this way: graés of examples, with their
expected labels, design an algorithm that learns the hiflgenion that maps an unlabeled
example to a label. This formalism however ignores the faat tor many categorization

problems (and depending on the domain), we can often sstinie more information from



the teacher — their concept definition for example — in orderdin the learner. In the next
section we discuss what kind of information we can obtaimftbe human and argue why

that may be useful.

1.3 Towards faster learning

The teacher in machine learning, is a human, often the eagimethe user of the
system. In the classical exemplar approach, the learnen otteds to see many examples
on a category before arriving at a concept that generalizd that is, classifies unseen
examples with adequate accuracy. Usually a large numbeanaiomly selected examples
are labeled by the teacher that are then used by the learleartoa concept.

Labeling examples in this manner can be tedious and costihé&teacher and many
methods have been considered to reduce the total numbdredéthexamples. One such
method is active learning [SActive learnings an interactive, iterative, human-in-the-loop
learning paradigm in which a teacher (a human) begins byigiraya few typical examples
of a category. The learner (a program in this case) learng soitral concept, and then can
guerythe teacher on the category of any example that it does net kmecategory of. The
gueries are chosen selectively by the learner such thanihelkdge of the category of the
gueried example would provide maximum value to the learneémiproving its current
representation of the concept. By selectively picking onfgrmative examples as queries,
active learning methods strive to decrease the total dfforthe teacher. Active learning
is analogous to typical classroom learning, where the &raichparts some information
to the students, and then leaves some time for questions.ffilsrert student will pick
the questions that she is less likely to figure out by her$etfthe teacher to answer in
the limited time frame. Likewise, an efficient teacher will to optimize the information
imparted during the lecture in order to maximize the infaiioragained for the learner,

and decrease her effort in the question-answering session.



As with general machine learning methods, typical actieereg algorithms are also
example based. By contrast, we saw that in human learningetaber might try to start
out by “defining” a category and then giving examples of theesaOne can only imagine
how long it would take if humans used only the example basedoagh for learning. Say
for example in learning the concept “star”, one can imagihata time consuming process
learning would be, if each individual had to infer all the pecties of a star (gaseous, source
of light etc) using only examples. Fortunately, in humanniésg a teacher often imparts
her idea of the concept, often accompanied by illustratkaargles, leaving the student’s
brain to process these two types of information in some wdye duestion then is one
of using this kind of an approach for machine learning. litai says that such type of
learning should be faster. Often defining the concept mayaa laborious task for the
teacher, and may be much less effort than providing sevetiaing examples belonging
to the category. The definition may be quite sufficient in maages (like learning the
concept “bird”), but many examples may be needed in othexc@ike learning “art”). In
other cases, like learning the concept “star”, the definiiocompanied by a few examples
may be sufficient. Given this initial information, the aetilearner may then proceed by
intelligently querying the teacher on the labels of examp@ne can also extend the active
learning framework to include questions about propertidisecategory as well; analogous
to a real life situation where a learner may ask “is the layihgggs a property of birds?”.

Of course, the effectiveness of this idea will depend on tireept itself, the domain,
the algorithm, the kind of representation it uses for exa®pind the final concept, and
whether a definition provided by a human can be incorporattal that representation.
In some applications these aspects of a problem may be lessusb For example, in
classifying images by texture it is less clear whether a huoaa specify any information
other than labels on examples. Whereas, for an algorithnd#étarmines whether an image
contains the picture of aunset specifying the property that the image is predominantly

orange may be quite easy for a human. If color histogramss&é ly the algorithm in the



underlying representation then imbibing this informatioay be easier for the learner. If
not, it is less clear how the learner will absorb this infotimaprovided by the human into
its representation of the concept. Then again, if the poéabsorbing this information
is noisy, learning may not be accelerated in spite of thigiiively useful information
provided by the user.

In the next two sections we will present why we believe thdicgmg “definitional”
information will be useful for accelerating the processesrhing for text categorization
in particular. The questions raised through the aforernaeti examples also provide the

intuition for the set of hypotheses that structure thisithéSection 1.5).

1.4 Text Categorization and the Motivation for Tandem Learnng

In this thesis we will focus on learning categories in textitématic text categorization
has applications not only in the organization and retrie¥alollections of documents, as
in the Yahoo! directori¢sor MESH categories [77] but is also useful for news filtering a
email foldering. The scenario for a typical news filteringkd72, 3] is one where a user
browsing the daily news comes across a story on a topic ofesttesay for example, the
first story predicting the arrival dflurricane Mitchand decides that she wants to track it.
As new stories arrive in the news, if they belong to the catggturricane Mitchthey are
delivered to this user. The email foldering task [63] is $&miemail is automatically orga-
nized into user-specified folders as it arrives. Spam fiitg[27] is yet another application
of text categorization. Information retrieval can also lecalated as a categorization prob-
lem [111, 89] where documents satisfying a user’s inforaratieed are associated with a
relevantcategory, and those that do not are associated witimarelevantategory.

To obtain a classifier that generalizes well, the learnigg@hm needs to see a large

number of labeled training examples. Labeling data is atesdand costly process and we
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seek algorithms that learn a good classifier with as liténtng data as possible. Com-
panies like Yahoo! often employ paid editors to label largeants of training data. De-
creasing training data serves to decrease their editassc In news filtering and email
foldering where the user (teacher) must provide trainingngxes (sample relevant and
non-relevant documents) in order to train the system, teeiggprobably willing to engage

in very little interaction in order to train the system.

wheat& farm —  WHEAT
wheat& commodity — WHEAT
bushels export —  WHEAT
wheat& agriculture — WHEAT
wheaté& tonnes —  WHEAT
wheat& farm&—-soft — WHEAT

Table 1.1.Induced rule set using the CONSTRUE system [7] for categuyiwheatdoc-
uments in the Reuters data set. The induced rules resulétne@@uracy.

Towards this goal of decreasing the training data in texdg@aization tasks, we believe
that the teacher (user/paid editor) may often be willingntpart her idea of the concept
to the learner by describing properties of the category téebened. Features in a text
document are typically words/terms that occur in it and nstahdard text classification
algorithms use a bag-of-words (BOW) representation. Gpoadingly a concept may
then be defined by a set of high probability terms that occuddouments belonging to
the corresponding category. Some categories may be sofficeccurately described by a
conjunction or disjunction of words that appear in the textexample, thearningscate-
gory in Reuters news articles is probably reasonably atelyrdescribed by the property
that the wordglollar, cents, revenue, getc. occur with high probability in them. An ex-
ample of a set of (automatically induced) rules that filtecwoents on the categowheat
in the popular Reuters 21578 corpus are shown in Table 1.thoAgh providing such a
terse boolean expression (/definition/rule) may requiteswantial effort, we think that a

human can easily point out that the termiseat, farm, commoditgtc are discriminatory.
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Such information may be easy (cognitively) and quick foracteer to provide, resulting in
significant improvements in performance. If so, then thera $trong association between
what information a human can provide and the underlying dwt representation. We
also think that human assisted feature selection will naufgcient in itself for the same
reason that categories and their associated concepts tesinnaoit be “defined” concretely
by a set of attributes. Many concepts can be subtle: for elgntps not clear what the
features constituting an all encompassing definition terfitocuments on the category
arts.

We therefore define tandem learning, an interactive legrparadigm that builds on
active learning. In this framework the learner not only aslesuser for labels on examples
with an aim to decrease the total effort for the teacher, lsat has a mechanism to incor-
porate the teacher’s knowledge on the relevance of featun@properties of the category.
In fact, in our framework, the learner also queries the teadm features. For example,
the learner may ask if the womlindswas more likely to occur in documents in Hurricane
Mitch. We think that leveraging a teacher’s prior knowledgefeatures should accelerate

learning over pure example based active learning.

1.5 Tandem Learning: Proposed Idea and Hypothesis

A tandem learning system is an active learning system wieraystem intelligently
picks features and examples for the teacher to label. Thedeatarts with some initial
concept that is learned by a few labeled examples or feataresthen at each iteration
the learner can query the teacher on the label of an exampéil traditional active
learning) or on the property of a category. The question enpifoperty of a category
is specifically restricted to one of asking on the relevancasefulness of a feature for
determining whether an object belongs to a category or na.ug¢ the phrase “feature
feedback” to imply human assisted feature selection, tscauour final algorithm, the

human gives feedback on features that the system selectskadpecific questions about.
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Rather than formulating the hypothesis as “feature feddbghiumans can accelerate

learning”, we factor the hypothesis into three parts:

1. That there exist a set of features, for which if the learngravided relevance infor-

mation, the speed of active learning can be significantlyrawgd.

2. That the learner can pick these features to ask the teachefietmback on, in a
tandem learning like frameworln the first part we determine that there are some
features, such that, if the learner knew they were relevay & the learning, that
knowledge would bootstrap active learning significantty.the second step we de-
termine if we can come up with an algorithm where the learaeractually ask for

feedback on these important features.

3. And that these features can be marked by humans fairly e&3ige we show that
the learner can pick the necessary features to ask the tealobet, we show that
humans can label these features sufficiently well, that &l @nough to accelerate

the speed of learning.

Such a factoring out is unique to this work, and we think thdidlps separate al-
gorithmic error from human error. We think that such a reaspis especially critical
for researchers in Human Computer Interaction, where dfteralgorithm is treated as a
black-box [62] and it has been difficult to pin point the sauof error when a particular

type of feedback does not work (Section 3.1).

1.6 Scope of the Thesis

We restrict ourselves to text classification laying out adsekperimental framework
for analysis that can be repeated for other domains (disduiss Chapter 9). We also
specifically consider only two forms of input from the teacheformation on the labels of

examples, and information about whether a feature helgsigti;ate an object belonging
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to the category from one that does not (this discriminatoppprty of a feature is also
called the relevance of a feature for a given categorizatioblem).

In evaluating our methods we consider effectiveness (acguof categorization) and
the speed of learning by using evaluation measures thatpocate a “learning rate” or

more simply by considering effectiveness after limiteditesck from the teacher.

1.7 Outline of the thesis

In the next chapter we formulate the problem more formalltlioing the proposed
algorithm. We then review past work in machine learning amfdrimation retrieval in
Chapter 3. We also highlight our contributions with refexeto previous work. In Chapter
4 we review the materials and methods used in this thesis.rg® lpart of our work, es-
pecially the tandem learning algorithms, builds on suppector machines (SVMs) which
we describe in detail in that chapter. We also describe atgarning using SVMs, feature
selection, data-sets, and evaluation measures in thatechBfany of our interactive exper-
iments rely on an oracle, which gives a sense of the impron&ypossible using tandem
learning. We describe the oracle in Chapter 4 as well.

Chapter 5 proves the first of the three hypotheses. We also tiyderstand why feature
selection helps the underlying machine learning algorithrthat chapter. Using lessons
learned from Chapter 5, we then move on to design a tandenitmgealgorithm in Chapter
6, filling in the gaps in the skeleton algorithm developed mafter 2. Results on exper-
iments using the tandem learning algorithm are discussé&hapter 7. Our experiments
were performed using both an oracle and a real user. Thessiotboth these experiments
proves hypotheses 2 and 3.

We then define a set of complexity measures that aim to captue“definable” a
concept is in Chapter 8. Our complexity measures serve asl éotaetermine the range
of problems that exist in text categorization, i.e., how gnaancepts are definable (like

“birds”) and how many are not (like “arts”). For example, teém e-mail folders may be
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completely defined by a few properties like the sender ancettipient of the mail whereas
a genre may not be so easy to define. Similarly categorizinggRavheatarticles can also
be typically achieved by a few features (Table 1.1). We abtaany valuable insights for
understanding when and why teacher feature feedback igldeetext categorization.
Chapter 9 summarizes the lessons learned along the wayglayt directions for future

work.

1.8 Contributions of the thesis
e We offer several statistical intuitions and insights ekgleg why tandem learning is

beneficial for text categorization (Chapter 5).

e We design a tandem learning algorithm that extends theeatg®rning approach
to not only query the user on labels of examples, but to alswygtihe user on the
relevance of features for a task. The algorithm incorpertties feedback in a way
that results in significant improvements in performancdwitich less effort for the

teacher (Chapter 6 and 7).

e Our unique experimental design helps separate algoritemac from human error,
bringing out a novel approach for the design of experimemtheé field of human

computer interaction.

e We quantify the nature of concepts that exist in text (Cha@jeoroviding further

explanations for why tandem learning should work.
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CHAPTER 2
THE TANDEM LEARNING ALGORITHM: OUTLINE

Active learning techniques are sequential learning methioat are designed to reduce
manual training costs in achieving adequate learning pedace. Active learning meth-
ods reduce costs by requesting feedback selectively aalligently from ateacher The
teacher is a human in the text categorization domain. Theh&zamay also be called the
user, especially when the teacher training the model is the santieesperson using it, for
example a user who is training a personalized news filtegstesn. Traditionally in active
learning the teacher is asketembership querieshich are questions on the class labels or
categories of selected instances (documents in our case).

In the first chapter we motivated the need for a machine legralgorithm for text
classification that actively learns by querying a human staimces and features in tandem.
We argued that such an approach should accelerate thengamacess, that is, enable the
learner to construct a classifier with less training effort the human. In the proposed
tandem learnindgramework, the teacher is asked questions about the rale\afrfeatures
in addition to membership queries. In this chapter we folyday out the proposed tandem
learning system, a system that builds on active learningranaduce terminology used in
this thesis more formally. We describe the traditionalactearning system in the next
section and then describe how tandem learning builds ovedetarning in Section 2.2. We
also describe theracle which plays an important role in our experimental evatatin

that section.

15



Standard Active Learning

Input: T" (Total number of feedback iterationgj,(Pool of unlabeled instances), irsize
(number of random feedback iterations\Number of instances labeled in each round)
Output: M, (Model)

1. Whilet < init_size
a. (X;,U;) = InstanceSelectionfM, U, 1, random)
b. Teacher assigns labgl to X,
c.t++
2. M, = trainclassifier((X;, Y;)|i = 1...t — 1}, M)
3. Whilet < T
a. (X, . Xy 1-1,U 1) = InstanceSelectionfM,, U, 1, uncertain)
b. Teacher assigns labgl..Y;, ;1 t0 X;... X, ;1
C. My, = trainclassifier( (X;, Y;)|i = 1.t + 1 — 1}, M,)
dt=t+1
Return M

Figure 2.1. Algorithm and block diagram for traditional active leargiwhere the system
asks for feedback on instances orBystem J.
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2.1 Active Learning

A typical algorithm for active learning is shown in Figurel2 An instanceX; (which
is a document in our case) belongs tolassY; (1 < i < M, whereM is the maximum
number of instances available, typically the size of theadst). X; is represented as
a vectorz;;...xz;y of features whereN is the total number of features. Features in text
are typically words, bi-grams (adjacent pairs of words) &mdrams (adjacent triples of
words). This representation, more commonly known as a bagpads representation, has
consistently been found to work well for topic classificatif®8] *. The value ofz;; is
the number of occurrences of terimn documentX;. We work on binaryone-versus-rest
classification withy; taking values of +1 or -1 depending on whether the instantege
to the category of interest, or not. An instance in the doaurnaellection isunlabeledif
the algorithm does not know itabel (Y value). The active learner may have access to all
or a subset of the unlabeled instances. This subset is ¢hbgabol (denoted by/).

The algorithm begins by randomly pickirgit_size number of labeled instances (Step
1) by calling thenstanceSelectiorsubroutine and passing the parameagdomto it. The
model M is then trained on these randomly sampled instances (Stefh2)subscript on
M, U, X andY corresponds to the number of instances that have beendal@denetimes
one may use keyword based search or some other proceducegflrandom sampling
to obtain this initial set, especially in cases when the propn of examples in the two
classes is highly unbalanced. Next, active learning be@@tep 3). In each iteration of
active learning the learner selects a sef afistances froni/ using some criterion (e.qg.,
a measure of informativeness) and asks the teacher to talsétp 3.a). In a popular ac-
tive learning method, called uncertainty sampling, thegikeer selects the moanhcertain
instance [75] for a given modeJMl) and a pool of unlabeled instancé#)( The newly

labeled instance is added to the set of labeled instancetharaassifier is retrained (step

n fact it has been found that even humans can classify doetsagite well using bag-of-word repre-
sentations [42].
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3.c). The teacher is queried a total Bftimes. Thetrain_classifiersubroutine uses the
labeled data as training, as well as the mode)(learned in a previous iteration, allowing
for the case of incremental training [39] or the case whemibdel may be initialized by
prior knowledge [115] (also see Section 5.2).

We use a semi-batch approach of active learning, where Huhée is queried or
instances in each round of active learning (Step 3.a to 3kgare 2.2) rather than one.
A larger value ofl implies a greater (factor af) savings in time, at some cost to effec-
tiveness because the model will not be updated after each instance is selected, and the
InstanceSelection subroutine will not be able to exploit the labebgdreviously labeled
exampleX,; in choosing the subsequent instadGe ; (t <i < j <t + I). For example,
if the learner is using uncertainty sampling (Section 4,le knowledge of the label of
X.4+i; may reduce the learner’s uncertainty of the labekef;, making querying onX,.
redundant but the learner may not be able to measure thisaterin uncertainty unless
the knowledge ofX,; is known. Thus, there is a tradeoff between effectiveneddiare
in choosing the value af and it must be picked carefully by the engineer of the system.

In our experiments we also consider the variant of the algaerishown in Figure 2.1
that we callrandom samplingn which instances are picked uniformly at random in all
iterations. Random sampling is equivalent to traditionglesvised learning. In the pseudo-

code in Figure 2.1, random sampling corresponds to the cheawit_size > T.

2.2 Our Proposal: Feature Feedback and Instance Feedback ifan-

dem
We propose to extend the traditional active learning fraor&wo engage the teacher in
providing feedback on features in addition to instances.dé&eribe the algorithm below
and with pseudo-code in Figure 2.2. Steps 1 to 3.c are iddrtticthe active learning
system previously described. Our modifications to traddl@active learning are in steps

3.d and 3.e. The active learner presents afist {P;...P;} of f features for the teacher
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Tandem Learning

Input: T" (Total number of feedback iterationgj,(Pool of unlabeled instances), irsize
(number of random feedback iterations\Number of instances labeled in each round)
Output: M1 (Model)

1. Whilet < init_size
a(X;,U,) = InstanceSelectionf\, U;_1, random)
b. Teacher assigns labgl to X,
c.t++
2. M, =trainclassifier( (X;, Y;)|i = 1...t — 1}, M)
3. Whilet < T
a. (Xy, ... X111, U 11 )=InstanceSelection\,, U;_;, uncertain)
b. Teacher assigns labgl...Y;,; 1 t0 X;... X} 11
c. My, = trainclassifier( (X;, Y;)|i = 1.t + 1 — 1}, M,)
d.i. {P, ..., Py} = FeatureSelectionM, ;, U;)
ii. Teacher select§ = {F}, .., Fi,} C {1, ..., Ps}
e. M, /=IncorporateFeatureFeedbackf1,. ;, { Fi, ..., Fi.})
Return M.

Figure 2.2. An active learning system where feedback on features isratpoestedys-
tem 2).

to judge (step 3.d) at each iteratioR; denotes the index of a feature € P, < N). Let

F = {F,..., F,} C P denote the subset of relevant features chosen by the useur(in
final implementation in Chapter 6 the user also associatseh ¢-1) with eachF;, but we
ignore that for simplicity). The simplest implementatioihsoch a system can consist of
one whereF is the union of all terms that occur in tHedocuments of the batch. This idea
can be implemented as an interface where the user is askaghiayht relevant words,
phrases or passages while reading the document in orddyebthlee document (Step 3.b),
akin to the system presented by Croft and Das [29]. Many tiomeswould prefer to have
the setP to be an ordered one, where feedbackignis more valuable for the learner

than feedback o, and so on. We use such an approach in our final implementation i
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Section 6.4. The user labeled features are incorporataepn3se where the modéW,, ;
is retrained with this added information.

In our proposed system the teacher is asked two types ofigagsi{1) membership
gueries and (2) questions about the relevance of featureseant feature is highly likely
to help discriminate the positive class from the negatigs<l In this thesis we aim to deter-
mine whether a human teacher can answer the latter type sfigasufficiently effectively
so that active learning is accelerated significantly. A haraad a classifier probably use
very different processes to categorize instances. A humanuse her understanding of
the sentences within the document, which probably invobgse reasoning and use of
knowledge, in order to make the categorization decisionlgveh(statistical) classifier, cer-
tainly of the kind that we use in this thesis, simply usesgratt of occurrences of the
features (phrases). Because of this difference it is natr cidether a human teachean
considerably accelerate the training of a classificatigorthm by providing feedback on
features.

Before we address that issue, we will show that feature #@eldban accelerate active
learning in an idealized setting (Chapter 5). We first seeknéasure potential gain for
improvement and then later examine how actual human tescharapproximate this ideal.
Towards this goal we define amacle We use the oracle to obtain an upper bound on the
performance of our proposed two-tiered approach. The @tawbws the correct answer
needed by the learning algorithm. For example the wairid a highly relevant feature
for classifying Reuters news articles on tharningscategory and our oracle would be
able to determine that this feature is relevant when askealveder, a teacher (human)
who did not understand that stood forcentsmay not be able to identifgt as relevant.
Therefore, the oracle and teacher may differ in their answe@guestions about features,
that is, questions of type (2) above. We assume that theeoead the teacher always
agree on the labels of documents that is, questions of typabdve. After showing the

usefulness of oracle feature selection, we will developrillgms for the Featur&election
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and Incorporatd-eatureFeedback routines for an SVM classifier (Chapter 6). We wdht
show that humans can emulate the oracle for feature feedbaak extent that results in
significant improvements over traditional active learni@tpapter 7).

Note that the teacher is sometimes referred to asracole in the literature [11]. We
will also use the term oracle to refer to a source that givedlack on instances and/or
features, but in this thesis we make a distinction betweenghcher and the oracle. We
will reserve the term teacher or user to refer to a real humwanse feedback may not be
perfect, and we use the term oracle to refer to a source weesack is (close to) perfect

for speeding active learning.

2.3 Summary

We developed the basic framework of the tandem learningrigthgo in this chapter.
The pseudo-code in Figure 2.2 will constantly be referrethtoughout this thesis. We
now move on to discuss the novelty and relevance of tandemitggin the context of past

work in machine learning and information retrieval.
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CHAPTER 3
RELATED WORK

Our work sits in the joint space between machine learningimtedactive information
retrieval. Sebastiani’s survey paper [98] provides an\deer of techniques in these two
areas for solving text categorization. In this chapter we @ place our work in context

with previous research in these areas with respect to thanfiolg criterion:

e the kinds of feedback that have been considered in these arehthe success of

those methods.
o whether a scenario of limited feedback has been considered.

e whether term and document feedback have been consideredjumction with each

other or in lieu of each other.

We describe approaches in machine learning and informedtaeval, their advantages
and disadvantages, stating how our work either comparés artovercomes the deficien-
cies of past methods. We reserve describing other relatekl agsociated with choices
of materials, methods or techniques (either our own or acehwiade over existing ones)
for when those choices have to be made. There is also a satifienount of literature
in statistics which tries to determine the importance ofdfeaselection when the number

training examples is few [54]. We will relate our work to thedrk in Section 5.3.1.
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3.1 Information Retrieval
We begin by discussing techniques for feedback in interadtiformation retrieval
and then move on to discuss work that has been done with régamterface design for

interactive IR.

3.1.1 User Feedback in Information Retrieval

A typical task studied by the information retrieval commntyns ad-hoc retrieval [113]
in which the user specifies her information need to a seargmerthrough a query com-
posed of a few keywords. The information retrieval commyhds studied various forms
of feedback towards enhancing the representation of tiggnatiquery with document feed-
back and term feedback being the chief forms studied [94].

A commonly used mode of feedback is pseudo-relevance fekdb@he standard
assumption made in this approach is that the top few retti@lscuments are relevant
[30, 69]. Then terms from these top documents are used tanealthe query. Although
pseudo relevance feedback often works quite well, ofterrawipg the average perfor-
mance of the system, it can sometimes hurt retrieval pedooa [55] due to the introduc-
tion of “noisy” terms into the initial query, typically du® tthe presence of few relevant
documents in the initial retrieval. The latter may be due pwmar initial retrieval or due to
the fact that there are very few relevant documents for tleeygim the corpus.

A more established alternative to pseudo-relevance fed#disd'true relevance feed-
back” [90] in which a user is engaged in interactively pravgithe system with feedback
on questions that the system generates. The user is typasked to judge the relevance
of documents or terms during feedback. True document fexddias been studied exten-
sively [50] and is used in real world applications [1]. In tleeent past it has been found
that by using large external corpora on which to conductniial retrieval to enhance the
guery representation for pseudo-relevance feedbacky#teras can perform as well as by

using true document feedback [38]. Basically, if the initigtrieval is guaranteed to be
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good with sufficiently many relevant highly ranked docunseihere is no need to ask for
feedback and pseudo relevance feedback should suffice. Bashevork has considered
measuring the quality of the ranked list to determine whetbedback is necessary [4]
using a clarity score [31]. Clarity may be considered to besasure of “uncertainty” of a
ranked list. Very few information retrieval techniques @aonsidered asking for feedback
on “uncertain documents” for ad-hoc retrieval. We will mvithis topic when we cover
active learning in Section 3.2.1.

Term level feedback has been studied in information redti@ith mixed results [6, 29,
16]. The TREC interactive task focused on issues regartimginds of questions that can
be asked of the user. Belkin et al. [16] found that users allengito mark both positive
and negative terms. Koenemann and Belkin [66] found thatsuse happy to use inter-
faces in which queries can be reformulated using a list ofjested terms and also found
performance improvements for some tasks. However, Bea[##@] found that automatic
guery expansion using pseudo-relevance feedback resulbbetter performance than term
feedback by users. Kelly and Fu [62] had a similar experiavitethe TREC HARD track
[114] but Diaz and Allan [37] found that term feedback helpegrove performance on
the same track.

In all of the above work the experimental setup has been $atlitthas been hard to as-
certain whether the poor performance of an approach is dalkgtwsithmic error or human
error. In Chapter 1 we argued that in studying any kind of fiee# one should question
whether the feedback is necessary and useful by condugbipgriound experiments to
measure the ability of the system’s mechanism to absorbetbagback. Then one should
guestion whether a human can provide the necessary feedibdagt of the interactive
information retrieval experiments mentioned previoushydr an implicit hypothesis that
term feedback will be useful and typically measure if usarsgrovide feedback with little
understanding of whether the term recommendation teckeignd the methods for incor-

porating feedback are effective. More recently there has veork that tries to approach
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the ad-hoc retrieval task in a manner similar to ours by Mageand Rijsbergen [78] and

Ruthven [93]. Both papers found that users make sub-opfiteeikions about terms to

chose. Magennis and Rijsbergen had some obvious deficgemctaeir approach, a fact

that they acknowledge. Ruthven improved on the experinhsatap of Magennis and Rijs-

bergen and found that term feedback using an oracle coutdogiformance improvements
even over automatic query expansion. However, he foundigeas cannot mark the terms
required by the optimal query with reasonable precisiondl®though, he did not report

the performance achieved by the user-marked terms. Inadind that even though users
marked only a fraction of the terms marked by the oracle, gréopmance improvements
were on par with the oracle (Chapter 7).

Although both term and document feedback have been coesider ad-hoc retrieval,
most of the work has been in understanding whether each o€ thedes of feedback
individually help improve performance over the initialneval. Some feedback interfaces
may have incorporated term and document feedback simoltahe[114], but there has
been little work in factoring out the cost and benefit of onedmof feedback over the
other. We also try to understand the kinds of problems forcvla few quick rounds of
feedback (at the term and/or document level) are likely tadeful. In fact we find that in
scenarios of limited feedback a tandem approach is best.

In the ad-hoc retrieval tasks described above, feedbackdeslimited to a handful of
rounds of either document or term feedback. In the TREC HARIDK, the limitation is
imposed by time; that is, the user gives feedback for a maximitthree minutes per query.
However, there has been no systematic attempt to underttarichte of learning” of dif-
ferent methods due to feedback like in our work. It must beddhat there has been some
work in understanding the rate of learning due to relevaredtback [95], the purpose of
those experiments was to determine the number of iteratowrvghich relevance feedback
showed significant improvements, rather than to comparépreifeedback algorithms to

determine which algorithm results in a greater improvenmeperformance than the other.
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A task more similar to the document classification task thatane interested in and
one that the information retrieval community has workedfiltiering [72] . In the TREC
filtering task, an initial information need is specified thgh a query. Subsequently doc-
uments are assumed to arrive in real-time and the systenpected to classify them as
belonging to the topic of the query or not. In the TDT filterifigacking) task [3], instead
of an initial key-word query, the user is assumed to providaraple document on the topic
of interest. Again, the system is expected to classify danisarriving in a stream, on the
basis of relevance to the topic. Both the TREC and TDT tasks hdsupervised” version
where the user is assumed to give feedback on every docuhsdrthe system classifies
as relevant. The standard assumption of unlimited docureeadtback from the user in
this task is an unreasonable one. In Section 7.5 we consitera realistic version of the
TREC filtering task, and find that term feedback is benefididditionally in this task, like
in ad-hoc retrieval, documents for which the user is askefefedback, are typically ones
that the system is highly confident about. Occasionallypthesibility of querying the user
on uncertain documents, with the aim of exploration, in otdemprove performance has
been considered [117, 70]. However, there has been vegy Wtirk that systematically
tries to understand the effectiveness of such an approathesearch in this direction in
information retrieval is quite preliminary.

Thus there are myriad information seeking tasks studiedebgarchers in informa-
tion retrieval for filtering with different starting pointend different modes of feedback.
However, as we have seen, a combination of term and documedibéck with the aim of
understanding whether one mode of feedback is better tleaotkier has never been stud-
ied. Additionally little work has considered studying timegact of feedback on the rate of
learning. Querying the user on uncertain documents as eggodop-ranking documents

is also not well-studied in information retrieval.
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3.1.2 Human Computer Interaction

Human computer interaction (HCI) is an area of study thatsdedth interfaces be-
tween humans and computers. HCI for information retrieakés$ into consideration the
cognitive load of different interfaces for information ass — query specification and re-
finement, visualization of search results and so on [66, 32185]. Considering the cogni-
tive load of interfaces is important, especially for an ratgive technique like the proposed
tandem learning system. Although our evaluation of the togrioad of tandem learning
in this work is by no means complete we have tried to bear irdrtive willingness and
ability of users to provide feedback throughout this workir @reliminary user studies on
the ability of users to mark terms versus documents anditineetiken for each is interest-
ing with several anecdotal examples that can possibly itné towards a large scale user

study which we leave for future work.

3.2 Machine Learning and Text Classification
We now review the machine learning literature, beginnintpwactive learning, a foun-

dational technique for our work.

3.2.1 Active Learning

Our proposed method is an instance of query-based learBjranfd an extension of
standard (“pool-based”) active learning which focuses @ective sampling of instances
from a pool of unlabeled data [26]. The goal of active leagnimto reduce the number
of training examples needed to learn a classifier and theré¢ifios learning paradigm fits
well with our objective to learn quickly. To the best of ourdaiedge, all prior work
on query learning and active learning focused on varianta@hbership queries, that is,
requesting the label of a possibly synthesized instance wotk is unique in the field of
active learning as we extend the query model to include feas well as document level

feedback.
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Query-based learning can be very powerful in theory [5], iehtbe instance that the
human is queried on is a synthetically generated uncerxample. Such arbitrary queries
may be difficult to answer in practice. Baum and Lang [11] aggptjuery-based learning
to the problem of recognizing handwritten digits. The geegenerated were often a ran-
dom blur, halfway between two numbers, say a “5” and a “7”. Husfound this hard
to label and hence the popularity of pool-based methodstf2&]query the user on real
instances from the corpus. We try not to let such a chasm leetweeory and practice
exist in our work, by constantly considering the effecteesand ease of predictive feature
identification by humans in our application area — text dfecsgion.

Information retrieval has been using measures of unceytainthe initial retrieval to
determine whether feedback is necessary [4, 31]. Howdwesetmethods do not have the
theoretical guarantees that methods studied in machin@mgghave. Secondly, they do not
measure the uncertainty of an example (document) as is domaive learning. Whether
standard active learning techniques will work for ad-hddeeal or vice-versa is a different
guestion, and is a research question that is gaining paopufa01]. Our work is in text
categorization for which there are uncertainty samplingsnees from machine learning

that are known to work well. Hence, we use those techniquesuiobasic architecture.

3.2.2 Explanation Based Learning

In explanation based learning, the learner is provided with training example, a
domain theory, some operational criteria and a goal corj8@p86]. The explanation stage
tries to use the domain information to prune away all uninguaraspects of a concept in
order to explain the goal concept. The learned concept isgkeaeralized, while keeping
in mind the goal. Feature feedback may be viewed as the tepotding evidence or
an explanation for the learner on the reasoning behind thediteg. However explanation
based learning is designed for deductive tasks rather ttmmdtuctive tasks that we are

interested in.
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3.2.3 Feature Selection

An engineer using a typical out-of-the-box machine leagraystem typically specifies
a large set of features to represent instances, leavin@#feof discerning good features
from bad ones to the algorithm or to an automatic featureceletechnique. Feature se-
lection is often employed to improve the space or time efficyeof a classifier [21]. The
impact on performance is dependent on the classifier andutind@r of training examples
available [46]. When there are sufficient labeled instanoesst state of the art learning
algorithms are able to distinguish the relevant featuremfthe irrelevant ones. Hence
there is little improvement in performance with an addiéibleature selection component.
Sometimes, for a classifier learned on ample training dais bietter to leave the feature
selection to the learned weights and excessive featurengumay even hurt performance
[21]. However, when there are few labeled instances, wgrkiith a small set of relevant
features tends to be significantly more useful. This phemamédias been referred to in
statistics as the Hughes phenomenon [53]. Unfortunatetyptautomatic feature selection
well, we need sufficient training data, leading to a chicked-egg problem. Other than the
work by Hughes (which we will describe in detail in SectioB.8) we have seen little work
in trying to understand the role of feature selection in ac@s with limited feedback, and
particularly so for text. Our work appears to be the first tagider feature selection in an
active learning setting. In Chapter 7 we show that userslaesta do feature selection to
an extent that results in sufficient enough overlap with aoraatic feature selection algo-
rithm trained on ample data, to result in a large improvenreperformance by mitigating

Hughes phenomenon.

3.2.4 Budgeted Learning
Budgeted learning is an area of machine learning that warkdentifying the value of
obtaining a measurement on a feature in determining the ¢ditzan instance. In a typical

scenario the feature values are unknown and there is a cbstiing each feature’s value
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for each instance of interest and the objective of the leam® pick the most valuable
feature to obtain a better estimate of the classifier (dhg.work of Lizotte et al. [76]). For

example, in trying to diagnose a disease, the doctor maydabeice between asking the
patient to conduct one of many possible tests, each of wilishsome money. Budgeted
learning would help pick the most effective test to perfoby,considering the cost and
value of each feature towards decreasing uncertainty aheuturrent diagnosis. In our
setting, the cost for all features is the same and therdboidgeted learning is not directly

applicable.

3.2.5 Human Prior knowledge for Text Classification

Past work in text classification that has used human knowleddeatures typically as-
sumes that prior knowledge is given at the outset [115, 9613p The labels on features
are typically used to “soft label” instances containingsdeatures by assigning them to
categories associated with those of the labeled featutes.ektra labeling is incorporated
into training via modified boosting or SVM training. The d#ger may use the “soft la-
bels” by assigning low confidences to such instances or Ithegr misclassification costs
compared to those of instances labeled directly by a humae. dD our feature incorpo-
ration methods uses such a technique (Section 6.3.3). &umdtihg as an idea is almost
identical to pseudo relevance feedback. Unlike the othekvotext classification, we do
not expect the user to be able to specify features from pnomkedge. We expect that
our proposed interactive mode has an advantage over regypsbr knowledge from the
outset, as it may be easier for the user to identify or rees#vant features while labeling
documents in the collection and being presented with cateliiatures.

None of the works mentioned this far, consider the use of frowledge in the active
(sequential) learning setting. The work of Godbole et al [d%&imilar to ours in that it
considers asking for features in an active setting. Thenkvmowever emphasizes system

issues and focuses on multi-class training rather thanedwdanalysis of effects of feature
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selection and human efficacy. Their proposed method isctttedn that it treats features as
single term documents that can be labeled by humans. Likatiee work cited above, they
also study labeling features before documents. They do loegrge much improvements
using their particular method over standard active legrimrthe single domain (Reuters)
they test on. We enhance their simple idea in Section 6.3d3fiad improvements in
performance.

Jones [59] also used single feature-set labeling in theegbwif active learning: the
user was queried on a feature rather than the whole instdhedabeled feature was taken
as a proxy for the label of any instance containing that feato labeling a single feature
potentially labeled many documents (similar to fudtlabeling technique discussed next).
This was found to be more economical than whole-instanaditapfor some tasks. The
instances in their work consisted of only two features (amAplrrase and a context), so
labeling one feature is equivalent to labeling half an inséa Our work differs in that our
instances (documents) contain many features (words) amdmbine both feature labeling
and document labeling.

Our study of the human factors (such as the quality of feddlad costs) is also a
major differentiating theme between our work and previowskwin incorporating prior
knowledge for training. Past work has not addressed thigejssr might have assumed
experts in machine learning taking a role in training theesys[96, 115, 47, 59, 35]. We

only assume a basic knowledge about the topic of interest.

3.3 Summary

We saw that the fields of machine learning, text classificadiod information retrieval
have significant overlap in the kinds of problems they anatyyo solve, with some overlap
in techniques. How terms for feedback are obtained in tedsification is typically naive
where the user marks relevant terms at the outset, prioatailey. Often the human must

go through a large list of features or must have sufficient @iorknowledge to specify
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a complete list off the top of her head. There has been litilesitleration of techniques
that solicit feature feedback in an “active” way. The inf@tion retrieval literature on the

other hand, is rich in methods for term feedback, and sombesfet should be leveraged
for term feedback in text categorization. Informationiestal research on feedback tech-
niques has always kept interface issues in mind, therefanes rasily bridging the gap

between theory and practice. Machine learning on the otlued has much more variety in

understanding how to choose examples for feedback throeghas like active learning,

whereas information retrieval has typically relied on tapking documents for feedback.
We think a new approach which takes lessons from these twasfigill result in much

better performance for text categorization.
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CHAPTER 4
METHODS AND MATERIALS

Much of this thesis is experimental and builds on certaimddad text classification
techniques like support vector machines (SVMs). We desdhiese techniques and al-
gorithms in this chapter, diving into detail for SVMs. Thisvel of detail is necessary
to understand better the methods we used to explore the iamwer of feature selection
(Chapter 5) and to understand the tandem learning algodgnreloped in Chapter 6. We
describe our data sets and evaluation measures in Sectibbaad 4.3. We also perform a
sanity check of the basic building blocks of our system — S\évid SVM active learning

—in Section 4.4 to make sure they compare well with previopablished results.

(a) Linear Classifier (b) Maximum margin Classifier

Figure 4.1. Linear classifiers.

4.1 Text Classification using Support Vector Machines
Support vector machines are a classification techniquehthet gained immense pop-
ularity in the recent past [112] and particularly so for teldssification [57]. The main

idea is to separate the classes by a hyper-plane that mashie margin between the two
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classes. Although the problem is formulated for linear myganes, this is not a limitation
as problems that are not intrinsically linear can be comekto linear problems through
the use of a kernel [97]. Kernels transfer the problem to & dighensional space where
a linear hyper-plane is usually effective. A linear classifs usually sufficient for text
classification because of the intrinsic high dimensiopafttext. We further motivate the
choice of SVM as a base classifier in the next section, foltblayethe problem formulation
for hard-margin and soft-margin classifiers. In the end &f fection we describe active

learning with support vector machines.

4.1.1 Why Support Vector Machines?

For many linearly separable problems there can be more ti@hyperplane that sepa-
rates the data (see Figure 4.1(a)). The simplest algoridh@alinear classifier is theercep-
tron algorithm [92]. The perceptron learns a linear functionhef torm f (X)) = w - X + b.

It is a mistake-driven, incremental algorithm: when a neaining example is added, the
weight vector is adjusted only if it is misclassified. Theref, the classifier is trained fewer
than|7| times, whereT is the training set. The correction to the weight vector isgpte
adjustment of the fornw; = w; + nY;X;, for every instanceX; that is misclassified. The
parameter called the learning rate.

A support vector machine (SVM) on the other hand, is a maxirmangin classifier
that tries to find the hyperplane that results in a maximabssmn of the two classes
(see Figure 4.1(b)). The margin is the distance between dkgiye example closest to
the hyperplane and the negative example closest to the igper, with the distance being
measured along a line perpendicular to the hyperplane oagh the motive for a margin
that is maximal seems intuitive, itis also well motivatedhg Vapnik-Chervonenkis theory
that states that such a hyperplane minimizes expectedrtes{£12].

Support vector machines have been proven to be effectivenymomains, and espe-

cially so for text classification and filtering [57, 22]. Atihgh there has been some recent
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work that has shown that decision trees are better than S\ivisedain text classifica-
tion tasks, and that SVMs match the performance of a dectsg@nonly after aggressive
feature selection [46], going by their generally good perfance, we choose an SVM as
the primary tool for investigation. Furthermore much reskas being done for SVMs in
the areas of incremental training of support vector machjB8] and concept drift [64],
both of which are particularly useful given the dynamic emtof document collections,
allowing for future research that combines our techniquéstivese new ones. Uncertainty
sampling with SVMs also provides a well understood framéwfor incorporating ideas

from active learning [107].

4.1.2 Problem Formulation

Given a training set composed bexamples and the associated class information for
each example, the objective is to obtain a hyperplane trettdeparates the data. More
formally, the training sef” consists oft example and class-label pairs & {(X;,Y7)...
(X, Y2)}) (Refer to the trairclassifier subroutines in Figures 2.1 and 2.2). Eaghs
represented as a vectd; ;...x; v }, Of IV features. The classes belong to ong-ef, —1}
(i.e.,Y; € £1) with +1 denoting the label associated with an “on-topic” documeuat-al
denoting an “off-topic” document.

A hyperplane is given by the paftv, b), with w being the direction vector of the hy-
perplane and the bias. If the data is linearly separable then we can findrapab) such
that:

Yi(w-X;+b) >1Vi=1..t (4.1)

Note that ifw andb are scaled by the same quantity, the decision surface gwEnba-
tion 4.1 is unchanged. Aanonical hyperplane defined as the hyperplane corresponding
to the unique paifw, b) when the following constraint is imposed:

4r_nlint lw- X, +bl =1 (4.2)
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Normalizing the equation of the hyperplane in this way tocésonical form makes
certain calculations convenient. The set of hyperplanésob) pairs that satisfy the con-

straints in equation 4.1 and 4.2 constitute ¥eesion space

4.1.3 The Hard Margin Classifier
The width of the margin can be easily shown todyéw| (in the canonicalized case)
and given that the objective is to maximize this quantitg,aptimization problem can now

be stated as:

mipg(w) = guiw
subjectto  Yj(w'X;+b)>1 i=1..t (4.3)

The above optimization problem can be solved using quadpatigramming by con-

structing the Lagrangian as follows:
1 t
L(w,b,A) = gl[w]* = > M[Yi(w - X; +b) - 1] (4.4)
=1

whereA = (A4, ..., \;) is a set of Lagrange multipliers corresponding to the cairgs in
Equation 4.3. More on the theory of Lagrange multipliers barfound in any standard
convex optimization book [20]. Equation 4.4 has to be miaiai with respect ta and
b and maximized with respect tb (A\; > 0). The solution can be found through standard
guadratic programming optimization techniques which wi mat outline here [97]. We
use the implementation in the LibSVM toolkit [24].

To predict the class of an unlabeled instan¢e we simply compute the following

quantityY (the prediction).
t
Y] = sgn(>_ Yi\iX[x; +b) (4.5)
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This summation can be computed rather quickly because mtst &, values turn out
to be zero. In fact the values are non-zero only forgtpport vectors- the instances that
lie on the margin (See Figure 4.1(b)). Thes control the extent of influence of each of the

support vectors, with a more influential example having aigrevalue of),.

Figure 4.2. Soft Margin Classifier

4.1.4 Soft Margin Classifier

In reality all the constraints in Equation 4.3 will not beishable, with data looking
more like in Figure 4.2. In order to account for the violatmfrconstraints, a set afslack
variables{¢,;}!_,, each corresponding to the classification error for a tnginnstance is
introduced. The optimization problem of 4.3 now becomesaimaaximizing the margin
(as before) and minimizing error. The modified problem iegias:

1 t
miné(w,5) = 3llull+C Y&

subject to Yi(w- X; + bz)_lz 1-¢

& =0 (4.6)

The constant” is a user specified constant, often referred to as the mssitadion
cost.C'is typically obtained through cross-validation. A valud 0is found to be effective
for text-classification problems [57]. The Lagrangian foe tsoft margin classifier now

becomes:
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Lw b AZT) = gl S Ai(w- Xo+b) 1]
i=1
+ Y na+od &) (4.7)
=1 A

The \; values are constrained to lie betwerandC' (0 < \; < () for the soft margin
classifier. As with the hard margin classifier, thevalues are non-zero only for support
vectors. However, this time the values are bound (upper d)ooythe user specified con-
stantC'. It turns out that we can easily specify a differéntor different training examples,
and in this way control the maximum influence of a given tragnexample. The same
QP solver in the LibSVM toolkit can be used for a problem whdifeerent examples have
different misclassification costs. We will exploit this fac the design of our algorithm in

Chapter 6

4.1.5 Active Learning in Support Vector Machines: Uncertanty Sampling
Uncertainty sampling [75] is a type of active learning in ahithe example that the
user (teacher) is queried on is the unlabeled instancelieatlassifier is least confident
about. When the classifier is an SVM, unlabeled instanceestdo the margin are chosen
as queries [107]. This is one way of implementing thstanceSelectionsubroutine in
Systems 1 and 2 (Figures 2.1 and 2.2 respectively). If anrtainenstance lies exactly on
the hyperplane it results in a reduction of the version spgaxactly half [107]. If we can
keep querying the user on examples that lie on the hyperplarean decrease the number
of training examples exponentially (by reducing the vargpace by half with each query)
when compared to the case when the training data is obtadimedgh random sampling.
In reality, there may not be an example exactly on the hypemht each round of active

learning, and hence we do not see the theoretical expohéetieease, but nevertheless
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for many text classification problems, uncertainty sanplisymuch better than random

sampling [75].

4.2 Data

Our test bed for this thesis comes from four standard domaims first dataset consists
of the 10 most frequent classes from the Reuters-21578 s¢@ali The 12,902 documents
are Reuters news articles categorized based on topics swedrrdngsandacquisitions
The Reuters corpus is a standard benchmark for text caredjon.

The second corpus is the 20-Newsgroups dataset collectedray[68]. It has about
20,000 documents which are postings on 20 Usenet newsgrdingscorpus has a large
vocabulary compared to the Reuters corpus (news artiglesoebe more formal and terse)
and it has many documents in each category which are taafjgmélated to the category’s
topic. The topics reside in a hierarchy with broader topiks $portsand computersat
the top level which are further divided into narrower sulglons. For examplesports
encompasses more focused groupsti&seballandhockey There are 20 categories at the
lowest level of the hierarchy.

The third corpus is the TDT3 corpus [3] that has a 101K documen3 languages
from both broadcast and news-wire sources. The Linguisd@aZonsortium (LDC) pro-
vides the output of an automatic speech recognizer (ASRhbroadcast news sources.
Similarly for documents not originally in English they pide corresponding documents
machine translated (MT) into English. We use the ASR and madhanslated documents
in our experiments in addition to the original English tekhe noise in the ASR and ma-
chine translation output makes the TDT corpus particuldiffcult to work with. The
topics in the TDT corpus are based on news events. Thusicane Mitchandhurricane
Georgewould be two different topics and developing a classifieejpesate the two classes
is seemingly a more difficult problem. The two classes woualdeha lot of common words

especially with regard to lives lost, rescue operationskedc example, the wordsgormand
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damageesach respectively occur in 50% and 27% of the documenksioicane Mitchand

in 75% and 54% of the documents barricane GeorgeThese common words are proba-
bly useful to detect a generic topic likeirricanebut are not that useful in discriminating
hurricane Mitchfrom hurricane George. However, we think it would be fairiyial for

a human to point outlitch and Georgeas two keywords of importance which could then
accelerate learning. The wokditch occurs in 42% documents dwirricane Mitchand in O
documents omurricane GeorgeSimilarly, the word George appears in 0.05% documents
on the topic othurricane Mitchand in 88% of the documents on hurricane George.

The fourth corpus is the larger Reuters corpus [74] comgjsbf 810,000 documents
in the English language covering a broad range of topics. CHbegories are labeled by
Reuters and the labeling is not exhaustive, that is, onlicsopf interest to Reuters cus-
tomers are labeled. There are a total of 104 categories,eaith category being a node in
a topic hierarchyShare listingreservesetc., are examples of topic categories.

One document can belong to multiple categories in the Rewed 20 Newsgroups
corpora, while in the TDT corpus a document can be assocwitidonly one category.
The Reuters-21578 corpus and 20 Newsgroups corpus are finecoraora we use for
ablation experiments throughout. The final algorithm is #¢sted on the TDT3 and RCV1
corpora. For some of our experiments we used additionalstta We describe them in
the relevant chapters.

Documents were preprocessed using the Rainbow toolkit i@ Extract features by
discarding stopwords and normalizing them (lowercasejisteg). Features that occurred

fewer than 5 times in a dataset were discarded.

4.3 Evaluation
In this section we explore measures to quantify effectigsraand efficiency (the speed

of learning) of active learning.
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4.3.1 F1 for Effectiveness
The simplest and most popular metric for measuring texsdiaation performance is

accuracy defined as

A number of documents correctly classified
B total number of documents

(4.8)

Many of the problems described in section 4.2 have high dkew, that is, the ratio of
positive class to negative class for our problems ranges id1% to 42%. For a class
skew as low as 0.01%, a naive classifier that classifies dlrnices as negative achieves
almost 100% accuracy. Therefore, we need a metric that atrates on how much of the
relevant material has been filtered. One such measyeasion(P) which takes into

account how many of the documents declared on-topic welkerglevant and is given as:

number of relevant documents detected

_ i 4,
number of documents detected on topic (4.9)

The second measurecall (R) measures how many of the relevant documents were actu-

ally detected to be on topic.

B number of relevant documents detected

4.10
number of relevant documents ( )

There is an inverse relationship betwerand R: a technique that predicts very few pos-
itives will have high precision, but low recall and vice-sar We therefore cannot use
precision or recall alone and need a measure that combiedw/ith £'1 is one such mea-
sure and is given as:

F1=2PR/(P+R) (4.11)

We denote effectiveness of a model trainedtamaining examples by'1;. In our

experiments is typically small, taking values as low as 2, 7, 12 and so on.
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4.3.2 Efficiency

The deficiencymeasure was proposed by Baram et al [10] as a measure of tbeé spe
of an active learning algorithm, with the aim of comparinffetent active learning algo-
rithms. Baram et al. defined deficiency in terms of accuramcesaccuracy is not a reason-
able measure of performance for the classification probleetsave chosen, we modify the
definition of deficiency, and define it in terms of thé score. For deficiency a lower value
is better. As we also report on th&l scores, for which higher values are better, for consis-
tency and easier interpretation of our charts and tablesfweakfficiency= 1—deficiency
Efficiency has a range from O to 1, and a larger value indicatister rate of learning.
Thus, in all our reports higher values are better.

Let F'1;(RAND) be the averagé'l achieved by an algorithm when it is trained on
t randomly picked instances aridl,(ACT) be the averagé’l obtained using actively
picked instances.

Efficiency, Er is defined as:

Y, (F1y(RAND) — F1,(ACT))

B = L ST (F1,/(RAND) — FL,(RAND))

F1,/(RAND) is the F'1 obtained with a large numbei{) of randomly picked in-
stances. The valug'l,,;(RAND) represents the performance of a classifier with a large
amount of training data, and can be considered the optinmBdnpeance under supervised
learning. With large amounts of training data, we expectgbdormance of a classifier
trained using active learning to be about the same as a faadsained using random
sampling. However, we would like active learning to applo#iuis level asquickly as
possible. The metric therefore takes into consideratiom faw the performance is from
the optimal performance by computing the differencé,,(RAND) — F'1,(ACT) and
F1,/(RAND) — F1,(RAND). The metric compares this difference whedocuments
have been actively picked to the difference whelocuments have been randomly picked

for increasing number of training documents
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Since we are concerned with the beginning of the learningeswre stop afte?” = 42
number of documents have been sampled. For expedience,danetimeasure perfor-
mance at every point from 2 to 42 labeled documents, but ctenihe summation at
discrete intervals, measurinfgl after each additional five documents have been labeled:
t=2,7,12,17...42. For this thesis we tak&/ = 1000, that is, we consider the optimal
random-learning performance to be attained after theitilersbas seen 1000 labeled in-
stances. In our experimentdl, (e) is the averagé'l computed over 10 trials. In addition
to efficiency we reporf’1l, for some values of.

To understand the intuition behind efficiency, we can dragvdhbtive learning curve
by plotting F'1,(ACT) for increasing values of, as shown in Figure 4.3. Similarly we
can draw the random learning curve by measufiig(RAND) for increasing values of
F1,, is a straight line representing the best achievable pedno®. Then efficiency is one
minus the ratio of the solid colored area to the spotted arba.higher the efficiency, the
better the active learning algorithm. We aim to maximizehefticiency andF'1. In some
of our experiments we obtain efficiencies exceeding 1. Thauke to using a finitd/: it
is possible that a classifier produced by active learning 2ordfewer instances may do

better than a classifier trained on a random sample of a 1@@#nces.

4.4 Testing the Base Classifier

We compared the base SVM classifier and the implementatianadrtainty sampling
we use to previously published baselines on the 20 newsgroogpus. On conducting
experiments similar to those of Bekkerman et al. [13] we iobéaMacro averaged BEP
(Precision at the point where Precision=Recall) of 82.8%itlie 20 newsgroups corpus.
Bekkerman et al., obtained a slightly higher BEP of 85.6%e($&ble 5 of their paper).
However, one must note that they employed feature selewatioch we did not. In spite
of that, the performance is comparable, indicating that S\&v robust in the presence of

many irrelevant and redundant features.
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Figure 4.3. The figure illustrategfficiency the performance metric which captures rate of
learning. The figure on the right illustrates dearning surface The plot is a measure of
F'1 as a function of the number of features and training docusnérite dotted line traces
the region of maximund'1. With few training documents, aggressive feature sela¢tew
features) is needed to maintain high accuracy. The thick dand illustrates traditional
active learning.

We then compared the performance of vanilla uncertaintypsiam (active learning)
from Tong'’s dissertation [108]. We try to emulate the expemtal conditions described in
Section 4.1.3 of that work. Uncertainty sampling with SVMsalled the “Simple” method
in that work. The results of our implementation (Figure £dinpare quite well with theirs

(Figure 4.5 in Tong’s thesis [108]).

4.5 Summary

In this Chapter we reviewed methods and materials used snthieisis. We use sup-
port vector machines, uncertainty sampling, and fairlydéad preprocessing to build an
underlying framework which compares well with the statela &rt in text classification
and active learning. We also outlined the measures usedatttifjuthe performance of our

methods laying out the complete experimental frameworkHisrthesis.
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Figure 4.4. Comparing the base classifier with the state-of-the-art.
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CHAPTER 5
ORACLE EXPERIMENTS

Equipped with the intuitions developed in Chapter 1, anddbés developed in Chapter
3, we now explore the benefits of human aided feature seteictiactive learning. We leave
the question of how those features may be obtained for I&ect{on 6.2) and rather try
to determine the extent of the gains we can get from featleets®n using an oracle in
Section 5.2. We then explore why we obtain these gains byhgdtlow feature selection
impacts the underlying learning algorithm in Section 5.3.

In this Chapter we seek the answer the following questions:

e Can feature feedback significantly boost active learnindggmance? In Section
5.2 we find that feature feedback using an oracle helps ingpactive learning per-
formance, especially in the early stages of learning, wiennumber of labeled
documents is as few as 7 and 22. The impact of feature seledtioreases as the

number of labeled examples increases.

e Should we use feature feedback during the entire activaniegrprocess (both in-
stance selection, and model selection) or only for modeicsi@in? In Section 5.3.2
we find that most of the benefit of feature feedback is for meddction, although

there is some benefit for instance selection.

5.1 Design of the Approximate Feature Oracle
The (feature) oracle in our experiments has access to tledslal all documents in

the data-set (hence the name oracle) and uses this informtatireturn a ranked list of
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features sorted in decreasing order of importance. Infoomagain is a common measure
for ranking features and has been found to be quite effe[@Re21], and is easy and quick

to compute. Information gain is given as:

IG = Z Z P(c,r)logm

ce{-1,+1} 7e{0,1} P(C) (T)

wherec denotes the class label (+1 or -1) from section 4.1, a0 or 1 indicating the
presence or absence of a feature respectively. In the ogapleriments in this chapter,
we cut off the ranked list (therefore obtaining a featuresgtipat the point that yields the

highest average active learning performance.

5.2 Extent of Speed Up Possible: Oracle Experiments

Following the algorithm for System 3 (Figure 5.1), e N (the total number of fea-
tures) and let us assume that the oracle selectsriest important features (by information
gain) in Step 1.b. The séf is used to initialize the model in Step 2. In our implemeriati
this initialization informs the model to ignore all featareot inF during training. Ran-
dom sampling (Step 3.a), in this particular implementgtdoes not use any of the feature
information or the initial model. The model is then trainadtbe initially picked instances
(Step 4). Since the model has been initialized with thef5ahe trainclassifier subroutine
zeros out the values of all features notArfor each of the training instanceg, 1 <1 < t.
We now perform active learning on the instances in this reddeature space (Step 5). We
evaluate these experiments at many points in the two-dimealsspace of number of fea-
turesk versus number of labeled documentsy measuring the F1 scoré?1,(ACT, k).

We can similarly measure performance in the reduced feasfpaee when instances are

INote the slight difference in notation from Chapter 4. Thditidnal parametek denotes the number of
features used by the classifier. Note thdt,(ACT) = F'1,(ACT, N)
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picked randomly. Thus we can compute efficiency in the reddeature space aS, (k).
When f = k = N the algorithm reduces to traditional active learning (FFég2.1).
When System 3 is used with a user instead of the oracle it iv&guat to a scenario

where prior knowledge is used to initialize the classifié, [915, 47, 59].

Use of Feature Feedback Before Active Learning

Input: 7" (Total number of feedback iterationgj,(Pool of unlabeled instances)jt_size(number
of random feedback iterations)
Output: M, (Model)

l.a.{P,..., P;} = FeatureSelectiont/,)

b. Oracle select§ = {F'1,.., F;,} C{Py,...., Ps}
2.M=IncorporateFeatureFeedbackiy, { F1, ..., Fx})
3. Whilet < init_size

a. (X, U;)=InstanceSelection(M;_1, U;_1, random)

b. Oracle assigns lab&] to X;

C.t++

4. M, =trainclassifier{ (X;, Y;)|i = 1...t}, M)

5. Whilet <T
a. (X, U;)=InstanceSelection(M;_1, U;_1, uncertain)
b. Oracle assigns lab&] to X;
c. M, = trainclassifier{ (X;, Y;)|i = 1...t}, M;_1)
d.t++

Return M

Figure 5.1. An active learning system where feature selection is dof@éénstance se-
lection System 3. This is one of the two set-ups used in our oracle experis@escribed
in Section 5.2. The second set-up is shown in Figure 5.7.

5.2.1 Experimental Setup

We performed our experiments on the Reuters-21578 and 2@dtewps corpora. We
consider each topic as a one-versus-rest classificatidmgmo giving us a total of 30 such
problems (listed in Appendix A). We also pick two pairs of igasonfusable classes

from the 20-Newsgroups domain to obtain two binary classifon problems viz haseball
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vs hockeyandautomobiles vs motorcyclesn all we have 32 classification problems for

experiments in this chapter.

5.2.2 Improvements to Active Learning with Feature Selectin

F1

Figure 5.2. The figure illustrates thiearning surface The plot is a measure df1 as a
function of the number of features)(and training documents)( The dotted line traces the
region of maximum#'1. With few training documents, aggressive feature seledtiew
features) are needed to maintain high accuracy. The thidklmend illustrates traditional
active learning.

Figure 5.2 shows a plot df'1,(ACT, k) for different values of the number of features
k and number of labeled training instandesfor the earningscategory in Reuters. The
dotted curve traces the maximuf for each value of. Thez, y andz axes denoté, ¢
and F'1,(ACT, k) respectively. The number of labeled training instanceanges from 2
to 42 in increments of 5. The number of features used for ifiesson £ has values from
33,378 (all features)33378/2, 33378 /4 to 32. The dark band represents the case when all
features are used. This method of learning in one dimensimpresentative of traditional
active learning. Clearly when the number of documents is p@rformance is better when
there is a smaller number of features. As the number of dontsnecreases the number

of features needed to maintain high accuracy increasesn #re figure it is obvious that
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we can get a big boost in accuracy by starting with fewer festand then increasing the
complexity of the model as the number of labeled documectease.

Table 5.1 captures the behavior of all the problems in thed®eworpus when there
is an oracle to do the feature selection. The second coldma (V) in Table 5.1 shows
the efficiency obtained using uncertainty sampling andVafieatures. The third column
(k = n) indicates the average efficiency obtained using unceytaampling and a reduced
subset ofn features. The feature set sizeat which this efficiency is attained is shown
in column four. For each classification problem, we identifg feature set size which
optimizes the efficiency, that is, optimizes the rate at Whstassification performance
under active learning approaches learning with all of the.déhis optimal feature set size

for active learning: is given by

n = argmax F (k)

Figure 5.3 shows the efficiencies &f,(/N) and £, (n) for the individual problems in
the three corpora. In many casés, (V) is much less thai,,(n).

Column 5 ¢ = N) in Table 5.1 shows the value @f1;(ACT, N): the F1 score with
seven instances selected using active learning, wheradlires are used. Column 6 shows
the averagé’'1;(ACT, m) using a reduced feature subset. As for efficiency, the bagirfe
subset sizer() for each classification problem is obtained as the featubset size at
which F'1;(ACT, k) is maximum. For example in Figure 5.2 at 7 instances the Béss
obtained with 512 features. Figure 5.4 shows the valueSlefcomputed using all )
features and using a reduced subsetof features for individual problems.

Columns 7, 8, and 9 in Table 5.1 show similar resultsKads,(ACT, k) with the best
feature subset size at= 22 being denoted by. The values for individual problems is
illustrated in Figure 5.5. The last column shoWs$;,0(RAND).

All 32 of our classification problems exhibit behavior as igufe 5.2. For all clas-

sification problemsp, m andp are less than the maximum number of features. In most
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TG

E42(k‘) F17(ACT, k‘) F122(ACT, k‘) FllOOO
Dataset k k n k k m k k P

] =N|=n =N| =m =N =p
Reuters 0.59| 0.68| 11179.3| 0.36| 0.48| 8481.1| 0.580| 0.66| 11851.6f 0.73
20 NG 0.40| 0.66 41.5| 0.07| 0.22 48.3| 0.21| 0.29 487.1| 0.45
‘ Bas vs HOCk‘ 0.29‘ 0.55‘ 25 ‘ 0.59‘ 0.70‘ 25 ‘ 0.78‘ 0.83‘ 200‘ 0.96‘
‘ Auto vs Mot. ‘ 0.68‘ 0.32‘ 125‘ 0.43‘ 0.72‘ 62 ‘ 0.76‘ 0.86‘ 31 ‘ 0.90‘

Table 5.1.Improvements in efficiency;'1; and F'15, using an oracle to select the most important features (EigLr). We show results
for each metric atV (total number of features for a particular dataset) andatufe set sizes for which the scores are maximized (
m andp for E,, F;, and Fy, respectively). For each of the three metrics, figures in lamkd statistically significant improvements
over uncertainty sampling using all features (the corredptg columns with feature set size of N). We see that witly @ndlocuments
labeled ¢'1;) the optimal number of features is smaller (8481.1 on av®raghile with more documents labeled, (22 i y;) the
optimal number of features is larger (11851.6 on averagdleWM1000 documents are labelddl(yy) using the entire feature set leads
to better scores with the'1 measure. This suggests that our best active-learningitigowould adjust the feature set size according

to the number of training documents available. Numbers Id bee statistically significant (using a two-tailed t-tasthe 0.05 level of
alpha) over the preceding column.
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Figure 5.3. Improvements in efficiency using an oracle to select the nmogortant fea-
tures. For each problem we show efficiency\aftotal number of features for a particular
dataset) on the right and efficiency at the feature set saxesltiich the efficiency is maxi-
mized () on the left. The class keys are given in Appendix A.
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Figure 5.4. Improvements inF'1; using an oracle to select the most important features.
For each problem we show1-, at IV (total number of features for a particular dataset) on
the left andF'1; at the feature set sizes for which thé, is maximized {n) on the right.
Remember, the objective is to maximizé-. The class keys are given in Appendix A.
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Figure 5.5. Improvements inf'1,, using an oracle to select the most important features.
For each problem we shoil,, at N (total number of features for a particular dataset) on
the right andF'1,, at the feature set sizes for which thé,, is maximized ). Remember
that the objective is to maximizB1,,. The class keys are given in Appendix A.
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casesn < p (that is, the number of features optimal for 7 labeled instann is less than
the number of features optimal for 22 labeled instanggsneaning that as the number
of labeled instanceg)(increases, the complexity of the classifier also needsdease.
For 20-Newsgroups, for all classes we observe that effigiefit; and F'1,, are best at
very small feature subset sizes. For Reuters there areeslémswhich a large number of

features become important very early (for exampiade).

5.3 Why is feature selection useful?

In the next sub-section we try to understand our results @ptievious section — that
with few training examples, few well selected features gitree optimal accuracy, and that
with increase in the amount of training data feature sedadtecomes less important — in
the context of similar research in statistics. We will thenduct experiments to determine
the part of the active learning process that feature selediaiding and thereby boosting

classifier performance.

5.3.1 Mitigating Hughes Phenomenon

There exists plenty of literature in statistics that shdved tvhen there are few training
samplesi(is small), as more features are addgdsincreased), then the accuracy of the
classifier increases up to a point after which it starts destng [54]. If¢ is large, as more
features are added, the accuracy increases up to a poirttemghows no change. This is
called Hughes’ phenomenon [53] and it suggests that whemuimder of training instances
is small, the system needs to use a smaller number of feaflinesproblem has also been
referred to as the “curse of dimensionality” [17].

Jain and Chandrasekaran [54] provide a comprehensiveieweof the early research
in statistics that takes into account dimensionality amd®a size considerations in pattern
recognition. They first discuss the peaking of classifiefquarance shown by Allais [2]

for linear classifiers. Consider th#{X) is a linear predictor ot” of the form f(X) =
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w - X + b. Allais assumed that the joint distribution Bfand X was multivariate Gaussian
and a maximmum likelihood (ML) estimatg( X ). He compared the mean squared error
(MSE) of the ML predictor with that of an ideal predictor. TMSE is given as:e =
ElY — g(X)]%. Allais then derived the expectation of the MSE as functibthe number

of training examplestj and the number of features, < V) used to represent the data.

5, t+1 k
= —_— B — < —
E(e) 6%( ; )(1+t—k—2) fork <t¢t—2
= wundefined fork >t (5.1)

0 is the ideal MSE. The fractional increase in expected MSEnwthe sample is of size
t is approximately/(t — k — 2). Whenk << t the fractional increase i#s/t. It is clear
that one would want that << t, which is similar to our empirically arrived conclusion
of the previous section. The question then is whether egudétil is relevant when the
assumptions about the estimation procedure and the datduatimn made by Allias are
removed.

Hughes [53] then studied the behavior of a finite-sample Biayeclassifier with in-
creasing dimensionality. In the Bayesian setting, thetamdbf features can only add to
the information of a classifier, and as long as the old setaitifes is completely recover-
able from the new set of features, there should be no dedreaseuracy. Hughes assumed
a two-class problem and a discrete pattern measurememoement. Other than that, no
Gaussian or statistical independence assumptions were. rHaghes estimated a quantity
called the mean accuracy, a functiont@ndk. Assuming the apriori distribution of each
class to be equal, he found that, for a fixed value, @&sk increased, the mean accuracy
increased till some valuk = k,,, after which it started decreasing. Whenr= oo, we

have complete information, and as expected, peaking ddexcoor. Figure 5.6 illustrates
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Hughes’ phenomenon by plotting his estimated mean acctioaclfferent values of, for
the simple case when the apriori distributions of both @dasse equal.

Hughes’ result led to a number of investigations and whieggthave been arguments
about the estimated mean accuracy according the Hughesufar(plotted in figure 5.6),
it is generally accepted that peaking occurs in classified$. [ Foley [44] then went on
to investigate whether there is any general rule of thumbratio that the designer of a
pattern recognition system could use. He demonstratedhtadtaining set error rate is an
extremely biased estimate of the test set error rate, ifdtie k/t is less than three. His
results which are empirical, are based on the assumptiothgaanderlying distribution is
Gaussian.

Hughes’ phenomenon can also be explained using the biaseartradeoff. With a fi-
nite number of training examples, when a new feature is gdtledBayes error decreases,
but now more parameters need to be estimated from the sameenofrsamples. This in-
creases variance. The degradation in performance due &dlthigon of features is because

the increase in variance is more than the decrease in thesBaasification error.

Accuracy

10 100

k

Figure 5.6. Mean accuracy falls with increasirtg

The problem with all past work studying Hughes phenomengsiatistics is that they
have either used synthetic data [44] and have made certsumgions about the underly-

ing distributions. Whether such behavior is demonstratathtural domains like text and
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images is unanswered. The work of Shahshahani et al [99n#asito ours, in that they
investigate Hughes phenomenon in a real world domain, tedldifferent one. Their work
is in the domain of remote sensing, where the data consistisigectral images of the earth
needs to be classified into categories such as soil, wheaklety use the spectral bands of
the images as features and address the question whethebfemnds (smallek) need to be
used whert is small. As expected, they find the answer to be in the affivmaln addition,
they showed that Hughes’ phenomenon can be mitigated inréisepce of unlabeled data.
The advantage of Shahshahani et al.'s domain was that thegdgl had an ordering
determining the importance of features (the first spectaaldohas the most information,
the second less, and so on), hence they did not have to resexplicit feature selection.
In text we have no such natural ordering. We used the oractgeterate the required
ordering and demonstrated that Hughes’ phenomenon doesdratcur in domains of text
classification. Another difference from all previous woboth the statistics literature and
that of Shahshahani et al [99]) is that we demonstrated Heighenomenon in an active
learning setting. In our setting there is access to somedlfjadf the unlabeled data (the
poolf). Hughes phenomenon still occurs. Therefore in filterikg-bpplications where
new data keeps arriving and we do not have access to sucheavaligme of unlabeled

data, we still need an oracle for feature selection.

5.3.2 Feature Selection: Aiding Model Selection or Instare Selection?

In the system in Figure 5.1 feature selection is done pri@rctose learning. We now
implement a simple variation of that experiment. In thisemment, active learning pro-
ceeds normally with all the features available, but aftethed instances are picked (after
T iterations), the best set d@f features, that improve the resulting trained classifier the
most, are picked and the resulting performance is reportéds is shown schematically
and with pseudo-code in Figure 5.7. We note that even whetingtavith the same initial

set of labeled instances, the classifiers learned duringedeiarning, hyperplanes in our
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Use of Feature Feedback After Active Learning

Input: T" (Total number of feedback iterationgj,(Pool of unlabeled instances, irsize (number
of random feedback iterations)
Output: M1 (Model)

1. Whilet < init_size
a. X; = InstanceSelectionfM, U;_1, random)
b. Oracle assigns lab&] to X;
C.t++
2. M, =trainclassifier( (X;, Y;)|i = 1...t}, M;_1)
3. Whilet < T
a. (X, U;) = InstanceSelectionfM,_1, U;_1, instance)
b. Oracle assigns lab&] to X;
c. M, = trainclassifier{ (X;, Y;)|i = 1...t}, M;_1)
d.t++
4.a.{Py,..., P} = FeatureSelection{M, Ur)
b. Oracle select§ = {F'1,.., F;,} C{Py,..., Ps}
5. Mr=IncorporateFeatureFeedbacki1r, { F1, ..., Fi.})

Return M

Figure 5.7. An active learning system where feature selection is doiee mfstance selec-
tion (System 4. This is one of the two set-ups used in our oracle experig@escribed in
Section 5.2. The first set-up is shown in Figure 5.1.

case, in the Systems 3 and 4 may be different as they are teardédferent spaces (using
different feature subset sizes). Besides, the set of ldbe&tances is small, so the learn-
ing algorithm may not be able to find the best “unique” hypamngl. In turn, the instances
picked subsequently during active learning may differ satugally as both the spaces the
instances reside in and the learned classifiers may beatiffeiThe classifier learned in
the feature reduced space may have better accuracy or ldsdtéw choice of instances
to label during active learning, though this is not guaradter the benefits may be negli-
gible. In short, the trajectory of the active learning ps;ethat is, the instances labeled

and classifiers learned, can be different in the two regimbgh may lead to substantially
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different active learning performance. In the next secti@provide the details of these
experiments.

The difference between Systems 3 and 4 is in that featuretseieprecedes active
learning in the former, and the best feature subset is pigked retrospective manner,
while it follows active learning in the latter. The two systewhen used with oracle feature
selection will help us understand the extent to which oréedelback aids different aspects
of the active learning process. Figure 5.8 compares théiseguwsing System 4 and system
3 on the Reuters corpus.

There is hardly any difference between systems 3 and 4, iedlgean F'1;. All other
datasets exhibit the same behavior. Thb,, and E,, values are slightly better for the
method that does feature selection before active learsygtém 3) but it is not signifi-
cantly different (determined using a t-test at the 95% le¥elonfidence) from the method
where feature pruning is done after instance selectiongsyd). Thus, our experimental
results suggest that there is some benefit for instancetisgldcit most of the benefit from

oracle feature selection comes from improving the modehkec (model selection).

Hypothesis 1

We showed that aggressive feature selection was needegl éatly stages of learning.
We also showed that most of the benefit due to feature sefeatss in model selection
though there was some benefit for instance selection in tineedearning process as well.
At this point we have shown sufficient evidence to prove th& faf our three hypothe-
ses (Section 1.5) — that there exists a set of features fazhwhithe learner is provided

relevance information, the speed of active learning cangrefeantly improved.

5.4 Summary
With limited labeled data, there is little evidence to predae feature over another, so

the learner has to spread the feature weights more or lesly@remany features. In other

60



T T
I FS before
0.9} [ IFSafter [{

0.8

0.7

F1,

0.5

041

0.1f

2 3 4 5 6 7 8 9 10
Category

(@) F17

T T
I FS before
0.9 C_IFsS after i

0.7 M 1

0.6 1

E42
o
(6]

T

0.4

0.3

0.2

2 3 4 5 6 7 8 9 10
Category

(b) Esz

Figure 5.8. F'1;, F'19; and efficiencyE,, for the Reuters corpus when feature selection
is done before active learning (system 3) and when featueetsmn is done after active
learning (System 4).
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words, the learner has to remain conservative. Featurefdiion reduction by the oracle
allows the learner to “focus” on dimensions that matteheathan being overwhelmed
with numerous dimensions right at the outset of learningqact@rfeature reduction allows
the learner to assign higher weights to fewer features. t€hids to improve accuracy, since
the oracle selected features are the actual most predfe@reres. Oracle feature reduc-
tion may also improve instance selection as the learneirabilastances to query that are
important for finding better weights on the features thatteraAs the number of labeled

instances increases, feature selection becomes lessanp@s the learning algorithm be-
comes better capable of finding the discriminating hypempl@eature weights) on its own.

This is expected given such limited training set sizes, armbnsistent with most previous

findings [98].
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CHAPTER 6
ASKING FOR AND INCORPORATING FEATURE FEEDBACK

The experiments in Chapter 5 relied on the existence of arleofar feature selection,
either prior to the instance selection or after it. Featunatsselected by the oracle were
dropped from the model. A human judging relevance on featateghe outset requires
domain knowledge and we do not want to burden the user wittaieof coming up with
a complete set of relevance judgments on features prioretéetirning. Humans may not
be able to determine relevant features in this way due todékkowledge or even because
it is too tedious to do so. In preliminary experiments we fuhat users have about
60% accuracy relative to the oracle [48]. Often labeled edlammay point to certain
features that the user cannot gauge as relevant, as adbeatly relevant. For example,
if the learner is able to discern from the labeled examplas d¢his a good feature for
the earningscategory but a human does not realize this (say becauseiske thstands
for “Connecticut”), the learning algorithm should not zexat the value of this feature.
Therefore, the proposed system to use in practice with meaburelies on a “soft labeling”
of user marked features.

The above example also motivates an interleaved approaomadiing features and
documents. Documents provide context for the featureanpdisguating them, making the
feature labeling process easier for humans (In fact thia wias suggested by one of our
users in the same user study). One way to implement suchenemied approach would
be to ask the user to highlight relevant features in docusthiat she labels. We found this
approach to work quite well for a news-filtering task [88f@tiscussed briefly in Section

7.6.1). However, we think that such an approach requireséhmeore careful reading of
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the document than would be needed to merely assess a docuoaagory. Instead we
opted for an approach where the user is asked to label a dotwand a set of features
simultaneously. We choose to implement that as an intetfetéhas a main pane with the
document to be judged and a side-pane with a checklist affiesito be labeled. In such an
implementation, we believe, the information the learnexeigking is clearer to the human.
Our tandem learning system proposed in Section 2.2, destitbtechnical detail below,

allows for such an approach.

6.1 The Tandem Learning System

The tandem learning algorithm (Figure 2.2) has two key dtegitsve had not elaborated
on in Chapter 2: (1)eatureSelection(Step 2.d.i), where a set of features for the user to
label are chosen by the system, andI(®@orporateFeature FeedbackStep 2.d.ii) where
the learner incorporates the labeled features to impraveutrent representation of the

concept. We discuss each of these respectively in the nexdééations.

6.2 Asking for Feedback on Features

Feature_Selection

Input: M, U;, By

1. S =Extracttop_featurespm,, p)

2.F=¢

3. While (S # ¢) and By > 0)
a. top=pop(S)
b. { Py, ..., P.}=computeco_occuring{op,i;)
c. Teacher selectgr, ..., F.} C{Py, ..., P.}
d. push§,Fi,...F,)
eF=FU {Fl, . Fcl}
f. Bf = Bf — C

4. ReturnF, By

Figure 6.1. An algorithm for Interactive Feature Selection
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In this section we describe our algorithm for implementing FeatureSelection sub-
routine in Figure 2.2 which in this case is iterative. Foraegitandem learning iteration
(outer loop in Figure 2.2), the Featu@&election subroutine queries the teacher iteratively
presenting features of the s@f in batches. The algorithm is outlined in Figure 6.1.

A budget counteB3; that keeps track of the number of features (across tandeminga
iterations) that the user has been queried on is input to¢h&uFeSelection subroutine in
addition to the current modé1, and the pooli;). A stack of featuresy = s1, s3, ..., 5/5))
to query the user on is maintained. The size of the stagkdynamic as we will see. At
each iteration of tandem learning the stack is initializetthwhep top ranked features from
the current modelM,, such that the highest ranking feature is at the top of thekgtep
1 in Figure 6.1). The topmost element of the staelp (= s;) is popped at each iteration
and the top- co-occuring features te, in the pool {/;) are computed (Step 3.b). These
c features are shown to the user. If the user marks a featurglesnt, it is pushed on
top of the stack (Step 3.d). The procedure continues urgistack is empty or the budget
By is exhausted. Typically3; >> c andB; >> p. A user may be shown a minimum
of 0 features in a given tandem learning iteration if the budg@g9 (s exhausted, and a
maximum of B, features (if we keep finding features greedily). Thfua the algorithm in
Figure 2.2 varies across tandem learning iterations. Td@ighm is greedy in spirit: when
a relevant feature is found, we keep querying the user onsvbrak co-occur with it in
the corpus, proceeding as if engaging in a depth first searehterm co-occurence graph.
Our early experiments showed that there are benefits of uelpproach, especially for

the soft labeling method described in Section 6.3.3.

6.3 Incorporating Feature Feedback into Support Vector Madines
We now move on to describe three methods to incorporatertetgadback into SVMs

(step 2.e in the algorithm in Figure 2.2).
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6.3.1 Scaling
Let F = F}...F} be the set of features marked relevant by a user, with éacepre-

senting an index to a featuré € F; < N). Let.Sc = ¢;...cy be a vector such that:

¢ = alifieF

= b otherwise

For eachX; in the labeled set, as well as in the unlabeled data (the fgcerhd the test
set), we compute the dot produgt - X;. In other words, we scale all the features that
the user indicated as relevant byand the rest of the features by The documents are
re-normalized after scaling.

By scaling the important features lay we are forcing the classifier to assign higher
weights to these features. We demonstrate the intuitiom tlé following example. Con-
sider a linear SVM,N = 2, and 2 data points{; = (1,2) and X, = (2,1) with
labels+1 and —1 respectively. An SVM trained on this input learns a classifiih
w = (—0.599,+0.599). Thus, both features are deemed equally discriminativehby t
learned classifier. If the feature with id 1 is indicated toi@re discriminative by our user,
then by our method(; = (10, 2) and X} = (20, 1) andw’ = (0.043, —0.0043). Thus, the
feature with id 1 is assigned a much higher weight in the newlehd\ow, this is a softer
version of the feature selection mechanisms in Figures Bd15a7. But in that case the
oracle knew the ideal set of features. Those experimentsbmayewed as a special case
whereb = 0. We expect that human feedback is imperfect and we do not waero-out
potentially relevant features.

In this method the user only needs to mark whether a feataliségsminatory, and does
not have to determine whether the feature is more likely muoi a relevant document
or not. It may seem that class information should be obvious human once she can
discern feature relevance. This assumption is not true.ekample, in a previous user

study [48] we found that for the problem of distinguishimaseballdocuments from those
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on hockey one of our users was able to determine that the fealewdswas relevant; she
could remember it was the name of some sport team, but cotlcten@mber whether it

was a baseball team or a hockey tine

6.3.2 Feature Pseudo Documents

In this method we creat&/ pseudo-documents, one corresponding to each feature,
addingN more N-dimensional vectors{(.X,, Y;), M + 1 < j < M + N}) to our already
existing pool of A/ document vectors. Thus, a vectar, corresponding to a feature-id
j — M will have a one in the positiop — M and zero elsewhere. In this case, the user
must associate a class label for every feature that shedsyegliscriminatory. We can now
include such feature and feature-label pairs in trainirgSKM.

The hypothesis space is the same as before (Section 4.h&yefsion space is smaller
than the original because of the added set of constraintespmnding to the feature and
feature-label pairs. This method enables us to performrteniogy sampling with the mod-
ified pool. Now the user may also be queriedwntertain featuresAn uncertain feature
labeled by a user will again (in the theoretical case) resu#t decrease (of the already
decreased) version space by half.

Initial experiments suggested that there must be a parartet®mntrol the extent of
the influence of feature pseudo-documents on the hypeepldfe can do this in one of
two ways. The first method controls the influence of pseudnsdent support vectors that
are correctly classified, and the second method controlgxttent of error tolerated for
misclassified pseudo-document support vectors.

Method 1: For support vectors that are correctly classified, the degtdrom the hyper-
plane is fixed at /||w|| (refer section 4.1.3). This is forced by imposing the caists in
Equation 4.1. There are benefits to being able to controlikiance for different training

examples, letting more reliable instances exert a greatee fon the hyperplane as shown

1The New Jersepevilsis a hockey team
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(a) Weighted Margin Classifier (original idea).

1/1wly

N /, 1/1wl
1/r*lw )

Y

unif\sphe _/

radiuNg sphlere

(b) Feature pseudo documents and our modification of thehteddgmargin classifier.

Figure 6.2. Weighted Margin Classifier
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in Figure 6.2(a). This idea first appeared in a paper by Wu aind$[115]. They modified
the constraints to be:

Whered; takes a value between 0 and 1, with a greater value indicattignger influence.
Their implementation changes the optimization problemevbirs is simpler.

We let the feature pseudo documents reside on an r-raditerspipere instead of the
unit hypersphere that the documents reside on. A two-diraeakexample is shown in
Figure 6.2(b). LetX, be a feature pseudo document on an r-radius hypersphere. The
feature pseudo-documen; (V j = M +1...M + N) corresponding to a featuye- M/ now
needs to have a valuein positionj — M and 0 elsewhere. This support vector is forced
to be at distancé/||w|| from the hyperplane. Projecting down to the unit hypershere
(on which the documents lie), the distancel j§r x ||w||). Hence, the feature pseudo-
documents are forced to be at a distance /@f x ||w||) from the hyperplane on the unit
hypersphere. Meanwhile the document support vectorsragato lie at distance/||w||
from the hyperplane on the unit hypersphere. f 1 the feature pseudo document support
vectors exerts a greater influence on the margin than thengermusupport vectors. The
implementation is very simple and the same QP solver usetthéosoft margin SVM can
be used to find the solution.

The idea to use feature pseudo documents first appeared ea ipa Godbole et al
[47]. Our implementation differs in that we introduce pagdars to influence the extent of
control of the feature pseudo-documents on the hyper-armmpared to the extent of
influence of the training documents. Note that Wu and Srithiarnot use feature pseudo-
documents, rather used the weighting technique in equétibto weight instances.

Method 2: The second method controls the extent of influence of thelasisified sup-
port vectors. We can do this by controlling the weightor the feature pseudo documents

by modifying the optimization problem in Equation 4.6 adduls:
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I

t
. 1
min ¢(w, Sl +C )¢
T i=1

t+|F|

C
+m Z &

i=t+1
subjectto  y(w-z; +0) >1-¢

§& >0 (6.2)

where|F| is the number of terms a user has marked, and also equals thigenwf
training pseudo-documents. The upper bound ontlalues corresponding to the training
pseudo-documents (< ¢ < t + |F]|) is C/|F|. In this way, as more training pseudo
documents are available (probably due to the topic being &escriptive), the influence
of an individual pseudo-document vector is decreased. tate\; values for the training

documents{ < ¢ < t) continue to remain bounded oy (whereC' > C/|F|).

6.3.3 Pseudo Relevance Feedback
We now consider soft labeling the unlabeled example& iand using them in the
training. The assumption here is that unlabeled exampletaitong a term that the user
has associated with a given class are likely to belong todllass, thereby enabling us to
assign a “soft-label” to the document. The greater the nurobterms that the user has
marked for a given class that appear in a document, the grtbateonfidence in our soft-
label. It is easy to see why this method benefits from the liapeif redundant features.
LetF = F++F~ whereF " andF~ denote the set of terms that the user has associated
with the classes corresponding to the labelsand —1 respectively. Let;+ denote the
similarity of an unlabeled documend; (X; € /) to F*. Similarly we can compute; .
v; can denote any similarity metric of choice. Lgty;) be a monotonically increasing
function with rangg0, 1]. We now modify the optimization problem to include unlalokele

instances as follows:
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subjectto  yi(w-z;+b) >1-¢

§& >0 (6.3)

This idea has been used successfully in the past [115]. hikleat work,v; is simply

set to be the cosine similarity agdv;) = v; sincev; has the desire(D, 1] range.

6.4 Developing the Final Algorithm

We now develop a tandem learning algorithm using various®iilmes described in the
previous chapter. We use lessons learned from some ingaranents (Section 6.4.1) to
lay out the task (Section 6.4.2). In Section 6.5 we discussiips of our implementation

that may not have been enlisted previously.

6.4.1 Lessons from past work

We had conducted a preliminary user study, measuring ugkilggies to mark features
[48]. Annotators (volunteers) were provided with minim@alarmation about a topic and
were asked to judge a list of features, one at a time. Anntatere asked to pick between
one of two choices for a given classification problem:rél¢vant i.e, discriminatory and
(2) non-relevant/don’t knowThey were also asked to judge a handful of documents (af-
ter judging feature relevance). Our users were of varie#dracinds and most had little
understanding of machine learning techniques. The godiaifdtudy was to determine

how well naive users could identify features with little &dwhal information that basically
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constituted a brief topic description. Annotators werel tiobt to refer any other sources
to make their decisions. We found that even naive users aader effective feedback on
the most relevant features (about 60% accuracy of the onadar experiments) result-
ing in performance on par with the oracle. There were margrésting results from that
study. For instance, one of our annotators had difficultydgjng documents belonging to
the earningscategory in Reuters often confusiagquisitiondocuments foearningsdoc-
uments. However, she could mark 65% of the discriminatoayuiees and generated only
0.0625% false alarms. These results can be explained byvatgéhat the question posed
to the annotator in that study was on the discriminative paWéhe feature. Therefore she
did not have to determine whether the woslgreswas pertinent tearningsor not but
rather she only needed to indicate whether the word wagyltkebe discriminatory. Ad-
ditionally, one of our annotators suggested that terms showontext would have carried
more meaning. She said that she did not realize the ¢estood for cents until she read the
documents. But since she was made to judge terms before @otsishe had marked the
term ct as non-relevant/dont know. Of course in the implementéatiah we are planning
ultimately (Figure 2.2), the user would be judging docursemtd terms in tandem.

We also conducted a post-labeling survey. Some of the Igigtsiof the post-labeling
survey are as follows. On average users found the ease tihigbsatures to be 3.8 (where
0 is most difficult and 5 is very easy) and documents 4.2. Iregdrnusers with poor prior
knowledge found the feature labeling process very hard.avikeage expertise (5=expert)
was 2.4, indicating that most users felt they had little donkaowledge for the tasks they
were assigned.

We also measured the manual costs of relevance feedbaclatmefe versus labeling
documents: in that study [48]; we found that feature feekilbakes about one fifth of the
time taken by document labeling on average.

When to stop asking for labels on both features and docunaetswitch entirely to

documents is an important question. In early experimentisisndirection [48], we found
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that features labeled by users provided significant bongisiformance in the early stages
of learning. We typically found that after 10 documents wateeled there was little use in
asking for feature feedback for two reasons. Firstly, tlaeesgreater gains to doing aggres-
sive feature selection earlier rather than later (mitiggatiughes’ phenomenon). Secondly,
users are able to discern certain key features only, whielotien asked about in early
iterations. The information about the usefulness of otkeatures typically comes from
document feedback. For example, in discerramgpomobiles vs motorcyclethe most in-
formative words (as determined by the oraclear andbike— are asked of the annotator
in very early iterations. The label faar is always (100% of the times) asked, and 70% of
the time the label for this word is asked to the user in theifiesation itself. This is closely
followed by the wordbike which the user is queried about within the first 5 iteratiof%8
of the time. Labeling these two features in themselves teguh significant improvement

in accuracy.

6.4.2 Problem definition

As with our previous experiments in Chapter 5, the task tsegiith a user providing
two randomly labeled examples, one positive and one nexgétiit size = 2). Then at
each iteration the learner queries the user for documedbéexk and term feedback like in
the system in Figure 2.2.

We saw that feature feedback is most useful up to the pointevgout 10 documents
have been actively labeled. Therefore, we measure perfarenaf tandem learning after
10 documents have been actively labeled for each topic. tHatea total of 12 documents
would have been labeled at this point including the 2 orig{fa = 12). We compare
the performance with traditional document-only and temhanethods. We also resorted
to asking the user for 2 documents for feedback at eachidarét = 2). Preliminary
experiments revealed that there was little negative imp@aetccuracy in this approach,

with some gain in efficiency.
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We set the feature feedback quotsy, to a value of 100. Our previous research es-
timated that a document takes 5 times more time to label tHaatare. The experiment
was very conservative, and in reality we expect featurelilapéo be faster, depending on
the interface in which it is shown to a user. However, using tipper bound, labeling a
100 features is at most equal to the effort needed to labeb2Qrdents. Hence we also
compare tandem learning performancd’at 12 and B; = 100 with the performance of
traditional active learning after 32 documents that is, wife= 32 and B; = 0, since
labeling 12 documents +100 terms12 documents + 20 documents.

Although scaling (refer to Section 6.3.1) requires thatuker only determine if a fea-
ture is discriminatory, and is probably a cognitively easjgestion to answer than asking
the user to associate category labels to each feature ghbgdiee methods in Section 6.3.2
and 6.3.3), we will see that a combined approach of usindgedkt proposed methods for
feature feedback is best overall in terms of effectiven8sgtfon 6.4.4). Therefore in the
final implementation the teacher was asked to chose one ébltbe/ing options for each

feature, the third choice being the default. :
1. Is the feature more likely to occur ralevantdocuments?
2. Is the feature more likely to occur mon-relevantdocuments?
3. Don’'t know

In the next section we use an oracle to determine which ofttreetfeature incorpo-
ration methods is better. We find a combined approach to kg leasling us to the final

algorithm outlined in Section 6.5.

6.4.3 Oracle
In the oracle experiments in Chapter 5, we cut off the ranistdi the point that yielded
the highest average active learning performance (Sectn Bowever, this method was

too time consuming for the larger data sets like TDT3 and R@nd for these experiments
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we cut off the ranked list at a threshold determined by th@slud the information gain
curve in the following way. We took the top 30 features coregiy information gain, and
computed the average score. All features with scores alb@vaeverage were considered
“relevant” by the oracle. The oracle also associated a oagelgbel with a feature by
computing the probability of occurrence of a feature in eatthe two classes using all
the labeled data. The feature was labeled with the categahy greater likelihood of

containing the feature.

6.4.4 Choice of methods

We introduced one method for asking for feature feedbackthret methods for in-
corporating feature feedback into active learning. We cotetl some preliminary exper-
iments on the Reuters-21578 corpus to test the effectiganfesach of these methods by
themselves and in combination with others.

The active learner begins with 2 randomly sampled documentsin the positive class
and one in the negative class. In choosing documents fob&d(Instanceselection)
we could use uncertainty sampling (Section 4.1.5) or randampling. We know that
uncertainty sampling works much better than random samdinour corpora (seen from
the efficiency values in Table 5.1). A third alternative isuge the top ranking documents
for feedback. This is a standard approach in informationena! and we experimented
with that. We found that in general, if one is consideringyahbcument feedback, active
learning works better than using top documents. A mixtureopfdocuments and active
learning, where in each iteration the user is asked to magktop ranked document and
one uncertain document is much better than just using theatdgpng documents but is still
not as good as asking for feedback on two uncertain docunreagh iteration. However
it turns out that when asking for feedback on features isushetl (for tandem learning
that is), incorporating the top-ranking documents somesigives benefit, and never really

performs worse than using only uncertain documents. Bssidapplications like news
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filtering labeling the top ranked document is probably muessleffort since the user is
likely to read it anyways. Therefore, our tandem learneragbvqueries the user on a
mixture of top ranking and uncertain documents, whereathfobaselines we report both
variants: “only uncertain documents” and “uncertain an@rénking documents”.

We conducted experiments by simulation using the oracleernfetime a feature was
presented to the user for feedback, we labeled it based oar#iode’s judgment of the
feature. Results of these upper bound experiments are shotable 6.1. Rows two and
three give the performance of the two baselines. Unceytaarnpling is clearly better than
using a mixture of top ranking and uncertain documents. Wedwur parameters on a
handful of topics in the Reuters 21578 corpus for a systemubes all three modes of
feedback together. The results of that experiment aredtduiin row 5. There is a 27%
improvement in performance. We then conducted ablatioerx@nts to study the benefit
of each feature incorporation method separately (rows 6dBaand various combinations
of them (rows 9, 10 and 11). Pseudo relevance feedback (Mdé&tih@s the best performing
method, and by itself gives a signific&rimprovement in performance. Scaling (Method I)
on its own, also improves performance, but Method Il onlgtslly improves performance.
Method Il in conjunction with each of Method | and Method Ithproves performance
(although almost negligibly) over each of these method&iddally. A combination of
Methods | and lll is significantly much better than the bassliand when Method 11 is
combined with them there is a tiny improvement over that coiatiion. The result of using
only active documents for feedback in combination with alé8ture incorporation tech-
niques is 0.661 (almost identical to the 0.651 value obthing a mixture of uncertain
and top ranking documents). Hence in our final implemematie use a joint approach

with all three methods with a combination of active learnamgl topdocs. Table 6.2 shows

2All significance tests in this chapter are paired two-tafkests at the 95% level of confidence.
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| System | Macro-F1 |
topdocs + uncertain 0.420
uncertain only 0.516
Tandem learning: feature incorporation
techniques (combinations)

Baselines

I: Scaling | Il: Features as lll: Pseudo-Relevance
Pseudo-Docs Feedback

X X X 0.651

X 0.553

X 0.433

X 0.592

X X 0.577

X X 0.597

X X 0.638

Table 6.1. Ablation experiments to determine which method of feateedback is most

effective. The figures in bold indicate a significant impnment in performance over the
best baseline (0.516). Numbers in italics indicates a fggmt decrease in performance
over the “uncertainty only” baseline. In all casés= 12 and for the tandem learning
methodsB; = 100.

example pseudo documents that are support vectors in thesystam. The experimental

setup for our final implementation that uses all three methedescribed next.

6.5 Notes on the Final System: Experimental Setup, Parameateetc.
The Reuters 21578 corpus is considered to be the develom®eiur the final system
which is tested on 20 Newsgroups, TDT3 (the 1999 evaluatipics) and the Reuters
RCV1 corpus. A pool size of 1000 was used for all corpora eixtiegp RCV1 corpus
where the pool consisted of the training documents in the-lptk split [74] (about 23K
documents). The results are described and analyzed in #teim@pter. The parameters
p, ¢, a, b andr were set to values of 25, 10, 10, 1 and 10 respectively. Theagee
performance for each topic was computed using 10 diffe@mdom initializations of the

initial 2 documents. We also took care that if the system heghdy queried the user (or
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| Category | Terms that are Support Vectors

earn gtr, note
acquisitions | qgtr, ct, shr, ctnet, minmin, ctct;
money-fx -
crude crude
trade japan
interest bank
wheat export, maize
corn -
money-supply bank, dir
gold mine, goldmine

Table 6.2.Feature pseudo documents that are support vectors.

oracle) for a feature in a given iteration, that feature wasasked about in subsequent

iterations.

6.6 Summary

We built a tandem learning system that intelligently queageacher on features and
instances at each iteration using several intuitions armpbtiyeses from previous exper-
iments. Standard machine learning algorithms do not haveaay way to incorporate
feature feedback. We develop three methods of incorpgr&iture feedback into SVMs.
The final algorithm is a fusion of ideas from machine learpiacfive learning in partic-
ular and information retrieval. In asking for feature feadk we picked one method that
worked well. Admittedly, given the vast body of researchnformation retrieval on term
feedback, there are a plethora of alternative methods anexgdore for this component of
the tandem learning system. Some of these methods may leatt¢o interfaces and more
effective feedback. We leave such an investigation forrutwork (Chapter 9). In the next

chapter we explore the effectiveness of our proposed msthod
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CHAPTER 7
EXPERIMENTS ON A TANDEM LEARNING SYSTEM

We developed an algorithm that interactively queries a aséabels of documents and
features in Section 6.4. Our experiments with an oracleemixt section verify that the
learner is capable of posing questions that are most bealabdt (hypothesis 2 in Section
1.5). We then describe our user study, verifying the hypo#that humans can identify the

features that the learning algorithm requires the answee(tsyfpothesis 3 in Section 1.5).

7.1 Results with an oracle

All our experiments in this section are simulations with tinacle like in Section 6.4.4
for solving the task described in Section 6.4.2. The finatiéan learning system used
corresponds to the one in the last row of table 6.1, desciib&kction 6.4. Results are
tabulated in Table 7.1. We compare our results with manylinese The “only documents”
methods inrows 2, 3, 4 and 5 do not use user feature feedbattk Bihe second row shows
the results of querying the user on one top ranked documedtp@ae uncertain document
in each round of active learningit_size = 2, T = 12, I = 2). The setup for the third row
is identical to the second, except tat= 32. We motivated comparing tandem learning
performance to this case in Section 6.4.2 because we foandhd effort needed for 100
terms is at worst equal to providing feedback on 20 documériis fourth and fifth rows
show the results when both documents that the user is askéskftback on are uncertain
ones, for the cases wh&h= 12 and7 = 32 respectively.

The sixth row shows the results of using the terms markedasteby the oracle, and

with no document feedback. For that experiment, we tookeaths marked relevant by
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" Reuters| 20 NG | TDT3 | RCV1 Feedback
> j topdocs + uncertaif 0.420 | 0.085| 0.176| 0.081| T =12,B;=0
s | E 0.562 | 0.157 | 0.153| 0.145| T'=32,B;=0

S uncertain only 0.516 | 0.180 | 0.166| 0.134 | T'=12,B;=0

O 0.570 | 0.297 | 0.259| 0.260 | T'=32,B; =0
g "8' only terms (a priori)) 0.536 | 0.340 | 0.085| 0.229| T =0,B;=0
510 iterative terms 0.573 | 0.335| 0.168| 0.099 | T'= 2, By = 100
~ | 3| tandemlearning | 0.651 | 0.354 | 0.336| 0.231| 7' =12, By = 100

Table 7.1. Results (F1) of Tandem Learning with an Oracle. Numbers id balicate
statistically significant difference in performance oves tase wheff’ = 32 andB; = 0
with active sampling (line 5). Tandem learning performslésan thel’ = 32, By = 0.
Tandem learning is always better than the “only documenthods wheril” = 12.

the oracle and issued them as a query to the pbolA TF-IDF model was used, and
the documents were ranked by similarity to the set of orackeked terms. The top 10
documents were treated as positive documents and the bafias negative. An SVM
was trained and the results on the test set are reported sixtiherow.

The seventh row corresponds to the case when the initiadifilxss learned from two
randomly sampled documentgi{t_size = 2) and subsequently during active learning,
the human is queried on only features. The eighth row is theltref using the complete
tandem learning system. All experiments with feature feetbhmposed a quota d¥; =
100. The effect of different values dB; is shown in Table 7.4.

For most corpora pure uncertainty sampling is better thaonzbination of uncertainty
sampling and topdocs whénh= 12 (compare rows 2 and 4) and even wheg= 32 (rows
3 and 5).

The results of learning on only the oracle terms (row six)rassonable on most cor-
pora, except for the TDT corpus. We wondered if our estimatbeoracle was poor for
the TDT3 corpus, since the results of the sixth row may bepnéted as being reflective of
the quality of the oracle. However, given the significantstan performance for tandem

learning, such an interpretation would seem contradicdg/ found that the problem was
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due to the pool size being so much more smaller than the toligction size, that often
there are not many (sometimes even zero) relevant docunmethts ranking obtained us-
ing the oracle marked terms as a query. The resulting clasgrned is therefore very
poor. When we increased the pool size to 10000 documents taened an F1 of 0.266,
an acceptable number, confirming our hypothesis.

The seventh row measures performance for the scenario wtesrtvao initial docu-
ments are labeled, the active learning loop only comprisésature feedback. Given that
with 2 labeled documents the performance of the initialsiféess is 0.179, 0.154, 0.053 and
0.078 for each of the four corpora respectively, we obsdraewe are able to recommend
enough useful features to improve over the initial classifie

Comparing the results of tandem learning (eighth row) tohoés$ that use only doc-
uments for feedback (rows two through five) we see that foc@ipora, feature feedback
significantly ! outperforms a system that uses only 12 documents for tgpiniiandem
learning is also better than using 32 documents for feedfmackree of four corpora. Re-
member that 32 documents is a loose upper bound on the effquired to label a 100
features. For the RCV1 corpus, labeling 32 documents esultetter performance than
tandem learning. However, the improvement in performart¢ammiem learning for RCV1
over the case wheh = 12, B; = 0 (row 3) is much more in magnitude than the loss in ef-
fectiveness due to expending extra effort in feature feekibestead of document feedback
(compare row 8 and row 5 for RCV1), indicating that the terateled are quite useful, and
probably only a little less useful than the documents. Theselts can also be interpreted
from the point of view of complexity and we will use our diffity measures to further
interpret these results in the next chapter. Also note tiesd results depend on how good
the estimate of the oracle is. Many problems in RCV1 have f@mypositive documents.

It is possible that a better estimate of the oracle, say ygusomain knowledge will boost

LAl significance tests in this chapter are paired two-tatkgsts at the 95% level of confidence.
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performance at least up to that of the case whes 32. The results are also fairly con-
sistent across topics as is demonstrated by Figure 7.1. 5% 26% and 98% of the
topics in each of the four corpora are improved over the besebrresponding to row 4
of the table. The topics that were improved for the Reuteds ZhNewsgroups corpora
saw substantial improvements while the topics that wereduifered negligible change in

performance.

0.7 T T T T T

T
baseline (t+u)
baseline (active) -------
tandem --------

06 ik Voo .

05 iy

01

0
30000 30010 30020 30030 30040 30050 30060

Figure 7.1. Consistency of improvements in performance across topraddssification on
the TDT3 corpus. Topic ids are on the X-axis and the Y-axibésR1 score. The baseline
cases are wheh = 12.

Such a comparison, asking how much effort is expended onintafeatures and
whether that effort is better spent in marking document8emdintiates our work from
all past work in machine learning that uses user prior kndgéeto boot-strap learning
[115, 47, 35]. From our observations, spending some eftoorhark features is almost
never an effort wasted. Many times it boosts learning, imioig over a paradigm that
just uses documents for feedback, and does not hurt penfimena-eatures are also not

sufficient in themselves (compare row 8 with rows 6 and 7).
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Hypothesis 2

The results with the oracle prove that tandem learning iscéffe, showing that our
method for asking features and incorporating feature faekilindeed works quite well.
We can thus check off hypothesis 2 in Section 1.5 as prover ekperiments reaffirm
our belief in hypothesis 1 (that there exist a set of featureish if labeled, can bootstrap
learning) which continues to remain true even with the &adseling approaches developed

in Chapter 6.

7.2 Results with Real Users

We now ask the following questions:

1. Can humans label features as well as documents? In othhdsware features that

are important to the classifier perceptible to a human?

2. If the feature labels people provide are imperfect, isféelback still beneficial to

active learning?

We obtain feedback on features offline using a TREC “poolikg- approach dis-
cussed in Section 7.2.1. We then use the judgments so othtaimaeasure the effective-
ness of user marked features on the tandem learning systéra game way in which we
simulated a human-in-the-loop with the oracle. We empldiiedmethodology rather than
one where an actual user labels features and documentsdientalbecause our approach
is cheaper and allows us to run many repeated trials of owgrempnts, also enabling us
to do significance testing. We reserve a more realistic eva with a true human in the

loop for future work.

7.2.1 Experimental Setup
We ran the system described in Section 6.4 for 10 differeiioes of the initial positive

and negative documents (Step 1 in Figure 2.2) for the 60$apithe TDT3 corpus. Let us
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call each initialization for a given topic a “run”. We coneatted all recommended terms
(Step 3.a) keeping track of how many times a term was recordateacross different runs
(remember that a term is hot recommended more than once feeagin). We discarded
all terms that were recommended only once across all rure fopic. For each topic we
then added the terms determined relevant by the oraclehetpdol giving us an average
of 130 terms per topic. We now proceed to describe how we mddgudgments on terms
for each topic.

We had one paid annotator judge 60 topics in the TDT3 corplus wés not a computer
scientist, rather a political science major, computerdiie and familiar with some basic
statistics. She was briefly explained the task in a 15 mimat@ihg session. She was
also given written instructions as documented in Appendik B She was given a brief
description with access (as a hyper-link) to a detailedctal@iscription before she began
making terms. Both the brief and detailed topic descrigstiare provided by the LDC.

We sorted all terms alphabetically, and showed her eachuattmy contexts in which
it appears in the corpus. A small pane with a reminder of tipéct@the brief topic de-
scription) and a link to the more detailed description wealable to the user at all times.
Screenshots of the interface are available in Appendix B/2.retrieved context for each
feature by issuing that term as a one word query using the tadikit [104]. Context
helps disambiguate a word and also provides a snapshot eétiees it appears in, in the
corpus. Other than our standard example of context helpusgadetermine the meaning
of the word likect, another example where context proves to be particularpoiant is
in having the human overcome the effects of machine traosland ASR errors. Figure
B.2 shows a screenshot where the user is asked to judge théael” for the topicNobel
Prizes are AwardedThe word “nobel” is consistently mis-translated as “prees bell” in
machine translation documents. A user might be able to @stich an error and mark the

word “bell” as associated with the relevant documents.
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Terms were shown one at a time and at each instance the useskedto mark one
of the three choices in Section 6.4.2. We imagine that in aemealistic implementation,
terms will be shown as lists, which is probably faster tharnrga user judge one feature at
atime. The term-at-a-time method is however, the bestfaterfor a controlled experiment
to measure users’ abilities to mark features. In fact in aliegatudy we did not even show
context and the user was given a very brief topic descriptiime option for this study was
to show an initial screen with a list of features, and for daeliure a hyper-link to a context,
in case a user needed clarification about the meaning of@éeat/e avoided this interface
because it is possible that a user might not click on a linlabse of a pre-conceived notion
of what the feature means. For example, a user who assainséabd for Connecticut and
never imagined it could mean anything else (cents in our)aaseld not click on the link.

The author of this thesis also judged terms for all 60 topidghough one might think
that the author would represent a biased user, with domawleage of the corpus, the
underlying algorithm and so on, surprisingly it turns outtehe and the paid annotator
perform almost on par, especially in terms of the final effectess of the tandem learning
algorithm (Section 7.2.2). The author admittedly was nota®ful as User 1 (the paid
annotator) was. She only read the brief description and dicchange the default “don’t
know” unless she was absolutely sure about the relevancieafare. User 1 took a median
of 3, 3 and 2 seconds to mark terms associated with the re|avan-relevant and don'’t
know classes respectively. User 2 (the author) on the ot took 4, 3 and 1 seconds to
mark features in each of these 3 classes.

There are pros and cons of this offline approach of obtairgéadgures. The main ad-
vantage was that it was cheaper to obtain features this whgrréghan using an online
approach where the user evaluated the real system. We wsé®@® judgments on doc-
uments, and reserved our annotators efforts only for feguidgments. The annotator did
not have to judge a given feature for a given problem more tmere. We also discarded

features that were rarely asked by any algorithm, savingtamor effort significantly. We
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could repeat experiments as simulations with our databfssevance judgments allow-
ing us to further develop algorithms for interactive featselection, testing them using a
simulation-like approach.

The cons of such an approach are that features that are m@dudither because they
were discarded or because the system being evaluated was thet pool will never be
judged as relevant. By tossing in the oracle features iregtiol of features on which we
obtained judgments, we hope that we have obtained judgroardh key features, and the
ones that we miss are probably not as critical. Our offlinenmelso does not capture the
true effects of a user judging terms and documents in tanttengrowing knowledge of the
user as she reads more documents in the corpus; effectsaafdimrand so on. Rather, our
paid annotator dedicatedly spent time marking featuregadhshe was given the option
to take breaks between annotations. Nevertheless, whaisttestudy captures is that a
human can indeed judge relevance of features to the extanteults in an improvement
in performance almost equivalent to that of the oracle {Bect.2.2). Even without paid
annotators, in a previous study conducted with volunteidgferent backgrounds [48], we
found that users could identify useful features sufficiemtell with minimal knowledge.
We provided some more knowledge of the topic and designetter lngterface for this user

study based on results from the previous one (refer Sectibh)6

7.2.2 Results
We now describe the results of our user study first compahegiser intrinsically to
the oracle and then measuring the effect of the user labekdres on tandem learning

performance.

Inter-annotator agreement:
We measure the extent to which our users tend to agree withather about the im-

portance of features using the kappa statistic [25], a miedbat quantifies the agreement

86



between annotators that independently classify a set dfeanfin our case the features)

into classes (relevant versus non-relevant versus dooiwkrKappa is given by:

kappa: (po - pc)/(l - pc) (71)

Wherep, is the observed proportion of agreement apds the agreement due to chance
[25, 67]. Table 7.2 shows the kappa values for each of the seosUfor the 3-way classifi-
cation problem (columns 2 and 3).

Landis and Koch [67] provide a table giving guidelines abooiv to interpret kappa
values. This table is given in Appendix D. According to thalle, the agreement between
User 1 and the oracle is “poor”, but the agreements betweenlisnd User 2 and between
User 2 and the oracle are “fair”. Upon investigation we fotimat User 1 had a tendency to
attribute many features to the “non-relevant” categoryerlZs on the other hand typically
marked only “relevant” features, leaving all others to tleéadlt “don’t know” category.
This tends to match with the oracle to quite an extent. Thelemmarked 12 features (on
average over the 60 topics) as belonging to the “relevaaschnd 0.013 features as be-
longing to the “non-relevant”. The negative class in onesus-all problems is arguably
harder to model statistically [79] and the oracle captuhéseaffect. Such domain knowl-
edge may have biased User 2, who is the author of this thedisaahigher agreement with
the oracle. If we collapse, the “non-relevant” and “don’bluf categories into one, giving
a 2-way classification problem (columns 4 and 5), we see &se@ agreement between the
two users, reflecting an overall “moderate” (and borderingsubstantial”) agreement. In
fact in our preliminary user study [48] with 5 users we foumdsgreement of 0.68. In that
study users were strictly asked about the “discriminat@ver of a feature.

We also measured precision and recall of each of the uselnsr@gpect to the oracle.
This is also tabulated in Table 7.2. As mentioned earliex,dfacle had extracted about
12 terms on average per topic. Users tend to be more verbaséfta oracle, with User 1

judging 25 terms (average) in the “relevant class”, 29 tamtise “non-relevant” class, and
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the remaining terms in the “don’t know” class. These numbegsl5, and 0.33 respectively
for User 2. Both users have very high recall, but relativelydr numbers of precision.
Appendix C shows the terms marked by the oracle, as well apdbitive and negative
terms marked by both users for three example tofds®ma Bin Laden Indictmentdobel
Peace Prize Awardednd Taipei Mayoral Race Remember that the oracle is constructed
from a feature selection algorithm, which might suppressinglant features, whereas the
users did not do so. Ultimately it should be the recall witpet to the oracle that matters
for effectiveness. In fact it is indeed the case that peréooe of the algorithm using user
labeled features is almost on par with that of the oracle.s Tdiseen from the last two

columns of Table 7.2.

Hypothesis 3

In experiments in this section we have shown that users goabta of selecting the
key features necessary to bootstrap active learning, hersgéng hypothesis 3 (Section
1.5). Although users may mark more features than are nagessaiss a few features
occasionally, the ultimate performance achieved by ussey labeled features, compares

with the performance obtained using the oracle.

7.3 Performance on ranking metrics

We also measured performance with metrics that measurengar&ther than classifi-
cation accuracy. We do this for better interpretability esults, to understand where one
algorithm differs from the other. We measured mean averagegion (MAP) and preci-
sion at rank 5 (P@5) (Table 7.3) . Average precision (AP) ésaterage of the precision
values computed at each point in the ranked list where aaetedocument is retrieved.
Mean average precision is the average of the AP scores questo

Tandem learning results in a significant improvement of M&Rr the baseline case

of T = 12, for three of four corpora. Only 20 Newsgroups sees a sigmtianprove-
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68

Ability to mark features Effectiveness
User Kappa P&R F1

3 class 2 class P+ P- R+ R-
User 2| Oracle| User 2| Oracle 2 class| 3 class
User1l| 0.275| 0.147 | 0.569 | 0.305 | 0.402| 0.000| 0.789| 0.900| 0.316 | 0.297
User 2 - 0.350 - 0.359 | 0.565| 0.883| 0.649| 0.900| 0.286 | 0.287

Table 7.2. Inter-annotator agreement and performance using the aleleld features. P+ and R+ denote the precision and recall of
the features the user labeled in the “relevant” class wisipeet to the features that the oracle ascribed to the “nel@lass”. P- and
R- denote the corresponding numbers for the “non-relevaas. Performance (F1) of tandem learning using userddielatures
is comparable to that of the oracle performance of 0.336,issdynificantly better than the baseline of 0.176 (corresiitg to row

2 of Table 7.1). The 0.316 performance obtained using Usepdsitively labeled features is statistically indistirghable from the
performance of the oracle.



| Metric | | Reuters| 20NG | TDT3 | RCV1 |
Baseline (12 docs) 0.828 | 0.748| 0.802| 0.584

P@5 Baseline (32 docs) 0.815 | 0.640| 0.828 | 0.676
Tandem 0.85 | 0.844| 0.797| 0.640
MAP Baseline (12 docs) 0.433 | 0.238| 0.480| 0.223

Baseline (32 docs) 0.679 | 0.397| 0.546| 0.380
Tandem 0.613 | 0.393| 0.481| 0.292

Table 7.3. Effect of tandem learning on Precision at 5, and on mean geepaecision
(MAP). Numbers in bold are statistically significant impemeents over the baseline with
12 documents.

ment in P@5. The TDT3 corpus experiences a drop in both MABigmficant) and
P@5(significant) using tandem learning. Tandem learniegnseto be improving recall,
sometimes at the expense of precision.

It is intuitive and widely accepted that methods that aretlior classification accuracy
are not optimized for MAP [71, 58]. A system tuned for mearrage precision will score
better if it gets more relevant documents at the top of th&adrist. A similar intuition
applies for P@5. A measure of classification accuracy likdd€s not give a system a bet-
ter score for improving the top of the ranked list, ratheoicentrates on the ability of the
system to discriminate documents, focusing more on the dexyrof separation between
the two classes. These results may be altogether diffeshtadifferent method, opti-
mized for ranking metrics, been used. Nevertheless, weapyhto see an improvement
in MAP using tandem learning. There has been some recentiwtn&ining SVMs differ-
ently for different performance metrics [58, 23], and wengia experiment with these new
techniques in the future. The objective of tabulating thetsgervations was to understand

where feature feedback was impacting our methods.

7.4 Varying By
We wondered how performance would be affected for diffexatties of the feature

labeling budget,B;. Table 7.4 shows the F1 scores for different valuesseffor the
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By F1
Reuters| 20 NG
0 0.420 | 0.081
10 | 0.519 | 0.158
20 | 0.584 | 0.214
40 | 0.634 | 0.282
80 | 0.631 | 0.361
100| 0.651 | 0.354

Table 7.4.F1 for different feature feedback quotas. In all cafes 12. Numbers in bold
are statistically significant over the previous row.

Reuters and 20 Newsgroups corpora. For the Reuters cormrsaesmall value oBy, like

10, results in a big improvement in performance over the edsn B; = 0. We see less
value in increasing the budget beyon&avalue of 40. The results for the 20 Newsgroups
data set are similar except that F1 increases quite stedbiy; = 80. In the next chapter
we will find that 20 Newsgroups is of higher feature comphekitan Reuters and this may
be a possible explanation for requiring more feature feekllfia 20 Newsgroups than for

Reuters.

7.5 An online task

System T=4 | T=6 | T=8 | T=10| T=12
Baseline 0.199| 0.297| 0.345| 0.357| 0.346
Tandem (Oracle) 0.271| 0.291| 0.345| 0.379]| 0.362
Tandem (avg) | 0.301| 0.340| 0.389| 0.408| 0.386

Table 7.5.Performance on a news filtering task for different value$' oNumbers in bold
indicate statistically significant improvements in perfi@nce over the baseline.

In the official TDT tracking evaluation [3], the system is g@ivone training document
per topic. The test data for each topic consists of a streadoofiments that arrive in
chronological order and need to be declared as on or off thie tf the training story.

The task is online and the system is expected to processreaasin order and no look
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T Metric F1 MAP | P@5
Baseline 0.199| 0.480/| 0.360
T =4 | Tandem (Oracle) 0.271 | 0.500| 0.355
Tandem (avg) | 0.301| 0.550| 0.396

Baseline 0.345| 0.571| 0.304
T =12 | Tandem (Oracle) 0.362 | 0.559| 0.305
Tandem (avg) | 0.386| 0.630| 0.330

Table 7.6. Performance on a news filtering task. Numbers in bold indisttistically
significant improvements in performance over the baseline.

ahead is allowed. In the unsupervised tracking task no seedis allowed after the initial
training document is provided. In the supervised adapiatack the user provides a rel-
evance judgment on every delivered document. The two tagkesent two extremes of
an interaction spectrum. Leuski and Allan [70] studied aemealistic version of the TDT
task, wherein the system is evaluated at regular interaat®y, half a day, a week and so
on). Just like their work, we modified the news filtering saemaf TDT to a more realistic
one. In the current task, the user marks the first relevanirdeat on a topic as relevant.
The system also picks an arbitrary “off-topic” documenthattime-stamp not greater than
that of the relevant document. Filtering then begins. bteon now happens after batches
of 500 documents (roughly a day’s worth of documents) arfilee user is queried on one
top ranking document, and one uncertain document, bothlsdnmem the current batch.
Feature feedback is performed at this time using the sanoeithion as described in Section
6.5. Feedback in this case also continues only for 5 itaratio

SVMs have performed quite well in the TREC filtering taskqezsally on evaluation
on the F-Measure and MAP for the batch filtering and routisgsd 73, 22, 100]. Tandem
learning has maximum impact (statistically significant)enti” = 4. This is seen from
Table 7.5 where we report F1 for different valuesiof Table 7.6 shows performance on

F1, MAP and P@?5 for the baseline system and the tandem Iggspstem for two values
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of 7. Many of the batches have only one relevant document, whictisised gives an F1
score of 0 to the system on that buffer. Therefore, for furéimalysis we focus on MAP.

On close examination we found that tandem learning and tkelipe perform differ-
ently for different queries. Figure 7.2(a) shows the perfance (MAP) of the baseline
system and the tandem learning systéim= 12 for both systems) for the 60 topics, sorted
in order of performance of the baseline. Tandem learningavgs performance on very
poorly performing topics, but decreases performance oresopics for which the baseline
performance is very high. The standard deviations of thellressystem and the tandem
learning system are 0.26 and 0.22. By combining the two Bystey simply averaging
their scores we get performance corresponding to the cAmgg.‘ The resulting system’s
performance is also shown in the last line of Table 7.5 (steshdeviation on MAP when
T = 12is 0.22) and the fourth and seventh lines of Table 7.6 . Weddsie performance of
the three systems (in Table 7.5) on the topics used in theatah in years 2000, 2002 and
2003. The performance is similar as seen in Figures 7.2@Ya2(c). In all cases the tan-
dem learning system performs better than a system¥ith32 documents (and no terms)
for feedback. For the topics used in the evaluations in y2@@®, 2002 and 2003, many
topics have only a handful of relevant documents and henge#sy to see why increasing
the document feedback quota’fo= 32 does not improve performance significantly over
the case wheil’ = 12. We observed a similar such result with our passage filtesystem,
where we found that combining the scores of two systems, atredecument feedback
and one with passage feedback, results in overall impromesne performance and that
document feedback saturates pretty quickly [88].

A point worth mentioning here is that the pool for this taskat a random sample of
the data. The fact that this can cause many problems forealgarning [83] leading to
over-fitting of the classifier, is a possible explanationvdry the average classifier works
better than either the purely document based one or thertatedgning one. It is possible

that similar or better results may be obtained if the parameif the system were tuned for
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(a) Performance on the 60 1999 Evaluation topics on the TOFpus. MAP scores are
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(b) Performance on the 60 2000 evaluatida) Performance on the 80 2002 and 2003
topics on the TDT3 corpus. MAP scores arevaluation topics on the TDT4 corpus. MAP
0.693, 0.678 and 0.741 for the Baseline, Tageores are 0.048, 0.165 and 0.170 for the
dem and Avg systemsl( = 12 and By = Baseline, Tandem and Avg systends £ 12
100). Performance using only documents andB; = 100). Performance using only doc-
T =32is 0.697. uments afl’ = 32 is 0.048.

Figure 7.2. News filtering performance. All graphs are sorted by the lr@sperformance.

Notice that tandem learning helps boost the scores of theypperforming topics, some-
times at the expense of hurting performance for which thelbsssystem performs very
well.
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filtering. However, we wanted to demonstrate the easy pitittabf our classifier from an
offline to an online scenario.

In our previous work in Topic Detection and Tracking we haddstd the evolution
of important keywords in news topics [88]. Towards this geal defined a measure of
informativeness of a document. We compute a list of inforomegjain scores for all terms
in the vocabulary of the corpus for each topic. The most mftive keywords would
have the highest score. Then for each topic, we order thendects by their time of
appearance in the news. Lete an index on the time of the document such that:tfie
document appears after the — 1)"* document. Then proceeding in the order of time, we
sum the information gain scores of terms that first appeardn@mentn. In this way,
each document gets amformativeness scoreNote that if a term has already occurred in
a previous document on that topic, it does not contributbeariformativeness score. The
informativeness score measures how many new importantsaagpear in each document
for a given topic. We can thus plot the informativeness sconreer time for each topic.
Since information gain scores are not normalized, we naoma#he informativeness score
for each topic by dividing by the maximum for that topic. A nalized informativeness
score of 1 then represents the most informative documerhé&rtopic. Figure 7.3 shows
the normalized informativeness score of ti& document on a topic (sorted by the time
at which the news story appeared) for all 60 topics (199%uatedn) in the TDT3 corpus.
From the plot in Figure 7.3 it seems like the key informatieenis appear in the first
few documents. If a user is able to mark the important ternriy faarly, much of the
information needed to learn the topic is captured. Thus deamnlearning approach works

well for news filtering.

7.6 Additional Experiments
We now briefly describe other systems that we have consttticé use alternate forms

of feedback other than document feedback to bootstrapifearn
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informativeness score

n-th document in stream

Figure 7.3. The evolution of terms with time: The informativeness semthen' docu-
ment on a topic. The x-axis is thé" document. The y-axis is the informativeness score.
The thick line traces the average informativeness scorealtpics. Most of the infor-
mative terms appear in the first 20 documents.

7.6.1 Other Forms of User Input: Forms and Passage Feedback

In our previous work we used the topic descriptions as pexvioy the LDC (See Ap-
pendix C for examples) to obtain a list of user marked feattwefeedback [48]. The topic
descriptions are structured and we used words innthe what, whereandwhen fields
to obtain a list of relevant features. We used these feafardandem learning (using the
scaling method only). The scenario is equivalent to askingea to fill a form containing
some structured questions about the topic. These questious depend on the domain.
In this case, the domain being news, we know that peoplegpland organizations are
important. Bearing in mind that the TDT annotators are eggarassessing the topicality

of news, we observed that we could use the information fradhic description to obtain
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Figure 7.4. Learning curves foHurricane Mitchwith the x-axis being the number of
labeled documents and y-axid

performance on par with the oracle. An example output froat work, for the topic of
Hurricane Mitchis shown in Figure 7.4.

In yet another piece of work [88], for the supervised filtgrtask in the Topic Detection
and Tracking evaluations, we asked users to highlight aslepassages of text as and
when they read documents in order to assess them for rekev@ihe system was built on a
Rocchio classifier, with one classifier built using the doeuatievel judgments and another
built using the passage judgments. The scores were combyjnkakear interpolation. The
resulting classifier showed significant improvements irigrerance on both the TDT and

TREC filtering metrics.

7.6.2 User Prior Knowledge for Clustering

In work with Bekkerman et al [15], we built a system that caanstér by any user
specified criterion. The system leverages user prior knibgdeon features to understand
the kinds of clusters that a user is interested in. For exampthe user is interested in
clusters by sentiment for movie reviews, she may specifijkédysvordsgood andterrific

for one cluster anderrible as an example feature for the other cluster. If the user ¢anno
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specify features, for example, in classifying by genre, shistem defaults to clustering
by the underlying document representation. We found sigamtiimprovements over the
baseline for sentiment classification using our method andd that naive users were able

to mark features sufficiently accurately even from priorktezige alone.

7.7 Summary

In this Chapter we found that our proposed algorithm for éandkearning using an ora-
cle typically gives significant improvements in performawer traditional active learning.
We also showed that such a tandem approach results in sagrilfigreater improvements
over using only the oracle chosen terms. We found that uses sufficient enough recall
as compared to the oracle to result in performance compatalihat of the oracle. We
applied our tandem learning approach directly to an on#as& and found that tandem
learning improves performance over using only document$efedback. Our user stud-
ies have pointed to various (anecdotal) examples of whenndaydthey can mark useful

features, leading to several ideas for a more thorough tisey g1 the future.
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CHAPTER 8
THE COMPLEXITY OF CONCEPTS IN TEXT CLASSIFICATION

In the real world some concepts are easier to grasp thansotAsrpointed out in the
introduction, the concept of a “bird” is probably much easiad quicker to learn than
the concept “art”. Much work has been done in the field of ctigmiscience in trying to
understand why some concepts can be learned faster thas atttewe will refer the inter-
ested reader to the works of Feldman [43], Chater [85] andretf102]. Feldman tried to
characterize human error on concepts as a function of théeBo@omplexity (the length
of the shortest logically equivalent propositional foraubf a concept He found a sur-
prising empirical ‘law’: the subjective difficulty of a coapt in human learning is directly
proportional to the Boolean complexity of the concept. lis tthapter we wonder about
the variance in concept difficulty in standard text clasatfan tasks. We show that for a
given learner and a set of concepts (categories in textctrabe learned by this learner,
there exists a significant diversity in the difficulty of cepds in text. We ask whether some
concepts are easier to learn than others. More specifigalyyonder whether some cate-
gories can be learned using a few training examples or fesitwhile others may require
many more examples and features before the concept is tetriee best of the learner’s
ability. We define a set of measures that quantify the diffycaf concepts, illustrating
the spectrum of problems that exist in text classificationfatt we too draw a conclusion
similar to Feldman: concepts that can be learned using fewamples can be described

by a few well chosen features.

1Example boolean expressions for a text classification tesklown in Table 1.1
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Given a learning algorithm, a set of features and a concketetis some maximum
achievable accuracy<( 100%) that the learner can achieve in the limit. For example,
even if the data is not exactly linearly separable, a linedMSnay be able to achieve
some fairly reasonable and acceptable accuracy (oftereiorter of 90% for many text
categorization problems) with adequate training. Givechsa set of concepts that are
“almost linearly separable”, that is “learnable” by a lin&/M, we question how much
training is “adequate” to attain the maximum achievableugacy.

One view of concept complexity or difficulty may be one asated with the maximum
achievable accuracy, that is, a concept that cannot bedédona desired degree of accu-
racy may be considered to be a difficult one. Studying difficéiom that perspective is
important in itself, but is not the goal of this work. In thisapter we restrict ourselves to
concepts that we know are ultimately learnable by the chasgorithm (SVMs) and ask
how easily they can be learned. The analogy in human leamngd be with concepts
taught at an elementary school level: they can all be leaifrestbugh effort is put in by a
student, yet some are easier than others. Whereas somempsodhcountered at the gradu-
ate school level (classifying problems into P and NP coneptategories for example) may
be difficult in that they are not easy to solve and therefoss learnable.

We begin by defining a set of difficulty measures in Sectiorb&ged on the number of
training examples and the number of features needed towactie maximum accuracy for
the learner. Our instance complexity measures intuiticalyture the number of training
examples needed to attain the maximum achievable accuraege examples need not be
random; they can be intelligently picked. We aim to captheerhinimum number of train-
ing examples needed to learn a concept. A problem for whathitrg on a few well-picked
instances is sufficient to arrive at the maximum achievatxescy is a low instance com-
plexity problem. Analogous to instance complexity we defe&ure complexity which
captures the minimum number of intelligently picked featuneeded to achieve the max-

imum possible accuracy. If a concept can be described by ghtezl combination of a
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few well selected features it is considered to be of low caxipy. We find a high posi-
tive correlation between instance complexity and featoramexity (Section 8.4.1) using
our measures. We then try to put together what these resels fior text classification,

machine learning and tandem learning in Sections 8.4.388%%nd 8.7.

8.1 Data

Before we proceed further we describe the data and the kinmsoepts we are study-
ing in this chapter. As usual, we are only concerned with taxégorization problems.
We consider 9 corpora and 358 binary classification problesrshown in Table 8.1, 4 of
which were already introduced in Section 4.2. In computiogplexity for the Reuters-
RCV1 corpus we only used the 23149 training documents frebd-Apte split [74] for
efficiency purposes.

Most corpora have topic-based category labels, exceptfeet (1) the Topic Detection
and Tracking corpus that contains classes based on evestBof54.2) (2) the British
National Corpus BNC corpus where the classes are based oa @nThe documents in
the Enron corpus are email categorized into folders by tbipient of the email.

For all data sets we used unigram features. For some of thefiorther added n-grams
of features if these n-grams improved performance.

Since we are only interested in measuring the difficulty effhable concepts”, we
considered only those problems for which there was ampieitiga data to achieve an
acceptable level of performance (of above 75% Maximum Figua linear SVM. The
last column in Table 8.1 lists the average maximimobtained using a linear classifier

and bag-of-word features trained on 90% of the data andtest¢he remaining.

8.2 Measures of complexity
We now describe 4 measures of complexity — 2 each of instartéeature complexity.

Given a “learnable concept” (or an “almost linearly seplgatmncept”) withM labeled
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coT

Corpus Domain | # instances # features {V) | # topics MaxF1

Reuters-21578 News-wire 9410 33378 10| 0.874 (0.087)
Reuters-RCV1 News-wire 23149 47236 87| 0.759(0.127)
Topic Detection Tracking(TDT) News-wire and broadcast 67111 85436 10| 0.918(0.001)
British National Corpus News, journals etc 2642 233288 15| 0.774 (0.153)
Enron E-mail folders 1971 711815 8| 0.887(0.082)
20 Newsgroups Newsgroup postings 19976 137728 20| 0.851(0.007)
Industry Sector Corporate web-pages 9565 69297 104| 0.909(0.04)
TechTC-100 ODP hierarchy 149 18073 100 | 0.972(0.026)
WebKB University websites 2101 28682 4| 0.918(0.047)

Table 8.1. For all corpora except TechTC-100 there is a one one-vabkusnary classification problem. The TechTC-100 dataset
consists of a 100 binary classification problems with abd@®documents in each and an average of 18073 features in each.



examples to estimate complexity from, each represented a5 @gimensional vector, our
complexity measures quantify the difficulty of learning bgasuring how many of th&/
instances andV features are really required to learn a good classifier.

Consider a learning algorithm which is supplied with a setaihing examples, ordered
such that the most useful examples for learning are beferlesis useful ones. If only a few
of these training instances are required for learning thke ta high performance, we will
say the task has low instance complexity. If a large numbereguired, we will say the
task has high instance complexity. Our instantiation o$éhastance complexity measures
attempts to capture how many of the best (most informati&ainces for a given problem
are needed in order to achieve performance close to thatioéariclassifier trained with
all features and ample training examples. In computingaimsg complexity we use active
learning methods which give us an experimental upper boarammplexity. The tightness
of the bound is dependent on the active learning method used.

Similarly, our feature complexity measures quantify hownsnaf the most informative
features are needed to achieve close to the best accuracfedure complexity measures
are also upper bounds on the true feature complexity, winerédhtness of the bound is

dependent on the feature selection method used.

8.3 Instance Complexity Measures

Given a classification algorithm and a binary classificagioblem, there is some max-
imum achievable performancé’(,, (-, N)), often under 100% in practice (Table 8.1). Re-
fer Section 5.2 for notation. In measuring the rate of leagnive want to measure the
minimum number of training example$) fieeded to achieve the best performance for a
given classifier. The brute-force way to find this minimumadadata set with\/ examples
would require training the classifier for every possible sailof training examples, that
is, 2M times. The size of the minimum sized subset that gives pedoce close to the

optimal performance would then be computed asmin{argmax; F1;(-, N),i=1..2M}.
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This method, although most accurate, is time-consumingaalty for large)M. Instead
we use active learning to give us an ordering on the instasmtgé®stimate an upper bound
on: using this ordering in the following way.

As before (Figure 2.1) the active learning algorithm begiith 2 randomly selected
instances, one in the positive and one in the negative cl@ks. active learner learns a
classifier based on this information and then intelligestiposes the next instance from
a pool of unlabeled examples for the expert to label. Thesdlasis retrained and the
process continues. We measure the performahde,(ACT, N) of the classifier after
every?2' iterations of active learning withvarying asl, 2, ..., log, M, wherel is the total
number of instances available for trainfng A performance curve for three problems in
the 20 Newsgroups data set is shown in Figure 8.1. For theept®ie-graphicsandms-
windows.miscthe learner achieves the maximum attainable accurac Flyafter seeing
2048 @) examples. The value 2048 can be considered to be an upped loou. For
sci.crypt the learner achieves its peak after seeing about 1024 dgsmpaking it an easier
concept (by our definition of complexity) than the other tw@ch instance is chosen with
the expectation that adding it to the training set will imgg@ccuracy significantly. Since
at each stage we are adding an example based on an estintateabfie to the training set,
the bound is approximate. We can tighten the bound by pnogithe learning algorithm
with as much information as possible: a large pool size fangxle. The advantage of
using active learning is that the classifier needs to beadagmlyO (M) times. How close
this estimated feature complexity is to the true bound iseddpnt on the ability of the
learner to leave out redundant instances in its training.

This simple measure of complexity is only an approximatimnand a keen observer
will note that the rate of convergence of thms-windows.misis initially higher than that

of comp.graphics It seems intuitive thatns-windows.misshould be considered to be

°Note that the use of is slightly different in this chapter, denoting the log okthumber of training
examples, and not the actual number of training examples.
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Figure 8.1.Learning curves for a single classifier on 3 problems.

less complex thawomp.graphics The approximate complexity value 2648 estimated
using active learning does not capture this learning rate. fAgtor in the learning rate
by considering the area under the learning curve (as we diutve efficiency metric in
Section 4.3.2) computed as :

loga M

AUC|oq = Y Fl1x(ACT,N)

t=1
This time we measure performance at exponentially inangasitervals, and compute the
area under the learning curve, plotted with a logarithmiaxss. Auqog implicitly gives
a higher score to problems that converge more rapidly in #ny stage of learning than
later. To obtain a quantity that measures the rate of legrimaependent o/, we define

theactive learning convergence profie follows:

109:M 1, (ACT, N)

- 1
Pal = Jog, M x F1,,(ACT, N) 681)
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pg| Is the area under the normalized active learning curve (Bped-8.2(a)), with a range
between 0 and 1 and is independenfi6f Higherp,| implies faster convergence. Thg,
values for the three problems in Figure 8 ths-windows.miscomp.graphicandsci.crypt
are 0.61, 0.45 and 0.55 respectively. Note that even thdwegmaximum accuracy achieved
for sci.cryptis much higher (0.90 F1) than for the other two problems, #te of active
learning ofsci.cryptis more similar tocomp.graphicsThe concepms-windows.mishas
the best rate of learning in the early stages. All these ptiggeare captured by the,
values.

We now describe the two instance complexity measures daeélasing the approxi-
mation to: andp,;. For both measures, a higher value of complexity implies eerdifficult
problem.

1. Instance profile complexity /,.: This measure is simply the complement of the
active learning convergence profile, and is given,as= 1 — p5. The active learning
curve and hence the value 6f. obtained is subject to the active learning algorithm and
will be less than the ideal (theoretical best ordering ofanses) case. Thereforg, is an
upper bound on the true complexity.

2. Instance complexity C;: I,,. only considers the rate of learning and does not contain

any information about the number of instances needed teeelie best performance. We
therefore defin€’; = I,,. x n; wheren, is the logarithm of the number of instances needed
to achieve 95% of the best performance. We expectithat an upper bound otvg ().
We chose a threshold of 95%, rather than waiting for the ctoveach its peak, with the
hope of capturing the point where most of the concept is Ehrisually, the rate of of
improvement at the final stages of learning, before the qairisdully learned, is very slow
with several thousands of instances contributing to a tmgrovement in performance,
unnecessarily inflating the complexity score (See Figu2é3).

Using a log scale fon; makes the scale like the Richter where an earthquake of mag-

nitude 6 is significantly more intense than one of magnitude 5
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Figure 8.2. Normalized learning curves (active learning and featusenimg) for 20 News-
groups.

8.3.1 Feature Complexity Measures

Our third and fourth measures attempt to capture the comyplaihe problem in terms
of the number of features needed to reach the best possitbberpance. Again, instead of
evaluating2"¥ combinations of features, we estimate an approximatiohetrue feature
complexity by using an oracle (Section 5.1) to learn a ragkiithe features in the order of
decreasing discriminative ability for a given classifioatproblem. The oracle uses a large
number of training documents and a feature selection mitdike information gain. We
consider the performance of the classifier constructedyinop ranking features where
k varies between 1 ttbg, N. The normalized area under this feature learning cuthe,

feature learning convergence profilg; is computed as follows

092N 11, (ACT, 29)

P = T0g,N x F1,,(ACT, N) (8.2)

3Note that the use df is slightly different in this chapter, denoting the log oéthumber of features, and
not the actual number of features.
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Normalized feature learning curves for the 20 Newsgroupgusare shown in Figure
8.2(b). The two feature complexity measures defined belevakmnost identical in intuition
to the instance complexity measures.

1. Feature profile complexity, F,.: Feature profile complexityH,.) is then defined as
F,. = 1—pyf. The computed value df,. is limited by the accuracy of the feature selection
algorithm.

2. Feature complexity, C;: Similar toC;, we defineC; = F,. * ny, whereny is the
logarithm of the number of features in the feature learnunye needed to achieve 95% of
the best performance. How good the estimate of the truerleamplexity obtained this

way is dependent on the feature selection algorithm used.

Methods

One method for instance selection is SVM uncertainty samgdlr5] as discussed in
Section 4.1.5. However, this would involve retraining théMs O(M) times, which can
be very time consuming. Therefore, when we use SVM uncéytaeimpling to compute
pa, We plot the learning curve only up to 1024 instances. To flletcomplete active
learning curve we use a another active learning methadcemmittee of perceptrons
[33]. The perceptron being mistake-driven needs to beinetdafewer thanl/ times (M
times in the worst case. See Section 4.1.1). Besides, etrainieg unlike the SVM, does
not involve solving a quadratic programming optimizatiaolgem (See Section 4.1.3).
Of course, active learning using perceptrons may not befastieke as SVM uncertainty
sampling. However, we find that the ranking problems by tb@mplexity computed using
the perceptron committee is almost identical to the ran&lrtgined using SVM uncertainty
sampling (refer Figure 8.6), though the actual values offerity obtained with SVMs is
probably a better estimate of the true complexity.

We can use information gain as described in Section 5.1 &ufe selection. However,

information gain does not ignore redundant features. Solseeexperimented witlsVM
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LARS [61], a new and effective forward selection technique fatdee selection. Given
that it is a forward selection technique, LARS ignores hygtdrrelated features in its fea-
ture selection, something information gain does not do.r8floee, we expect that LARS
would capture the true feature complexity better by elitingaredundant features. How-
ever, SVM LARS has a relatively high running time and we useniy in a limited way
by computingpf by plotting the feature learning curve only uplta4 features. When we
use information gain we are able to plot the entire learninye.

Each time we computé&'1, (ACT, 2%) in equations 8.1 and 8.2, our aim is to find the
best possible performance with a classifier traineoaxamples an@* features. We
hope that by using active learning with a large pool, anduieaselection using a large
training set, we obtain a fairly accurate estimate of this bkassifier. The better the active
learning and feature selection methods, the tighter thatoQur experience with SVMs
showed that with few training examples, much of the erran & poor estimation df (refer
Equation 4.1). Hence, to obtain an even tighter bound, weepwierough all values aof
and use thai for which theF; is maximum on the test set. We call this quankitsgixF1. In
factin Table 8.1, the last column lists the Max F1 valuesiolegwith a 90-10 training-test

split of the corpus.

8.4 Results
We describe the results of using our feature complexity nmegson the 358 problems

described in Table 8.1.

8.4.1 Correlation of Instance Complexity and Feature Compxity
Figure 8.3 illustrates that,. and F},. of problems computed using SVM uncertainty
sampling and LARS are highly correlated £ 0.95)*. The plots ofl,. vs. F,. computed

using perceptron committees and information gain looklsimalbeit with a slightly lower

4r is Pearson’s correlation coefficient, and r=1 denotessgedorrelation
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Figure 8.3. Correlation between,. andF,,. using SVM and LARS. Correlation of instance
complexity and feature complexity is independent of methaskd to compute the two.

correlation coefficientr(= 0.81 (p < 2.2¢71%)). The SVM methods show higher correla-
tion probably because they have the same underlying SVMilegiand SVM LARS does

a better job of feature ordering for the SVM learner than rinfation gain does for per-
ceptron. Additionallyr; andn; (computed using perceptron committees and information
gain) are also strongly correlated £ 0.613 (p < 2.2¢7'%)) and therefore”; andC/ are
also strongly correlated (= 0.682 (p < 2.2¢719)).

We also experimented with random sampling for instancectele Table 8.2 below
shows the correlation coefficients fég. and £),. for various combinations of classifiers,
instance selection mechanisms and feature selection misaisfor the 6 corpora in Figure
8.3.

That instance complexity (the minimum number of instan@eied to learn a concept)
and feature complexity (the minimum number of features addd learn a concept) are

highly correlated may not be surprising since both are grbb@lated to the Kolmogorov
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classifier | Feature Sel| Instance Sel| r

SVM LARS Active 0.95
SVM LARS Random | 0.88
Perceptron Info. Gain Active 0.81

Perceptron Info. Gain Random | 0.79

Table 8.2. I, and F,,. for various combinations of classifiers, instance select@cha-
nisms and feature selection mechanisms. Numbers in boichitedstatistically significant
correlations at the 95% level of confidence.

complexity’ of the learning algorithm. That our complexity measuresleikthis correla-

tion substantiates our belief in these measures.

8.4.2 Difficulty of Domains

We now benchmark all 9 corpora as easy or difficult for actdahing using our com-
plexity measures. Table 8.3 shows the complexity of difiedata sets. By all measures
the Tech100 data set ranks as the easiest, followed by WebhHRauters. BNC, Reuters-
RCV1, 20 Newsgroups and the Industry sector corpora areuwliffby both our instance
complexity and feature complexity measures. This is bdttestrated in the chart in Fig-
ure 8.5. This figure reaffirms the high correlation betweeatance complexity and feature
complexity. That most corpora have problems of varying difty is demonstrated by
the standard deviation of the scores in Table 8.3. Even tintlug BNC corpus is small
(less than 3k documents) it falls into the difficult end of #pectrum implying that genre
classification is more difficult than subject based categdion.

The ranking of corpora using,. computed using SVM with LARS and Perceptron
with information gain are also near identical as is illustthby Figure 8.4 (We only show
a subset of the problems to illustrate this, due to the slaming time of LARS). The

ranking of individual problems in these two corpora usirg computed using these two

5The complexity of an algorithm is measured by the length ef shortest universal Turing machine
program that correctly reproduces the observed data. Réeretmat K-complexity is only theoretical and
cannot be computed.
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Corpus Instance Complexity Measures Feature Complexity Measures
]pc T; Cz ch ny Cf
Tech100 | 0.04 (0.06)] 3.24(2.23)| 0.20 (0.33)| 0.07 (0.02)| 1.89(1.43)| 0.14 (0.14)
WebKB 0.31(0.13)] 8.75(0.50) | 2.72(1.04)| 0.11 (0.04)| 4.00(2.16)| 0.51 (0.47)
Reuters-21578 0.35 (0.13)| 8.20 (1.03) | 2.93 (1.24)| 0.12 (0.07)| 4.80(2.04) | 0.69 (0.56)
BNC 0.39(0.16)] 7.93(1.91)| 3.34(1.73)| 0.24 (0.11)| 11.47 (3.83) 2.97 (1.60)
Enron 0.46 (0.09)| 8.33(0.87)| 3.82(0.94)| 0.13 (0.06)| 7.67 (4.42)| 1.18(0.70)
20NG 0.48 (0.04)| 10.40 (0.68)| 5.04 (0.71)| 0.23 (0.08)| 10.05 (1.39) 2.32 (0.95)
TDT3 0.48 (0.13)] 9.30(1.06) | 4.55(1.53)| 0.20 (0.04)| 6.50(1.78)| 1.34 (0.53)
Reuters-RCV1 0.53 (0.14)| 10.67 (1.84) 5.81 (2.25)| 0.23 (0.09)| 7.69 (2.04) | 1.81 (0.79)
Industry 0.59 (0.12)| 10.34 (1.43)| 6.20 (1.71)| 0.29 (0.09)| 5.97 (1.52)| 1.77 (0.61)

Table 8.3. Difficulty measures for different corpora. Higher the valugre complex the problem. Values in brackets indicate std.
deviation. The complexity is computed using the percepaigorithm & uncertainty sampling & info. gain for featurdeseion.



methods also correlate fairly well (r=0.73). Tlag. scores for individual problems in the
Reuters-21578 and 20 Newsgroups corpus using both methedkiatrated in Figure 8.6.
Our results also support previous results that say that@@siyroups consists of problems
that are more difficult than Reuters-21578 and that problgmesvheatare much easier

with lower feature complexity as comparedaoq[14, 56].
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Figure 8.4. Ranking usingF,. computed by two different methods results in a similar
ranking of corpora.

The Tech100 data set is a result of the efforts of Davidov {4Ito obtain a data set
containing problems of varying difficulty in terms of maximyperformance achievable.
Yet we find all of the problems in this data set are of low comitya.e., a few well chosen
examples or features are sufficient to achieve the optinzairacy.

The TDT corpus consists of English newswire documents (Eegys), the output of
an automatic speech recognizer system for English broasicasces (Eng ASR), machine
translated newswire sources (MT News) and broadcast sburddandarin preprocessed
through an ASR system and a machine translation system (VR)A®e measured the
difficulty of each of the subsections of this corpus. Thevalues for event based catego-

rization are shown in the second column of Table 8.4.
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Figure 8.5. Instance Complexitylf.) and Feature Complexity/{.). A higher value of
complexity indicates a difficult problem. Notice how instarcomplexity and feature com-
plexity are correlated.
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Figure 8.6. Feature complexity {,.) scores of problems in the Reuters-21578 and 20

Newsgroups corpora computed using 2 different methods héfithe complexity more
difficult the problem.
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The English sub-section of the corpus is easier than the imatfanslated one, which
is more noisy. For example, topic 30036N®wbel Prizes Awarded The feature com-
plexity of this problem in each subset is shown in the thirigo. The most important
words in English Newswire and English ASR are (as expedimbel prize, Saramago
(person who won it) etc, making classificaton in Eng-Newatnetly easy. However, in
MT News and MT ASR the most important keywords premisesBell, prizeandaward
The wordNobelis consistently translated fgromises Belin documents whose original
source isMandarirf. Names likeSaramagowhich are highly discriminatory in English
are out of vocabulary in the MT documents, making the clasgibn problem even harder.
Additionally, a multi-source setting (newswire, broadcasd multiple languages) can be
more difficult than considering each source alone as thebudaey across sources differs

depending on the MT and ASR systems used.

C by class type
Subset of | Events| Nobel | Subject| Legal & Cri-
TDT3 Awarded -minal cases
Eng News | 0.65 0.27 2.03 2.56
Eng ASR 0.95 0.14 2.02 2.78
MT News 1.38 3.25 2.12 2.61
MT ASR 1.22 3.48 1.50 2.03
| Wholecorpus 1.34 | 1.60 | 2.78 | 330 |

Table 8.4. Difficulty of the TDT corpus when broken down by source and byegory
type.

So far we have considered categories based on events in fhedrpus andHurricane
Mitch andHurricane Georgewere different categories. The TDT corpus is also annotated
by broader subjects likeatural disasterselectionsetc, the feature complexity of which

are given in the fourth column of Table 8.4. The fifth colummwh theC'; values for

5Nobel is a 3 character word in Mandarin, the first of two of whadso correspond to the English word
promisesand the third of which corresponds to the English n&ak
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an example topic tegal and criminal cases The important features for classifying by
subject are words likeourt, law etc., which do not suffer from as many MT and ASR
errors making the difficulty of subject based classificatiwout the same in each source

type, and even in the whole corpus (see the fourth columnloETa4).

8.4.3 A Perspective on Text Classification Problems

The difficulty of a problem or a given classification task candue to two reasons.
One, the problem is intrinsically difficult to solve with aghi degree of accuracy, with the
current capability of the learner. Secondly, even for peaid that can be solved, some
problems may be learned more easily (with less training) ththers. To our knowledge
this is the first work that tries to understand difficulty ipéeadent of accuracy.

We recommend that researchers use our complexity measurpsoblem or domain
selection and as a tool to analyze their results. Researtbed to believe that a corpus
and the categorization problems in it may be easy or diffiduét to class skew, humbers
of documents and features, document length etc. Which mofidifficulty is meant, is a
good question to ask. Initially we thought that the diffigi(lby our definition) of a problem
for active learning may be related to corpus size and festirsize. That corpus size is not
an indicator of difficulty is obvious from the BNC example, iafnis much more difficult
than WebKB, a corpus with comparable number of documenisil&iy the total number
of features {V) is not a predictor of complexity as can be seen from Tablesagd 8.3. We
also saw that difficulty is a function of the type of categsriing sought. For example,
classifying by subject was less difficult than classifyirygdvent in the same corpus.

Our measures capture (and even quantify) previously hdldfe@about text catego-
rization problems. For example, the categuaiyeatin the Reuters-21578 corpus is well
known to be of low feature complexity and previous reseata$ $hown that the single
word wheatin itself is a near perfect predictor of accuracy. The catggaqon the other

hand, is considered to be one of high feature complexity $84, Since the Reuters and
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20 Newsgroups corpora are so popular even today as bencluatlsets, we provide a
complete breakdown of the complexity measures for everlglpro in these two corpora in

Appendix E.

8.5 Implications for Tandem Learning

The dual nature of complexity seems to imply that an intehidy picked feature is
as good as an inteligently picked instance. That means @aryhat least) that we can
actively learn by intelligently picking and weighting fea¢s. Of course, labeling features
is not cognitively as easy as labeling instances. A humamjdvoe able to label almost
all instances in a corpus (maybe with the exception of a femfunstances) with category
labels, whereas labeling aN features (with category labels or even merely about their
relevance) would not be easy. For example, it is not easytermée whether the feature
driversis relevant in discriminating betwearomp.graphicsand ms-windows.miscOur
initial guess was that humans may be able to judge a few fesmfairly quickly, and that
labeling these few features would be equivalent to labedihgndful of documents, but the
latter would be more time consuming. Our preliminary expemnts showed us that labeling
a feature is more than five times faster than labeling anmestaWe found that users can
pick the most predictive features fairly accurately in theyous chapter. For low feature
complexity problems, learning may be stopped once feataresgicked. For medium
complexity problems, the user may need to mark a few instaimcaddition to the features
to achieve an acceptable level of accuracy. For very compmielzlems feature selection
may be much more difficult for the user and instance feedbadke more reasonable
alternative. Hence, we think a tandem approach of askingstamce feedback and feature
feedback is most beneficial: if the problem is of low compiga few features that the user
marks will quickly lead the classifier to convergence; if greblem is of high complexity,
the user would not be able to recommend features (they maeraiivious) but can provide

feedback on instances instead. In Section 8.5.1 we veligyhiypothesis.
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If we can predict that a problem is going to be difficult at theset of learning, we need
not resort to feature feedback. We leave devising such giaedifor future work (Chapter
9). The interface for tandem learning chosen bypasses tiegmn of predicting problem
difficulty. In our system a user will be asked to stop markiegttires after a point and after
which she will only label documents. By stopping featuredfegeck early enough, the low
feature complexity problems should see a significant baoperformance, and for high
complexity problems, the time spent labeling featuresadably insignificant considering

that the total amount of time to train the classifier is gomg¢ large anyway.

8.5.1 Experiments

We saw that instance complexity and feature complexity e dides of the same
coin — a problem for which a few intelligently chosen instasican be used to build a
good classifier is also one for which a few good features ang g@od predictors of class
membership. From these results we hypothesized that cquplielligent feature selection
with intelligent document selection should accelerateradearning.

The active learning convergence profilg measures the rate of convergence or the
speed of learning. We measured the speed of traditionaranty sampling (document
feedback only) and that of the tandem learning for all 35&|enms benchmarked in this
chapter. We measure performance only upte- 42 labeled examples and plot the active
learning convergence profile, refer Equation 8.1). Similarly we measupg as the
tandem learning convergence profile. Figure 8.7 plots trentity p,;, — p.; for all 358
problems. This quantity is proportional to the efficiencytahdem learning over active
learning (refer Section 4.3.2). In these experiments wel asdy the scaling method to
incorporate feature feedback. The improvement in speedaltree incorporation of term
feedback in addition to document feedback is inverselytedl@ao feature complexity as

seen in Figure 8.7 (r =-0.65). Speed is improved by about 57%verage.
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The faculty class in WebKB shows significant improvement in speed(sgar€i8.7).
For this problem, the keywordsculty and professorare sufficient to obtain 93% of the
maximum achievable accuracy (90.05% F1). Both these tepmesea for feature feedback
within the first 5 iterations in all 30 trials. Similarly, féihe Enron corpus, one of the folders
is almost completely classified by the sender of the e-rifdison Shondthere are some
other folders that contain some e-mails W§lson Shona The algorithm recommends
his e-mail id for feedback in the early iterations, resytin significant improvements in
performance. Theiscellaneousategory in the BNC corpus does not gain from term feed-
back whereaarts/cultural materialdoes, because of discriminatory keywords ldgeera,
actor, theateretc in the latter category that when marked relevant imppmrformance
significantly. There are a couple of outliers like the RCV1egaryreservesfor which
speed decreases by a large amount when term feedback idedcllihis may be because a
fixed scaling factor of 10 for the selected features is usalaralgorithm, which may not
be appropriate for every problem.

We also report the performance (F1) for 8 corpora in Tablea&t&r12 and32 rounds
of document feedback (as in Table 7.1), and for tandem legwith 7 = 12 and By =
100. Tandem learning always improves performance over thewasal = 12. Itis
significantly better thari® = 32 for 5 of 8 cases. Like RCV1, BNC is a corpus where
document feedback faf = 32 is more effective than tandem learning. The categories
in the BNC corpus are by genre and this result can be integbrgtite intuitively: for
categories like “prose” and “poetry” even intuitively it @ not seem like there are any
keywords that can capture these concepts.

In this section we used our difficulty measures to better tstded situations when such
methods might work specially well. We have found that feafeedback accelerates active
learning by an amount that is inversely related to the featamplexity of the problem. For
low to mid range feature complexity problems, a few traindoguments combined with

feature feedback can give a big improvement in accuracy ktite labeled data. Many
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Figure 8.7. Difference in speed of active learning and tandem learngg &nction of
complexity C'y)

Corpus | C; Only docs Tandem
(Active)
T=12|T =32
Tech100| 0.20| 0.486 | 0.594 | 0.847
WebKB | 0.51| 0.262 | 0.424 | 0.520
Reuters| 0.69| 0.516 | 0.570 | 0.651
Enron | 1.18| 0.218 | 0.444 | 0.465
TDT3 | 1.34| 0.202 | 0.259 | 0.336
Industry| 1.77| 0.071 | 0.123 | 0.199
RCv1l | 1.81| 0.134 | 0.260 | 0.231
20NG | 2.32| 0.180 | 0.259 | 0.336

BNC |2.97| 0.209 | 0.332 | 0.264

Table 8.5.Improvement in F1 for corpora of different levels of diffitulNumbers in bold
indicate that tandem learning is significantly better thémemwonly documents are used for
feedback. Numbers in italics indicate significantly lowerfprmance than the case when
T = 32.
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problems in our 9 corpora fall in a low to mediuh & Cy < 2) range of complexity
and stand to gain from such a dual feedback framework, auezhsamnail foldering being
one such domain. Future work includes using these or simikasures to explain other
observations, such as when other semi-supervised teasigay work well, as well as
exploring methods for predicting the expected difficultyadéarning problem at the begin-
ning stages of training (when few labeled data is availaflbjs can inform the subsequent

learning strategy taken (Chapter 9).

8.6 Related Work

The classic “curse of dimensionality” informally statesttithe higher the dimension
of the problem, the harder the problem. (in this case, leg)niHowever, our work goes
beyond that and tries to measure the the inherent complexkitiie problem. A large
dimensional learning problem may be easy if only few featue required for learning
it. We show here that actively picked examples reveal theptexity better, and we relate
this to measures of feature complexity as well. Note thatwap the exact underlying
complexity relates to maximum compression of a given stand is intractable. Thus
the subject of this chapter was to explore the utility of opprximate measures, which
depends on the learning algorithm used as well as our chostanice and feature selection
techniques (and we report on some comparisons).

Ho and Basu [52] defined a set of measures that captured thplexitg of the ge-
ometry of the boundary for a few artificial and real binaryssiication problems of low
dimensionality. In comparison, our work is in the domain @fttclassification, where a
linear hyperplane is often effective making the geometrthefboundary less of an issue.
We experimented with one of their measures of feature cotiplanaximum Fisher dis-
criminant ratio, to find that it did not correlate as well with (r = 0.2). We also measured
how F},. correlated with maximum accuracy and found the correlatiiope not very high

(r=0.4).
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For other domains where active learning is used [109] butrevkige classifier is not
linear it is less clear whether our complexity measures ¢acttlly be used and we would
be interested in exploring this question in the future (GbiP). The difficulty in domains
like text is that large amounts of training data may be neededder to find the optimal
hyperplane. Davidov et al [34] developed a benchmark datamsesisting of 100 text-
classification problems with varying difficulty (accuragnging from 0.6 to 0.92). They
also developed measures for predicting the difficulty of @bfgm, but this was in terms
of its accuracy. Instead our focus is in understanding howynfi@atures or examples are
needed to achieve the maximum accuracy. In fact their datdseh-100, is the easiest
data set for active learning, and illustrates the fact thfitdity of accuracy is different
from “learnability”.

Gabrilovich et al defined a feature complexity measautier count[46] that attempts
to capture the number of important features for a given iagrproblem. They used outlier
count to characterize problems for which decision treesrame accurate than SVMs, the
latter being the main thrust of their work. The work in thisapker on the other hand is an
in-depth analysis of complexity — both feature and instalée did experiment with outlier
count finding that it correlates with instance complexity.X reasonably well (r=0.610) as
our feature complexity measures.

Blum and Langley [19] provide a good introduction and mdiwato the work in this
chapter. They discuss the problem of selecting relevamhpies and relevant features as
two ways of gathering relevant information in a data set.yltbemally define the relevance
of features and examples. and suggest using relevance aasaima®f complexity. Their
work is however theoretical and their definitions apply flasses which can be completely
described (i.e., 100 % accuracy is achieved) by some cotiqumar disjunction of features.
Real world problems like text classification are not so sergoid it is not clear how their
measures may be used to quantify complexity for real worbdbiems. They conclude their

paper by stating the followingmpirical challenge
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Feature selection and example selection are tasks thattedenmtimately
related and we need more studies designed to help undeestdrgpiantify this
relationship. Much of the empirical work on example setatias dealt with
low dimensional spaces, yet this approach clearly holds gveater potential
for domains involving many irrelevant features. ResolMiagic issues of this
sort promises to keep the field of machine learning occumethiny years to
come.

Our measures attempt to answer the unsolved questionsiirp#per. We define mea-
sures that can be computed easily in real world domains, antbdstrate that instance

complexity and feature complexity are highly positivelyrabated.

8.7 Summary

Designing adequate measures of difficulty is a balancingeteteen efficiency and util-
ity. The techniques proposed here are efficient and we shewiddnce that they exhibit
desired properties: rough but useful measures of difficldgding to a consistent ranking
of problems, and enjoying high correlation. We observednaght be expected and de-
sired, a high positive correlation between our instancepterity and feature complexity
measures. We used these measures to gain insights on tieerditiiculty of a variety of
text categorization problems and domains. This analysialghinform future research, for
example in selecting corpora and anticipating results. W& that our measures capture
previously held beliefs about the difficulty of various tekdssification problems (See Fig.
8.6) [14, 56]. However, past work has typically consideraty ¢he Reuters-21578 and 20
Newsgroups corpora. By benchmarking 9 corpora and 358 gmodylwe place these two
corpora and their underlying problems in perspective waipect to a broad range of text
categorization problems. Our measures also capture hdwutly can be different even
for a given corpus depending on the type of categories (shjestuor event) that one is
trying to learn. We also show how the feature complexity fassifying in a cross-lingual
and cross-media (broadcast and news stories) setting is dificult than classifying in a

given language or for a given source-type. We discussedrtpkdations of all our obser-
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vations for machine learning research and for tandem legiini particular. Given that we
do not know at the outset how to predict whether a conceptiirgggo be easy or difficult,

a tandem learning approach is the best general approachiagpe the early stage of

learning.

124



CHAPTER 9
CONCLUSIONS AND FUTURE WORK

We begin this concluding chapter by highlighting our cdmitions to the field of text

categorization and then list our main results. In the endis@uds ideas for future research.

9.1 Contributions
1. We designed a tandem learning algorithm for text clasdibo that draws on ideas
from machine learning and information retrieval. The |@agrprocess in a tandem
learning system is interactive, where the teacher is ask&bel examples and fea-

tures chosen by the system.

2. To our knowledge this is the first work to consider docunserd term feedback in
conjunction, analyzing how one mode of feedback benefitetiter and whether one
can be used in lieu of the other. To the best of our knowledget pest research has

considered these two modes of feedback independently.

3. We designed a solid experimental framework that usesasieoto explore the ben-
efits of feature selection. We prescribe such an oracle apprtor any work that
involves a human-in-the-loop since it helps separate glgoic error from human
error. We recommend that the experimental design shouldleeta factor out the
answers to the following questions: what must the learrigo(@hm) ask the teacher
(human) in order to maximize the information gained by th&mer? can the learner
assimilate the information if the human provided the cdraeswer? can the human
answer the question correctly? what happens if the humamesasvrongly? and

how must the question be posed to the human in order to olii@icarrect answer?
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4. Our offline technique of obtaining feature judgments,pitesof some of its disad-
vantages, is a cheap and effective way of measuring the tigypabthe system using

real users. It also helps answer some of the questions raisede.

5. We designed a set of complexity measures that captureubeihderlying feature
and instance complexity of a binary classification probléithough we used them
as a tool to examine the kind of concepts for which tandemmiegris effective, the
measures are general enough and can be used by text claéssifiesgsearchers in

general to explore the effectiveness of any new techniqadgorithm.

9.2 Conclusions

We now summarize lessons learned from this work:

1. Feature selection is a particularly important problentdat classification, a domain
with many irrelevant and redundant features. The probleaggravated when the
number of training examples is few. In text categorizationmans can guide the

classifier, thereby aiding the feature selection process.

2. Feature selection is mostly beneficial for model selectamd somewhat beneficial

for instance selection in active learning.

3. Tandem learning is better than learning on only documentanly features. The
proposed algorithm improves the classification perforredme 10% (absolute dif-
ference, averaged over all corpora, corresponding to anr8&ive difference) over

traditional active learning.

4. Although humans are more verbose than the oracle, theyttenverlap with the
oracle to a significant extent (greater than 60% overlaps.ttis overlap that makes
the ultimate classifier performance achieved with humaael&bfeatures match that

of the oracle.
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5. Our tandem learning approach can easily be ported foctdise in a news filtering

task, where the performance is improved by feature feedback

6. There exist a wide variety of problems in text classifmatof various degrees of
feature complexity. Low feature complexity problems exhibaximum benefit for

interactive learning techniques.

9.3 Future Work
Since our work sits at the cross-roads of machine learnindgrateractive information
retrieval, there are many directions for future work. Wehtight some of our main ideas

below.

9.3.1 An extensive user study

Our user study did not measure the real-time usability ofahdem learning algorithm
and users’ willingness or ability to mark features (thoughdid a small survey comparing
the hardness of feature feedback vs. document feedbackintével to explore these and
other interface related questions in the future. In factaacle based approach provides
a starting point for designing user studies. For examplearehiers have been exploring
the role of context in determining the usefulness of terms. ddh now answer questions
about whether context helps determine relevant featuriésrlme non-relevant ones. Then
we can similarly question the role of relevant and non-r@téxcontext for each of relevant
and non-relevant terms. For example, we saw that the keromintangwhen shown with
context that did not directly imply that it was relevant te faipei Mayoral Electionswas
marked non-relevant by the user (see Appendix C). There arng similar questions about
how best to solicit user feedback that need to be answered.

Other than providing context to assist feature selecti@ndia not explore other possi-
ble interfaces like lists, or showing users clusters ofufezd (where the user is asked only

one label for the entire cluster) and so on. We think that we#ligned interfaces will de-
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crease the ratio of the time to mark a feature to the time ti&kmalocument and is a useful

future line of research (remember our upper bound on thiatwats 1/5).

9.3.2 Other Forms of Feedback

Information retrieval has used several kinds of feedbaek tisers can provide to a
system — feedback on passages, or on clusters of documenexdmple. These alter-
nate forms of feedback can be translated into a set of featureerms to incorporate into
the tandem learning algorithm. Alternately, we can desigw algorithms to incorporate
these feedback mechanisms for classification. What thesaalive feedback mechanisms
are, how to incorporate feedback and whether they will aadsification is an interesting

research question.

9.3.3 Predicting Complexity

An important problem for the user in interactive settingthesability of a system to be
able to accurately predict the usefulness of interactidme prediction needs to be made
on the currently labeled data set. We are thinking of exptpwhat aspects of a problem
or a domain contribute to feature complexity. Is it the pneseof irrelevant features or
redundant ones or is it the underlying clusters in the datahdJessons from such an
exploration we would like to be able to predict complexitytsat we can better inform the
user about the amount of feedback that will be needed to lesied by her to achieve the
maximum accuracy possible by a given learner for a givenlprobWe also wonder about

the impact of higher order boundaries on the learning ditfyfcu

9.3.4 Other Tasks and Domains
We would like to use a similar setup to determine the effectass of term feedback in
lieu of, or in support of, document feedback for ad-hoc estal. Additionally, it would be

interesting to explore whether topics in ad-hoc retrievallmearly separable. If so, then
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we can use our complexity measures to gauge the kind of ottenstechniques that would
be applicable for ad-hoc queries.

Linear SVMs are popular in domains like image classificatidrisele at al [51] used
a set of linear SVMs, each working independently on a sepa@mnponent of an image
of a face, like the nose, the eye and so on, for the task of imkgsification. A linear
SVM was then used to combine the outputs of the component SW\s possible that a
human may be able to bootstrap learning by say pointing @italyiven component was
more valuable than the others to detect a particular pemogxmple glasses on the eyes
for a bespectacled person. Likewise in cancer classificagioother domain where a linear
SVM is state of the art, and also a domain where feature saeteistcritical [40], a domain
expert (a molecular biologist perhaps) may be able to speeittain valuable features, for
examples genes that are believed to be predictive. We wikaldd explore other domains

and problems that tandem learning can be applied to.
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APPENDIX A
CLASS KEY

Class keys for the Reuters-21578 corpus:

1. earnings 2. acquisitions 3. money-fx 4. crude 5. trade

6. interest 7. wheat 8. corn 9. money supply 10. gold

Class keys for the 20 Newsgroups corpus:

1. alt.atheism 2. comp.graphics 3. comp.os.wind.misc
4. comp.sys.ibm.pc.hw 5. comp.sys.mac.hw 6. comp.windows

7. misc.forsale 8. rec.autos 9. rec.motorcycles
10. rec.sport.baseball ~ 11. rec.sport.hockey 12. sciicryp

13. sci.electronics 14. sci.med 15. sci.space

16. soc.rel.christian 17. talk.politics.guns  18. talkifozs. mideast

19. talk.politics.misc 20. talk.religion.misc
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APPENDIX B

USER STUDY

B.1 Instructions

You will be shown a list of features (words) one at a time. Fachefeature you will
be asked to determine whether it is more likely to occur inlevemt document, or more
likely to occur in a non-relevant document. The correspogdiptions are RELEVANT
and NON-RELEVANT respectively. If you can't decide whethie feature belongs to
either category mark DONT KNOW (the default option). Formmeature ask yourself the
following question: “Is this more likely to occur in a RELEWN document as opposed
to NON-RELEVANT one?”. If that is the case mark the featuregedevant. For example
the word “Mitch” is more likely to occur in a document on “Higane Mitch”, than in a
general document. If the reverse is true then mark the feasiNON-RELEVANT. For
example the word “banana” is more likely to occur in a docutwamich is not relevant to
the topic of “Hurricane Mitch”. People, places, locatiome aften relevant terms.

To aid your understanding the meaning of a given term, examwghtexts in which the
word appears are provided

DO NOT use any resources (the web, encyclopedias etc) tonde®your answer. You
can use the topic description provided above. If you are n simply click the “Dont
Know” option

The time between which you are shown a feature and you hitubens button is
recorded. So do not do anything else in this time. After ydunsit, A THANK YOU page

is displayed. You may take a break here before you procedubtoext feature.
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At the end you will be provided with a text box, where you caavide features which
you think are relevant but were not asked

To modify the last annotation use the browsers BACK button
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| Topic desm;mon Detailed description: 30036,

Nobel Prizes Awarded

Seminal Event

WHAT: Nobel Prizes are awarded
WHERE: Stockholm, Sweden; Oslo, Norway
WHEN: Early through mid-October, 1998

Topic Explication

The Nobel Prizes, established in 1901, are presented annually in Stockholm by the Nobel Foundation in the fields of Physics,
Chemistry, Physiology/Medicine, Literature and Economics. The Foundation also awards the Nobel Peace Prize in Oslo, Norway. The
prestigious awards include large cash prizes. On topic: Stories about presentation of the awards; the awards banquet; reaction to this
year's awards; interviews with the laureates about their recognition.

Instructions:

You will be shown a list of features (words) one at a time. For each feature you will be asked to determine whether it is more likely to occur in a
relevant document, or more likely to occur in a non-relevant document. The corresponding options are RELEVANT and NON-RELEVANT
respectively. If you can't decide whether the feature belongs to either category mark DONT KNOW (the default option).

For every feature ask yourself the following question: "Is this more likely to occur in a RELEVANT document as opposed to NON-RELEVANT
one?". If that is the case mark the feature as relevant. For example the word "Mitch" is more likely to occur in a document on "Hurricane Mitch",
than in a general document. If the reverse is true then mark the feature as NON-RELEVANT. For example the word "banana" is more likely to

occurin a document which is not relevant to the topic of "Hurricane Mitch". People, places, locations are often relevant terms.

R |

BN

Figure B.1. Screen-shot of the initial screen shown to the user aftegitagin, with the instructions and the topic description.
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30036 e
(4] "!’Q- Google |

Your Choice :

O Relevant (More likely to occur in a relevant document.)

< Not relevant (More likely to occur in a non-relevant document.)
@ Dont know (Can't say.)

[ Submit !

Contexts in which "bell" occurs in

XIN19981013.0053
for USA Columbia University and Professor bell laboratory.

XIN19981127.0032 .
achieves wishes, becomes in Portugal language writer's first promises bell literature prize new owner. Obtains promises bell prize to EgA

ZBN19981013.0067
issues promises bell peace prize, will announce in Friday.

ZBN19981017.0045 .
bell peace prize. Promises Chairman bell prize committee EGO®E! peaceful Germany praises two prize winners " diligently conflict which loves
for

Reminder of the problem description. Detailed description: 30036.

>

Figure B.2. Screen shot of the interface where the user was asked toddeeh in one of three categories. Each term was shown with
four contexts.



B.2 Screenshots
Figures B.1 and B.2 show example screenshots from our usgy.sFigure B.2 is an
interesting example, where the user is asked to judge tivgelt for the topicNobel Peace

Prize Bellis a mis-translation dNobelin documents whose original text is in Mandarin.
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APPENDIX C
USER LABELS

We show the terms marked by the oracle, as well as the positidenegative terms
marked by both users for three example top@sama Bin Laden Indictmentdobel Peace
Prize AwardedandTaipei Mayoral RaceFor the first of these topics the oracle terms are
quite good, and both users have almost 100% recall. The weprent in effectiveness is
almost on par with that of the oracle with the negative termasked by User 1 hurting per-
formance only slightly. We observe a similar such effecttf@ second topic. Again, even
though the negative terms marked by User 1 hurt performdheeaverall improvement is
still better than the baseline. Also notice that the ovelkewveen the terms marked by User
1 and User 2 is significantly lower, and recall is also not g lais the previous example.
The third example, is one where the markings by User 2 agthalit performance, though
User 1's labels stillimprove performance over the baselligs improvement is in spite of
her marking key-words liké&uomintang and Gaoxiong wrongly, as associated with the
negative class. Also notice how User 1 is more verbose than 21SVe explored the con-
texts in which these terms were shown and sawTaavanandPeople’s Progressive Party
co-occured in the context ¢tfoumintang making it hard to explain why the users missed
marking this feature as relevaraoxiongalso occurred in the context d&iwan but not

in any political context, making it easier to understand whgrs missed this feature.

IKuomintang is a political party in China.

2Gaoxing is a city in Taiwan
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WHAT : Osama bhin Laden indicted and tried for terrorism

WHERE : US District Court in New York issues the charges; bin Ladex@mp
is in Afghanistan.

WHEN : Indictment issued 11/4/98

Topic Explication: Saudi born millionaire Osama bin Laden was indicted on 238
counts for plotting and executing the attacks on Americabassies in Africa in
August of 1997 through his Afghanistan based terrorist graliQueda.

On topic: Stories about evidence gathering efforts by th% &1d other agencies
that led to the indictment; the indictment itself; reacidrom the Muslim world;
threats of retaliation for the indictment from Islamic rtalnt groups ; offer of
reward from the State Department for bin Laden’s capture.

(a) Topic Description

oracle termg + | afghanistan africa bomb embassy osama islamic
laden mastermind kenya saudi tanzania teledyne terrorist

user terms | + | abdulaccuse &hanistarafrica arabia attack august blast bomb
charge cia court decisi@mbassyvidencandict islamickerya kill
ladenlaw mastermindMEMBER millionaire missilemuslimnetwork
osamapakistan saudstrike suspect taliban tanzanigledyneterror
terrorist weapon

- | baghdad bean britain china clothes economic egypt eleopeudore
france gnus govern interior iran iraq israel love market tmetanyahu
organize palestinian paris peace police president ralpuoilecan
secretary sudanese television troop travel troop unite

(b) Terms marked by the user and the oracle.

Figure C.1. Topic description and user marked terms for the tdpgama Bin Laden
Indictment Terms in lowercase are those that User 1 marked. Of thoses térat User
1 marked, the ones in italics are ones that User 2 also markedns that only User 2
marked are capitalized. The symbols + and - indicate theeta@elevant and non-relevant)
assigned to the terms. Oracle marked terms are underlined.
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Ul u2

User P+ | 0.325| 0.370
agreement P- | 0.000| 1.000
R+ | 1.000| 0.923
R- | 1.000| 1.000

Effectiveness + 0.170] 0.185
F1 (baseline=0.05) + & - | 0.164| 0.185

Table C.1. Precision, Recall (relative to the oracle) and effectigsfer the topid©sama
Bin Laden IndictmentOracle F1 is 0.199

Ul uz2
User P+ | 0.260| 0.285
agreement P- | 0.000| 1.000

R+ | 0.750| 0.500
R- | 1.000| 1.000

Effectiveness + 0.355| 0.370
F1 (baseline=0.217)+ & - | 0.276| 0.370

Table C.2. Precision, Recall (relative to the oracle) and effectiwsnier the topidNobel
Peace Prize Awardedracle F1is 0.361

Ul uz2
User P+ | 0.411| 0.571
agreement P- 0.00 | 1.000

R+ | 0.500| 0.285
R- | 1.000| 1.000

Effectiveness + 0.385| 0.293
F1 (baseline=0.330) + & - | 0.383| 0.293

Table C.3. Precision, Recall (relative to the oracle) and effectigsnier the topicTaipei
Mayoral Race Oracle F1 is 0.503.
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WHAT : Nobel Prizes are awarded
WHERE : Stockholm, Sweden; Oslo, Norway
WHEN': Early through mid-October, 1998

Topic Explication: The Nobel Prizes, established in 1901, are presented Bynua
in Stockholm by the Nobel Foundation in the fields of Physitisemistry,
Physiology/Medicine, Literature and Economics. The Faitimh also awards the
Nobel Peace Prize in Oslo, Norway. The prestigious awardsde large cash prizes.
On topic: Stories about presentation of the awards; theds\zanquet; reaction

to this year's awards; interviews with the laureates abloeit recognition.

(a) Topic description

oracle termi + \ award famine nobel pries physics saramago sweden trimble

user terms | + | ANNOUNCE authoraward BELL chemistry COMMITTEE DOLLAR
electron FIELD honoliterature medicine nobgleace plsics
prestigious research sarageeSCIENCEswedertechnology trimble
university win write stockholm oslo norway laureate
- | abdul africa america britain china dir don famiioge france germany
gnus govern holed interior iraq ireland israel kill meat rsier

palestinian play president pries quarter republican urégeweigh
whirled york

(b) Terms marked by the oracle and the user

Figure C.2. Topic description and user marked terms for the tdgabel Peace Prize
Awarded Terms in lowercase are those that User 1 marked. Of thosesttdrat User
1 marked, the ones in italics are ones that User 2 also markedns that only User 2
marked are capitalized. The symbols + and - indicate theeta@elevant and non-relevant)
assigned to the terms. Oracle marked terms are underlined.
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WHAT : Taiwan’s Nationalist Party claims victory in Taipei magbrace
WHERE: Taipei, Taiwan

WHO': Chen Shui-bian (Democratic Progressive Party); Ma Y (Nationalist
Party); Wang Chien-shien (New Party)

WHEN : Campaign begins late October 1998; results announcedB2/5

Topic Explication:The Nationalist Party candidate, Ma Ying-jeou, won Tagpei
December mayoral elections, defeating the DemocraticrBssge Party incumbent,
Chen Shui-bian. This was a critical contest that highlighteiwan’s precarious
relations with China.

On topic: Stories about the candidates’ campaigns, voéilegtion results, reactions
within and outside of Taipei, and the inauguration of the mesyor. NOTE:The
southern city of Kaohsiung was also choosing a mayor duhiegame time, but
stories on this alone are not on topic.

(a) Topic Description

oracle termg + | candidate chen elect england flat gaoxiong kuomintang naygress
taiwan taibei ticket wu

user terms | + | campaign candidatehenchinadebateslectmayor party politics
popular prgressrepresentative support taild@iwanvote nationalist

- | america battle democrat don england gaogignus house japan king
kuomintarg meat play relate republican setup wu

(b) Terms marked by the oracle and the user

Figure C.3. Topic description and user marked terms for the tdfaipei mayoral race
Terms in lowercase are those that User 1 marked. Of thosestdrat User 1 marked,
the ones in italics are ones that User 2 also marked. Term®tiyaUser 2 marked are
capitalized. The symbols + and - indicate the classes @ateand non-relevant) assigned
to the terms. Oracle marked terms are underlined.
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APPENDIX D
INTERPRETING KAPPA

Kappa Interpretation
<0 No agreement
0.0-0.19 Poor agreement
0.20-0.39 Fair agreement

0.40-0.59] Moderate agreement
0.60-0.79| Substantial agreement
0.80-1.00| Almost perfect agreement

Table D.1.Interpretation of kappa values [67].
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APPENDIX E

COMPLEXITY TABLES
Class| I | n Ci | Fpe | ny Cy
1|0.133| 8| 1.062| 0.089| 5| 0.447
210.290| 92616/ 0.233] 7| 1.632
3/0.323| 10| 3.231| 0.150| 5| 0.750
410422 8| 3.375/0.096| 5|0.478
5|0.313| 82505 0.096| 6|0.578
6|0.298| 8| 2.384|0.136| 5| 0.685
710.386| 8|3.084| 0.00f 0| 0.000
80.478| 8|3.827|0.101| 3|0.301
9|0.620| 9|5577|0.245| 7|1.714
10| 0.277| 6|1.661| 0.066| 5| 0.330

Table E.1. Complexity of the 10 Reuters 21578 corpus.
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class| I, | n Ci | Fpe | ny Cy
1]0.512| 11| 5.635| 0.284| 10| 2.841
210.526| 11| 5.783| 0.233| 10| 2.328
310.390| 10| 3.896| 0.168| 11 | 1.843
410.520| 11| 5.719| 0.242| 12 | 2.904
5|0.462| 10| 4.616| 0.180| 11 | 1.978
6
7
8
9

0.471| 10| 4.709| 0.198| 10| 1.976
0.471| 10| 4.711| 0.141| 10| 1.415
0.498| 10| 4.981| 0.163| 11| 1.790
0.445| 10| 4.447| 0.113| 8| 0.906
10| 0.499| 10| 4.990| 0.245| 9| 2.202
11| 0.492| 10| 4.922| 0.201| 7 | 1.406
12| 0.443| 10| 4.430| 0.183| 7 |1.281
13| 0.535| 12| 6.417| 0.323| 12 | 3.880
14| 0.501| 10| 5.005| 0.287| 11 | 3.155
15| 0.502| 10 | 5.017| 0.217| 10| 2.167
16| 0.430| 10 | 4.296| 0.190| 10 | 1.895
17| 0.473| 10| 4.730| 0.228| 11 | 2.513
18 | 0.450| 10| 4.495| 0.159| 10| 1.591
19| 0.490| 11| 5.391| 0.438| 10 | 4.378
20| 0.557| 12| 6.685| 0.368| 11 | 4.046

Table E.2. Complexity of the 20 Newsgroups problems. Class keys argjmeAdix A.
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