T R- 19

Document Filtering With Inference Networks

Jamie Callan
Computer Science Department.
University of Massachusetts
Amberst, MA 01003-4610, USA
callan@cs.umass.edu

Abstract

Although statistical retrieval models are now accepted
widely, there has been little rescarch on how to adapt them
to the demands of high speed document filtering. The prob-
lems of document retrieval and document filtering are sim-
ilar at an abstract level, but the architectures required, the
optimizations that are possible, and the quality of the infor-
mation available, are all different.

This paper describes a new statistical document filtering
systemt called InRonte, the problems of filtering effectiveness
and efficiency that arise with such a system, and experiments
with various solutions.

1 Introduction

Retrieval of documents from an archival collection (retro-
spectine retrieval) and filtering documents from an incoming
stream of documents (document filtering or selective dissem-
ination of informalion) have been described as two sides of
the same coin [2]. Both tasks consist of determining quickly
how well a document matches an information need. Many
of the underlying issues are the same; for example, deciding
how to represent each document, how to describe the infor-
mation need in a query language, what words to ignore (stop
words), whether or not to stem words, and how to interpret.
evidence of relevance.

Much of the recent research on document filtering is
based on the assumption that effective document retrieval
techniques are also effective document filtering techniques.
The TREC conference is a good example. The Routing track
is oriented towards learning effective queries from training
data, and the Filtering track is oriented towards determin-
ing useful dissemination thresholds. Neither track requires
that a filtering system be used. Indeed, many participants
index the set of Routing documents and then search the
index with a retrospective retrieval system [7].

Perinission to make digital/hard copies of all or part of this
material without fee is granted provided that the copies are
not made or distributed for profit or commercial advantage,
the ACM copyright/server notice, the title of the publica-
tion and its date appear, and notice is given that the copy-
right is by permission of the Association for Computing
Machinery, Inc. (ACM). To copy otherwise, to republish,
to post on servers or to redistribute to lists, requires spe-
cific permission and/or fee.

SIGIR "96 Zurich, Switzerland. ©1996 ACM.

When filtering research is conducted with a retrieval svs-
tem, important issnes can be overlooked. Different architec-
tures are possible, and perhaps required, to rapidly com-
parc persistent informalion needs to transient documents.
A filtering algorithm must make decisions based upon in-
complete information; it may know what has happened in
the past, but it cannot know, nor wait to know. what doc-
uments will be seen in the near future. Traditional corpus
statistics, such as inverse document frequency (idf), have
different. characteristics when documents are encountered
one-at-a-time. These issues are important, because they
determine how efficient and effective statistical document
filtering systems will be in “real world” environments.

This paper describes some of the issues that arose while
developing the InRoute document filtering system from
parts of the INQUERY retrospective retrieval system (5).
The two systems are based on the inference network maodel
of information retrieval [11, 12, 2], share a common query
language, and started out sharing much of the code that
matches information needs to documents. However, there
are as many differences as similarities between the two sys-
tems. The differences are the subject. of this paper.

The paper begins with this Introduction and a brief re-
view of previous research on document filtering. The In-
Route architecture is presented next. Section 4 discusses the
problem of maintaining effectiveness (precision) with incom-
plete corpus statistics, and presents experiments with some
possible solutions. Section 3 discusses the problem of fil-
tering quickly with complex profiles (queries), and presents
experiments with some possible solutions. Section 6 con-
cludes.

2 Document Filtering

Document filtering, also known as selective dissemination of
information (SDI), has a long history, most of it based on the
unranked Boolean retrieval model [8]. A user’s information
need is expressed by a query, also called a profile, in a query
language. (Sometimes a profile is actually a set of queries
for one user; in this paper, query and profile are considerced
synonymous.) Queries are expressed with Boolean logic. A
query either matches or does not match a document. There
is no ability to partially satisfy a query, or to determine how
well a document matches or satisfies a query. Insteac. the
emphasis is on speed, and on indexing methods that enable
very fast. processing of documents against profiles.

LMDS [15] is an example of this class of systems. Each
Boolean profile is analyzed to identify the least frequent tri-
gram (LFT) that musi occur whenever the profile matches

a document (a necessary, but not sufficient, condition for
matching). Documents are converted into a restricted al-
phabet, and represented as a sequence of trigrams. For
each profile, a table lookup determines whether its LFT is
present. 1f not, the profile can not possibly match the doc-
ument. This first stage is designed to eliminate > 95% of
the profiles in just a few instructions each. If a profile's
LFT is present, a slower second stage determines whether
the document actually salisfies the Boolean query.

It is generally accepted that statistical systems provide
better precision and recall for document retrieval than do
unranked Boolean systems. The growing power of computer
hardware has made statistical systems increasingly practi-
cal for even large scale document filtering environments. A
common approach has been to simulate document filtering
with an existing vector-space or prohabilistic docunent re-
trieval system on a collection of new or recent documents
(e.g., Pasadena [13], LSI SDI [6), INQUERY [4], Okapi [9],
most TREC systems [7]). This approach is simple, effective,
and has the advantage ol a corpus from which to gather
statistics like idf. However, it is not well-suited to imme-
diate dissemination of new information, and it adds index
creation, storage, and maintenance to the cost of document
filtering.

SIFT [14] is a document filtering system based on the
well-known vector-space retrieval model [10]. SIFT queries
are unstructured (i.e., no query operators), so they can be
indexed with inverted lists. A document “retrieves” a set.
of inverted lists that indicate which profiles to evaluate for
the document. The document’s score for a profile is deter-
mined with a vector-space algorithm. If the score exceeds a
dissemination threshold, it matches the profile and is routed
lo the user. SIFT also incorporates relevance feedback al-
gorithms that enable a user to refine a profile based upon
relevant and nonrelevant documents.

3 The InRoute Architecture

The InRoute document filtering system is based upon the in-
ference network model of information retrieval and filtering
{11. 2]. The major tasks performed by InRoute are creation
of cquery networks, creation of the document network, and
use of the networks to filter documents. The document net-
work is created automatically by mapping documents onto
content representation nodes, which are implemented with
traditional inverted lists. Query networks are specified by
a unser in either natural language or a structured query lan-
guage. Document filtering is performed by using recursive
inference to propagate belief values through the inference
net, discarding any documents whose helief is below a dis-
semination threshold. Figure 1 shows the major components
of the InRoute system, and how information flows between
them. The following sections discuss each component in
more detail.

3.1 Parsing Profiles into Query Nets

As with INQUERY [5, 4], InRoute information needs may
be specified in either a query language or natural language.
InRoute shares INQUERY s rich query language, which in-
cludes probabilistic AND, OR, and NOT operators, prox-
imity operators, probabilistic phrase and passage operators,
and a weighted sum operator for user-specified weights.
The query network is a directed acyelic graph (DAG)
in which the root is a query operator (e.g., #SUM), inter-
nal nodes correspond to nested query operators (e.g., AND,

OR. phrase, proximity, etc), and leaves correspond to query
terms. When parsing is complete, the DAG is optimized. for
example by removing redundant query terms and operators,
reordering arguments to Boolean operators, etc, in order to
minimize the cost of evaluating the query.

Retrospective document retrieval systems may optimize
a query by removing query fragments not found in the docu-
ment collection. For example, if “retrieval” does not occur i
the collection, the query “information AND retrieval” can-
not match any document. This optimization does not. apply
to document filtering, because the system sees the query
before seeing any documents. However, the same principle
applies to document parsing. The document parser can dis-
card any document term that does not occur in at least one
profile. Therefore the query parser maintains a dictionary of
terms that occur in profiles, for use by the document parser,

3.2 The Clipset

InRoute compares a single document at a time to a clipset,
A clipset is a set of query networks, each representing a
different profile. and a set of profile-specific dissemination
thresholds between 0.0 and 1.0 (Section 3.4). Clipsets are
persistent. When a user adds, deletes or modifies an infor-
mation need, the corresponding query network is added to,
deleted from, or modified in the clipset. When InRoute is
filtering documents, the clipset resides entirely in memory.

The persistence of a clipset makes it possible to cache in-
formation that is trausient in traditional document. retrieval.
For example, inverse document frequency and default. belief
values are calculated, used and then discarded by INQUERY
during document retricval. InRoute calculates them once.
when the query net is added to the clipset, and then retains
them in the nodes of the query net to improve the speed of
document filtering. Each node in the query net is also asso-
ciated with space from a bufler pool, so that the overhead
of allocating and freeing dynaiic memory is avoided during,
filtering.

The desire to cache information in the query nets is offset
by the need to represent query nets efficiently. A svstem in
a commercial environment might need to filter teus of thon-
sands of profiles on a single processor. Each node in an In-
Route query net requires about 100 bytes, enabling InRonte
to store 100,000 profiles, with an average of 22 terms and
operators each, in about 256 megabytes of memory. This
enables InRoute to keep the profiles in main memory for
most document filtering tasks.

Adding, deleting, and modifying profiles are accom-
plished quickly, due to the independence of profiles from
one another and the nnordered nature of the clipset. New
profiles are appended 1o the end of the clipset. Modifica-
tion requires parsing the modified profile into a query net.,
switching a clipset pointer from one query net to another,
and freeing the old query net. Deletion requires frecing a
query net, and moving the last profile in the clipset up to
fill the hole created by deletion.

3.3 Document Parsing

Much of what is known about document parsing and index-
ing for retrospective document retrieval also applies to doe-
ument filtering. For example, recognizing document struc-
ture (begin, end, title, author, date, etc), removal of frequent
words (stepwords), and removal of word sullixes (stemming)
are all important in both retrieval and filtering. However.
in a document filtering environment, a document enters the
system, is parsed and indexed, is filtered or routed to the

Optional

Archival

Document

Collection

(statistics)

Y Y

Add to Clipset

Term
Dictionary Parse
A 4
Inverted
Lists

Figure 1: The architecture of the InRoute document filtering system. Ovals represent data structures. Boxes
represent functions. Arrows show the flow of information.

Document

l

Compare

!

List of (profile id, belief)

r 3

appropriate user, and is then discarded. There is no reason
to incur the I/O cost of writing documents or their indices
to disk.

InRoute is designed around a “lightweight indexing” phi-
losaphy. Indexing speed is maximized by creating inverted
lists only for terms that actually appear in one or more pro-
files. As a result, most of the tokens in a document are
discarded as soon as they are recognized.

Documents are supplied, one at a time, by an application
program. A lexical scanner identifies document markup, dis-
cards stopwords, and performs word stemnming. Stems that
do not appear in the profile term dictionary are discarded.
Inverted lists are constructed, incrementally as tokens are
encountered, for the remaining stems. When the document
is parsed completely, the result is a set of inverted lists rep-
resenting the document network for that document. Finally,
each list is annotated with the belief that the term will con-
tribute. Belief is calculated using a ¢ f.idf formula, as shown
below.

Hf
ntf = 04+06- (1)
tf+05+15. 2
c+0.5
idf = LoglTr 1) (2)
log(C' +1.0)
belterm(t) = 0.440.6 -ntf-idf (3)

where:

tf is the frequency of term f in the document,

dl is the document length,

avg_dl is the average document length in the collection,

C is the number of documents in the collection, ancl

df is the number of documents in which term ¢ occurs.
Three of the statistics above are derived from the corpns as
a whole: df, avg.dl, and C. Accurate values for these three
statistics are known only after all documents are filtered,
so filtering must be performed with estimates. Section 4
discusses the problem of obtaining accurate estimates.

Parsing a 3,000 byte document and later freeing the as-
sociated indices and data structures takes 0.02937 seconds
(wall-clock time) on an otherwise idle DECStation 3000-600
(Alpha CPU, 175 MHz clock) with 64 megabytes of memory.

Document parsing speed is affected by the number of
profiles, because inverted lists are built only for terms in
the profile term dictionary. As more profiles are added, the
vocabulary grows larger. Fortunately, adding a large num-
ber of profiles causes only a small increase in the size of the
term dictionary [16], and therefore only a small decrease in
document parsing speed.

3.4 Comparing a Document to Profiles

After a document is indexed, it can be compared to a clipset.
Retrospective document retrieval systems owe their speed
partially to indexing methods, such as inverted lists. that.
enable the system to consider only those documents that.
have terms in common with a query. A similar need exists
for document filtering, because many profiles have nothing
in common with most documents. Section 5 presents exper-
iments with several different methods of selecting profiles.

Once a set of profiles is selected, cach profile mmust be
compared Lo the document. InRoute iterates through the
selected profiles, determining for cach the beliel that the
document satisfies the information need. The belief in a doc-
ument for a particular query net is determined with depth-
first evaluation. For each query term that occurs in the doc-
ument, InRoute must locate the appropriate inverted list,
lookup the belief associated with the term, and then com-
bine the belief with the beliefs from other terms, according
to the probabilistic operators being used [4]. If proximity
operators are used, InRoute must also lookup the locations
where the term occurs, intersect those with the locations
of other proximate terms, and then compute the belief for
the proximity operator dynamically, using the same f f.idf
formulas described above.

A profile is returned for a document if and only i it
matches the query, and if the belief that the document sat-

5 2.50 —x x———= Traditional idf [log (N /df))

& 200 L Traditional idf, terms with df>=1 [log (N / df)]

3 1.50 INQUERY idf [log ((N +0.5)/dfy/log (N + 1.0)]
lti -

21.00

73]

c 0.50

3]

20.00 |- —
-0.50] |]]]]]
o 5000 10000 15000 20000 25000 30000 35000 40000
Documents
Figure 2: Mean squared error of idf estimates.
8125000 —
]
ﬁ100000
§ 75000
o 50000
=]
i3
5 25000
0] |]]] I |
0 5000 10000 15000 20000 25000 30000 35000 40000
Documents

Figure 3: Growth of vocabulary while filtering WS "88.

isfies the information need exceeds a profile-specific, user-
supplied dissemination threshold. This latter requirement
is particularly important lor probabilistic ¢uery operators.
A document “matches” a weighted sum or probabilistic
(“fuzzy”) AND operator if even one query term is present.
although the belief in the document is usually low. This
behavior is rarely a problem in a ranked retrieval svstem
with large sets of documents, because a low belief causes
a document to appear low in the rankings. However, in a
filtering environment, a low-scoring document may still be
the best document encountered that day. If the system does
not discard documents with low beliefs, users must either
develop strictly Boolean queries, or wade through irrelevant
documents on days when no relevant documents occur.

Filtering a 3,000 byte document for 1,000 Boolean pro-
files, each containing an average of 22 terms and operators,
takes 0.024 seconds (wall-clock time) on an idle DECSta-
tion 3000-600. The time is proportional to the number of
profiles; twice as many profiles takes twice as long. InRoute
processes a 109 megabyte file of 39,906 Wall Street Journal
documents against 1,000 Boolean profiles (extended Boolean
model) in 25 minutes (wall-clock time), generating 616,487
matches. A similar experiment with 1,000 statistical profiles
of similar complexity required 33 minutes.

Statistical profiles currently take longer to evaluate than
Boolean profiles. Each statistical profile must be evaluated

fully for each document, while evaluation of Boolean profiles
stops when the first AND, OR or NOT condition is violated.
Section § discusses approaches to evaluating statistical pro-
files more rapidly.

4 Effectiveness Experiments

One important difference between document filtering anel
document retrieval is how corpus-wide statistics like inverse
document frequency (idf) and average document length are
obtained. The effectiveness of current retrieval models -
pends upon accurate corpus statistics, which docwinent re-
trieval systems gather while indexing the collection. In an
online environment, where documents must be filtered as
soon as they arrive, accurate corpus statistics are not avail-
able until after all of the documents have been filtered.

One approach used in some TREC experiments is to use
statistics from another, presumably siwmilar, corpus. For ox-
ample, idfs from the TREC-3 training and test corpora pro-
duce nearly identical document rankings in the INQUERY
retrieval system. This approach is effective. but it may be
impractical in practice.

Obtaining idfs from a retrospective corpus can be expen-
sive, particularly if queries include large numbers of proxim-
ity operators, as in [1]. Idfs for unindexed query fragments

4000 — . IR Virtual
J‘g;’ Zift, part 2 Digest Worlds
53000 H ziff, part 1 . —
€ ewsgroups
@ Federal
§2000 B Register
Q
& 1000 |-

[}

g o L ! | ! ! |

2 0 50000 100000 150000 200000 250000 300000
Number of Documents

Figure 4: Changes in average document length as the TREC-4 Routing corpus is filtered. Document length is represented in

bytes.

24000

2 \/\’v/\

[

23000 &

5

£2000 |-

3

21000 |-

=)

g 9 | | I I 1 !

g 0 50000 100000 150000 200000 250000 300000
Number of Documents

Figure 5: Changes in average document length as the TREC-4 Routing corpus is filtered. The subcollections are interleaved

in this experiment. Document length is represented in bytes.

(e.g., proximity operators) can only be obtained by running
queries against the retrospective collection. In an experi-
ment with the INQUERY retrieval system, it took several
hours to obtain the idfs for the proximity operators in 50
routing queries (set INQ203) used in the TREC-4 Routing
task. This cost would be prohibitive in a “real world” set-
ting.

An alternate approach, studied here, is to estimate cor-
pus statistics dynamically, as each document is encountered.
This approach has the advantage of being “low cost” and of
not requiring a similar training corpus. Although the cor-
pus statistics will initially be inaccurate, they will eventually
converge to their “true” values for the corpus. The guestion
is whether they will converge quickly enough.

The corpus statistics required for InRoute are inverse
document frequency (idf) and average document length. We
study idf on a small corpus, because it converges relatively
quickly. We study average document length on a larger cor-
pus, because it converges less quickly.

Figure 2 shows the convergence of idfs for terms in the
1988 Wall Street Journal corpus. Each curve shows the
mean squared error (MSE) between estimated idf and true
idf at 1,000 document increments. The top curve shows the
MSE for a traditional method of computing idf. The bottom

curve shows the MSE for the “scaled” idf used by InRoute
and INQUERY (Equation 2).

Idfs converged rapidly to their true values (Figure 2),
even as the vocabulary continned to grow (Figure 3). A
“scaled” idf converges more rapidly, because it gives a more
accurate estimate for terms that occur just once. An un-
scaled idf for terms that occur just once changes significantly
as more documents are observed, while a scaled idf changes
very little. If terms that occur just once are excluded {mid-
dle curve), the MSE for the traditional method is reduce
by about half.

Figure 4 shows the convergence of average document
length for the TREC-4 Routing corpus. It takes about
25,000 documents to rcach a stable estimate, but the es-
timate then changes significantly whenever the document
stream shifts from one subcollection to another.

The effect of shifting from one subcollection to another
can be eliminated by interleaving the subcollections.! Fig-
ure 5 shows the convergence of average document length
in a proportionally interleaved TREC-4 Routing corpus. It

"The documents could also be ordered by publication date, but
doing so doecs not eliminate the “subcollection” effect. because the
subcollections cover different periods of time.

Number of Documents Used Only For Training
Precision 0 1000 5000 10000 15000 20000
al 5 docs —187% -161% =11.8% -81% —3.1% -3.7% —3.1%
at 10 docs —16.4% —13.8% —-109% -9.0% -39% -29% -3.5%
at. 15 docs -16.0% —-11.9% -9.9% -~-7.0% -35% =22% -—-1.1%
at 20 docs -M7% -13.2% -105% —85% —5.4% -38% -27%
at 30 docs =13.6% —122% -100% -91% ~5.7% —-3.5% —34%
at 100 docs | —=9.9% -11.2% -9.2% —-8.1% -58% -5.3% —-4.7%
at 200 docs -2.8% -9.1% -81% -73% -53% -53% -5.3%
at 500 docs | +4.4% =3.9% -3.3% -3.0% -28% —4.0% -=5.2%
11Pt Avg -8.0% —121% -10.7% -94% —-6.9% -7.2% -—7.8%

Table 1: Effect on precision and average precision of training on (and then discarding) the first n documents: as compared

with “perfect™ idfs for the corpus.

takes abont 20,000 documents to reach a stable estimate in
this corpus. but the estimate is 15% above its eventual final
value, and it continues to drift up and down. smoothly but
by significant amounts, for another 100,000 documents.

An experiment with TRIEC-4 Routing queries and doc-
uments investigated the effects on recall and precision of
learning corpus-wide statistics during filtering. These met-
rics were chosen because they were nsed in the TREC Rout-
ing track.

InRoute was run twice on the TREC-4 corpus (935
MB, 329,780 documents) and INQ203 Routing queries (50
queries, 50 terms and 200 proximity pairs each) [1]. In
one run, corpus statistics were available a prior: (“perfect”
statistics), In the other, estimates were updated as each
document was encountered (“learned” statistics). The ex-
periment required dissemination thresholds that would dis-
seminate at least 1,000 documents for each query. We used
the document score that INQUERY assigned at rank 1,000,
because it was conveniently available.

Learned corpus statistics produced a significant loss in
average precision at all cutoffs and levels of recall (‘Table 1,
Column “0"). The eflect of inaccurate corpus statistics in
the first few thousand documents is rather dramatic, given
that the estimates converge to relatively accurate values af-
ter filtering only a small percentage of the corpus. How-
ever, analysis reveals that learned statistics produce sub-
stantially higher scores for documents filtered “early” than
for documents filtered “later”, when corpus statistics have
converged. The “early” documents, with their overly gener-
ous scores, dominate the top of the rankings.

If the first several thousand documents are used only for
training purposes (i.c., are not disseminated), the effect of
learned corpus statistics on recall and precision is less signif-
icant (Table 1, columns “1000" to “20000”). For example,
if 15,000 documents are used for training, corpus statistics
produce a 2.2-5.3% loss in precision at cutoffs 5-500. This
is a crude way of analyzing the effects of learning corpus
statistics, because the baseline is based on all of the rele-
vant documents, while the filtered set is missing whatever
relevant documents were discarded during training. How-
ever, it confirms that, after the initial period of training,
learned corpus statistics are effective for filtering.

5 Efficiency Experiments

Speed is an important characteristic of document filter-
ing systems, and consequently techniques for optimizing
Boolean filtering systems are well-known. Similar tech-

niques for statistical document filtering are reguired.

Filtering a document involves profile selection and eval-
uation. Profile selection determines which profiles to evalu-
ate: profile evaluation determines how well a document sar-
isfies a profile. Both can be optimized. but we restrict our
attention here to profile selection. For each document, the
goal is to spend either no time or nearly no time on most of
the profiles.

One approach, used for example in SIFT (14], is to in-
dex profiles with inverted lists. The terms in a document
“retrieve” profiles during filtering. This approach works
particularly well with the unstructured queries that char-
acterize vector-space systems, because profile scores can he
compnted when inverted lists are merged.

Profile indexing is less effective with the structured
queries that characterize inference network systems, because
scores for structured queries cannot be computed when pro-
file inverted lists are merged (“...we cannot simply turn the
inference network ‘upside down’...” [2]). In this case, pro-
file indexing can be used only to identify profiles that are
candidates for evaluation. Profile indexing may also be less
effective on long Routing queries (e.g., Section 4), because
a profile with many terms is more likely to have at least one
in common with any document.

A new profile selection technique, MinTerm Indezing.
solves this problem. Prior to filtering, each profile is ana-
lyzed to determine the number of document terms it must
match before a document can exceed the dissemination
threshold. The “optimal” document for a query term is one
in which ntf approaches 1 (Equation 1). The MinTerm es-
timate is made by setting ntf to | for each query term, and
then ordering sibling query net nodes by the estimated be-
lief. When reordering is complete, the query net is traversed,
accumulating belief values and counting query terms. When
the accumulated belief exceeds the dissemination thresh-
old, the minimum number of terms necessary to exceed the
threshold is known. This information is stored in the profile
index, and used during filtering. The profile is selected only
if it matches a sufficient number of document terms.

The MinTerm estimate is obtained with an algorithm
similar to algorithms that reorder and/or optimize unstruc-
tured queries (e.g., [3]) and Boolean queries (e.g., [13]). Re-
ordering by optimal belief is perhaps a more general tech-
nique, because it applies to both unstructured queries and
queries structured with a wide range of Boolean and proba-
bilistic operators. However the important difference is that
the query is not reordered to optimize query evaluation (al-
though doing so is a good idea), but to find the minimum

3,000 simple profiles 50 complex profiles
1988 WSJ corpus TREC-4 Routing corpus
No Inverted MinTerm No Inverted MinTerm
Index Index Index Index Index Index
Profiles Fully Evaluated 100% 24.2% 1.25%; 100% 97.5% 74.9%
Total Filtering Time (l:mm) 1:28 0:55 0:41 5:26 5:31 2:53
Filtering Rate (MB / hour) 74 119 160 172 170 324
Avg Documents Disseminated Per Profile | 77.8 77.8 77.8 999.5 999.5 922.0

Table 2: The eflects of three profile selection techniques on document filtering.

number of terms that must match before a document could
satisfy an information need.

MinTerm lndexing is implemented as a three stage fil-
ter. First, document terms “retrieve” profiles, using inverted
lists. The number of terms matching each profile is deter-
mined as inverted lists are merged. Next, “retrieved” profiles
that don’t match enough document terms are discarded. Fi-
nally. the remaining profiles are evaluated completely, and
any with scores below the dissemination threshold are dis-
carded.

The speedup obtained with MinTerm Indexing increases
as a profile’s dissemination threshold increases. If the
threshold is low, the minimum number of terms necessary to
select, a profile is one, reducing MinTerm Indexing to simple
profile indexing.

MinTerm Indexing can be a safe or unsafe optimization,
depending upon how it is used. If profiles are reanalyzed
each time the idfs change, it is safe, i.e., gnaranteed to select
for a given document every profile that can possibly exceed
the dissemination threshold. If idfs change, as when they are
being learned, the MinTerm cstimate may become wrong.
Usually the MinTerm estimate will be an underestimate,
causing no harm, because idfs can fall rapidly (increasing
the actnal MinTerms), but tend to rise slowly (decreasing
the actual MinTerms). However, it may make sense to rean-
alyze profiles periodically, for example every few thousand
documents, when idfs are being learned.

The relative effectiveness of these techniques is denion-
strated in two experiments. In one experiment, the TREC
1988 Wall Street Journal corpus (109 MB, 39,906 docu-
ments) was filtered for a set of 3,000 simple, artificially-
generated profiles (10 terms and 4 proximity pairs each).
The dissemination threshold was set to yield about a 0.2%
“hit” rate. In the second experiment, the TREC-4 Routing
corpus (935 MB, 329,780 documents) was filtered for a set
of 50 complex profiles (50 terms and 200 proximity pairs
each). The dissemination threshold was set to yield about
1,000 documents per profile (a 0.3% “hit” rate), as is com-
mon in TREC Routing evaluations. In both experiments
InRoute was learning corpus statistics, so profiles were re-
analyzed and their MinTerm estimates updated every 1,000
documents. Table 2 summarizes the results.

With simple profiles (the 1988 WSJ experiment), simple
profile indexing was a substantial improvement over evaluat-
ing all profiles. Filtering time was reduced by 37.5% without
impacting effectiveness. MinTerm Indexing reduced filtering
time by another 25%.

With complex profiles (the TREC-4 Routing experi-
ment), simple profile indexing was slightly worse than eval-
uating all profiles. The computational cost of simple profile
indexing provided little Lenefit, because most documents

~]

had a term in common with most of these ronting profiles.
However MinTerm Indexing, which considers the number of
terms a document has in common with a profile. reduced
filtering time by 47%.

MinTerm indexing was “unsale” in these experiments,
because corpus statistics were updated after each document
but profile MinTerm estimates were updated after each 1,000
documents. In the 1988 WSJ experiment, the cost was the
loss of one document from a set of 233,735. In the TREC-
4 corpus, the cost was a much higher 76.5 documents per
profile.

Most of the TREC-4 loss was due to experimental er-
ror. The algorithm that determined the number of terms a
document and profile have in common did not consider the
effect of duplicate terms in the profile. Duplicates are very
rare in the 1988 WSJ profiles, so this error had no effect
on the first experiment, Duplicates are quite common in
the TREC-4 profiles, hence the “missed” documents in the
second experiment.

6 Conclusion

This paper presents a new statistical filtering svstem calied
InRoute. Although InRoute is based on the inference net-
work model, it is typical of most statistical filtering systems
in some respects.

All statistical filtering systems that rely on corpus statis-
tics such as idf or average document length are affected by
inaccurate statistics. This paper shows that those effects can
be pronounced, but that they scem limited to the first. fow
thousand documents filtered. During this “training” period,
a system that avoids corpus statistics, or that can learn to
estimate them quickly, will have a decided advantage. After
the statistics have converged, a statistical filtering system
can be as effective as a comparable statistical document. re-
trieval system.

Although all statistical filtering systems mmust select pro-
files for evaluation, different solutions are appropriate for
structured and unstructured queries. This paper presents a
new profile selection technique for structured queries, called
MinTerm Indexing, that is effective and efficient. The effect
on filtering speed is dramatic, narrowing the gap in speed
between Boolean and statistical filtering systems.

Many open problems remain. The problem of acquir-
ing corpus statistics dynamically is particularly ricli, and
this paper just scratches the surface. Obtaining statistics
from another corpus is effective but often expensive, while
learning them “on the fly” is less effective but cheap. These
represent. different ends of a spectrum; a variety of hybrid
techniques are possible. However, any technique that learns
statistics as documents are filtered will have the characteris-

tic that a document’s score depends partially npon its posi-
tion in the document stream. “Breaking news™ might receive
higher beliels than later documents on the same subject,
because idfs will decline, for example. This counld make the
system feel respounsive to user interests, although in reality a
document’s score for a given profile would be somewhat. less
predictable. It is not at all clear how such a system might
be evaluated.

Acknowledgements

I thank Eric Brown, Stephen Harding, and Sandhya Kasera
for their assistance in the work described here. This research
was partially supported by the NSF Center for Intelligent
Information Retrieval at the University of Massachusetts,
Amherst, by the National Science Fonndation. Library of
Congress, and Department of Commerce under cooperative
agreement number EEC-9209623, and by NRaD contract
number N66001-94-D-6054.

References

(1] J. Allan, L. Ballesteros, J. P. Callan, W. B. Croft, and
7. Lu. Recent experiments with inquery. In D. Har-
man, editor, Proceedings of the Fourth Texi RFEtricval
Conference (TREC-4). National Institute of Standards
and Technology Special Publication, (to appear).

[2] N. J. Belkin and W. B. Croft. Information filtering
and information retrieval: Two sides of the same coin?
Communications of the ACM, 35(12):29-38, 1992.

3

Chris Buckley and Alan F. Lewit. Optimization
ol inverted vector scarches. In Proceedings of the
Eighth Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval,
pages 97-110, New York, NY, 1985. ACM.

[4] J. P. Callan, W. B. Croft, and .I. Broglio. TREC and
TIPSTER experiments with INQUERY. /Information
Processing and Management, 31(3):327-343, 1995.

[3) J. P. Callan, W. B. Croft, and S. M. Harding. The IN-
QUERY retrieval system. In Proceedings of the Third
International Conference on Database and Erpert Sys-
lems Applications, pages 78-83, Valencia, Spain, 1992.
Springer-Verlag.

[6) P. W. Foltz and S. T. Dumais. Personalized information
delivery: An analysis of information filtering methods.
Communications of the ACM, 35(12):51-60, 1992.

(7

D). Harman, editor. Proceedings of the Fourth Text
REtrieval Conference (TREC-4). National Institute
of Standards and Technology Special Publication,
Gaithersburg, MD, (to appear).

(8

—_—

K.H. Packer and D. Soergel. The importance of SDI
for current awareness in fields with severe scatter of
information. Journal of the American Society for In-
formation Science, 30(3):125-135, 1979.

[9] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-
Beaulieu, and M. Gatford. Okapi at TREC-3. In D. K.
Harman, editor, The Third Text REtrieval Conference
(TREC-3), Gaithersburg, MD, 1995. National Institute
of Standards and Technology, Special Publication 500-
225.

[10] Gerard Salton and Michael J. McGill. Introduction to
Modern Information Retrieval. McGraw-Hill, 1983.

[11] H. R. Turtle and W. B. Croft. Evaluation of an infer-
ence network-based retrieval model. ACM Transactions
on Information Systems, 9(3):187-222, 1991].

[12] Howard R. Turtle and W. Bruce Croft. Efficient prob-
abilistic inference for text retrieval. In RIAQ 4 Clon-
Jerence Proceedings, pages 644-661, Barcelona, Spain,
April 1991.

[13] M. F. Wyle and H. P. Frei. Retrieving highly dvnamic.
widely distributed information. In Proceedings of the
ACM SIGIR International Conference on Research and
Development in Information Relrieval, pages 108 115,
Boston, MA, 1989. Association for Computing Machin-
ery.

[14] 'T. Yan and H. Garcia-Molina. SIFT - A tool for wide-
area information dissemination. In Proc. USENIX Win-
ter 1995 Technical Conference, New Orleans, January
1995.

[15] J. A. Yochum. A high-speed text scanning algorithin
utilizing least frequent trigraphs. In Proceedings of the
IEEE International Symposium on New Divections in
Computing, pages 114-121, Trondheim, Norway, 1985.
IEEE.

(16] G. K. Zipf. Human Behavior and the Principle of Least
Effort: An Introduction to Human Ecology. Addison-
Wesley, Reading, MA, 1949,

