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Abstract

As evaluation is an important but difficult part of information retrieval system design and experimentation, evaluation

questions have been the subject of much research. An “evaluation study” is an investigation into some aspect of

evaluation. These types of studies typically experiment on ranked results from actual retrieval systems, most often

those that were submitted to TREC tracks. We argue that the standard of evidence in these types of studies should be

increased to the level required of text retrieval studies, by testing on multiple data sets, multiple subsets of data, and

comparison to baselines using hypothesis testing. We demonstrate that baseline performance on the standard data sets

is quite high, necessitating strong evidence to support claims.

1 Introduction

Evaluation is a difficult but important problem in information retrieval: choices of retrieval task,

test collection, evaluation measure, and definition of relevance can all have a significant effect on

conclusions drawn from an evaluation. There has thus been a great deal of work studying these

issues. We refer to these works as evaluation studies. Under this broad heading we include studies

of evaluation measures, studies of hypothesis tests, and studies of lowcost retrieval evaluation.

The typical experimental methodology in these studies uses retrieval results that were submitted

to TREC (Text REtrieval Conference). These are real retrieval systems used for research and

commercial purposes, so it makes sense to test evaluation questions against them. However, they

have not been studied well enough to really understand what is going on when testing on them. As

a result, we believe that the results of evaluation studies should not be accepted out of context, but

should be rigorously compared to other results on the same data.

To illustrate our point, we make an analogy to tf-idf term weighting in text retrieval. We know

that tfidf is a decent way to weight terms, even though modeling a document as a vector of tfidf

weights loses a lot information. But how do we know this? If we were retrieval novices and

performed one experiment on one corpus and measured an average precision of 0.2, would we

believe that tfidf was any good? But if we did multiple experiments with multiple retrieval models

on multiple corpora and saw that the performance of tfidf was seldom far from the other models

no matter what the corpus, we would be much more receptive to the idea.



Scientific results need strong support in order to be accepted. In the information retrieval

research community, for a result to gain broad acceptance, it must have been tested on multiple

corpora, compared to strong baselines, and shown to be statistically significant. We argue that

evaluation studies should be held to the same standard of evidence.

This is especially true for the types of studies we are considering. The research corpora used in

text retrieval studies typically comprise documents that users would actually search; research topics

come from actual users of retrieval systems. They are representative of a certain sample space. It

is less clear that the retrieval runs submitted to TREC are as representative. Many of the systems

submitted to TREC are experimental; a handful have serious bugs. Some of them involve human

adjustments. It is therefore important to show that performance is not simply an artifact of the data.

Furthermore, the data sets typically used to evaluate metaevaluation studies are “easy”: baseline

performance is quite high. A small number of relevance judgments can achieve better results than

we have any right to expect. This is similar to the situation in text retrieval before TREC, when the

available corpora (such as CACM) had high performance baselines.

This paper is structured as follows: we first present the previous work that has led us to this

study and the data typically used in studies like this one. We then present an algorithm based on

pairwise preferences that ranks retrieval systems with no relevance judgments. The results of this

algorithm suggest that baseline performance is very high, leading us to analyze the data sets to find

out why it is so high. We then present an algorithm that illustrates that good results can be achieved

almost by accident, and argue that the solution to the problem is to argue about algorithms using

formal proof and hypothesis testing.

2 Previous Work

While there have been numerous studies on the evaluation of information retrieval tasks, there

have been none (to our knowledge) on meta-evaluation: the evaluation of studies on evaluation

of information retrieval tasks. There are generallyaccepted metaevaluations, such as Kendall’s τ
correlation, and of course we do not claim that these studies completely lack evaluation. However,

many of the evaluation studies in the literature are roughly comparable to evaluating one or two

retrieval experiments on a corpus like CACM.

Evaluation studies can be seen as falling into three broad categories: studies of evaluation

metrics, studies of hypothesis testing, and studies of assessor effort. In this work we are concerned

exclusively with the latter.

Our work is inspired by the results of Soboroff et al. (2001). They showed that simply by taking

a random set of documents from retrieval systems to be “relevant”, one could obtain a fairly good

approximation to the evaluation obtained when all relevance judgments are known. We refer to this

as “nocost” evaluation since it does not require any assessor effort at all. On the surface this seems

rather surprising: we should naively expect that randomly assigning relevance to documents will

result in no correlation between predicted and true performance. But Aslam et al. (2003) showed

that this algorithm was in fact rewarding the systems that retrieved the most popular documents.

Knowing that TREC systems tend to retrieve more relevant documents in common than nonrelevant

documents Lee (1997), Soboroff et al.’s result is less surprising.

Another inspiration is the work of Buckley and Voorhees (2004) introducing the bpref measure

of performance. For one thing, much of the work we will do is couched in terms of pairwise

preferences of documents, which is what bpref is based on. For another, their results suggest

something similar to Soboroff et al.’s work: that there is some property of the data sets used for



testing that make it possible to accurately evaluate them with very few relevance judgments. In

other words, these two works suggest that the baseline performance on these data sets is quite a bit

higher than no correlation.

Finally, a table in Carterette and Allan (2005) shows that simply judging a pool of very shallow

depth (as little as one document per system per topic) results in a positive and significant correlation

between predicted performance and true performance for one of the standard data sets. This result

translates to the other data sets as well.

These three results together suggest that the baseline performance for these data sets is quite

high. These types of studies often make an implicit assumption that the baseline correlation between

predicted evaluation and true evaluation should be 0 when no relevance judgments are available. In

fact, the baseline is much higher, and this affects the amount of evidence that must be shown in order

to draw conclusions. Showing that a particular method gives a high correlation between predicted

evaluation and true evaluation, then, is not good enough; that is essentially presenting the results

out of the context of the data sets they were tested on. It is because of that that we recommend that

more rigorous standards of evidence be required in evaluation studies.

There has been work similar to ours on evaluation of retrieval systems. We recommend using

hypothesis tests to evaluate an algorithm or retrieval metric; the use of hypothesis tests in retrieval

evaluation has been studied in works including those by van Rijsbergen (1979), Savoy (1997), Hull

(1993), and Sanderson and Zobel (2005). Furthermore, it is well known in IR that some corpora are

“easier” than others, and as a result it is standard to test on multiple corpora. We argue that the data

sets typically used in evaluation studies are “easy” and therefore more rigorous testing is needed.

Other evaluation studies that led to this work include that of Cormack et al. (1998), who introduce

two algorithms for acquiring relevance judgments: “Interactive Searching and Judging” (ISJ) and

“MovetoFront Pooling” (MTF). Zobel (1998) questioned whether the relevance judgments formed

at TREC are sufficient, and finding that they are, showed that in fact similar results can be achieved

with many fewer judgments. Sanderson and Joho (2004) showed that accurate results could be

achieved by judging the documents retrieved by one system—again reinforcing the idea that there

is some property of these particular data sets that makes these results possible. Aslam et al. (2005;

2006) have presented two lowcost algorithms. Most recently, Carterette et al. (2006) presented an

algorithm for acquiring relevance judgments that is optimal. We do not claim that the algorithms

presented in these works are wrong; in fact, we believe the arguments are sound. We only claim

that studies of this type should be tested with the same rigor as text retrieval studies.

There has certainly been some previous work that presented very convincing evidence. Some

model studies include Zobel (1998), Voorhees (1998), and Buckley and Voorhees (2000). One

of our contributions above the experimental methodology used in those papers is to show how

hypothesis tests can be applied to studies such as these.

3 Data Sets

At TREC (the Text REtreival Conference), participating sites submit retrieval runs over provided

corpora. There are a wide variety of tracks, including ad hoc, robust, HARD, web, terabyte,

and many more. Retrieval runs from each conference are archived and available for experimental

evaluation. This gives the community a large number of real retrieval system results to work with

for evaluation studies or data fusion studies.

The data sets we used are the ones nearly uniformly used in evaluation and data fusion studies:

the sets of retrieval runs that were submitted to the TREC ad hoc tracks from 1994 through 1999



TREC topics no. runs no. manual docs per topic rel per topic

3 151-200 40 11 1009.4 146.9

4 202-250 33 19 1436.2 109.7

5 251-300 61 31 1620.5 100.8

6 301-350 74 17 2200.5 88.0

7 351-400 103 17 2029.1 92.4

8 401-450 129 12 2335.5 94.2

Table 1: Number of runs, number of manual runs, average number of unique documents retrieved

per topic (in the top 100), and average number of unique relevant documents retrieved per topic for

each TREC ad hoc collection.

(TRECs 3 through 8). Each run includes ranked lists for all 50 topics used for evaluation that year

(except for TREC4, which used 49 topics instead of 50). Some of the runs are fully automatic; in

these the only interaction between the system and a user is the submission of a predetermined query

to the system. Some of the runs are “manual”, meaning that a user interacted with the system in

some way, be it by reformulating the query, iteratively searching on different queries, or providing

feedback to the system. Some statistics of these sets are shown in Table 1.

The data sets also include relevance judgments for each topic. These are binary indicators of

the relevance of a document to the topic. Most of the documents retrieved by each run have been

judged, so these judgments can be used to compute the “true” values of our evaluation measures.

4 Evaluation Without Relevance Judgments

Soboroff et al. (2001) showed that simply taking a random set of documents to be relevant could give

results that correlate positively and significantly with true rankings. The following three subsections

are devoted to presenting a more formal method for doing the same thing. Our algorithm is based

on pairwise preferences of documents, which we will use to analyze the results.

4.1 Estimating Evaluation Metrics

Precision is simply the proportion of relevant documents retrieved by a certain rank. Precision is

quite coarse: a precision of 0.3 at rank 10 could mean that the top 3 documents are relevant (which

would be good), or that the documents at ranks 8, 9, and 10 are relevant (much less good). A good

evaluation metric should reward systems not only for retrieving relevant documents but also for

ranking them highly.

Average precision does this by looking at precision at several points in the ranked list. Specifi

cally, it is an average of the precision at each rank that a relevant document appears at. For example,

consider a ranking of three documents A, B, C. Suppose A and C are relevant. The precision at A
is 1; the precision at C is 2

3
. The average precision is the average of those two numbers: 5

6
. Average

precision ranges from 0 to 1, with 1 the best possible for any set of relevance judgments.

What if we have no relevance judgments? Obviously we cannot compute average precision.

But we can say what values it could take: for our ranking of three documents above, depending

on how the documents are judged, average precision could be 0, 1
3
, 5

12
, 1

2
, 5

6
, or 1. If we then judge

document A relevant, we know AP could not be 0, 1
3
, 5

12
, or 1

2
; it must be either 5

6
or 1, depending

on how B and C are judged.



This example illustrates the idea of treating an evaluation measure such as AP as a random

variable over judgments of relevance, introduced by Carterette et al. (2006). Following that work,

we formalize this as follows: first, let R be the set of judged relevant documents, and r(i) be the

rank at which document i was retrieved. Then

AP =

∑

i∈R prec@r(i)

|R|

Let xi be the relevance of the document at rank i. Our definition of relevance follows TREC’s,

and is a binary judgment: xi = 1 if i is relevant, 0 otherwise. Then

prec@i =
1

i

i
∑

j=1

xj

AP =
1

∑n

i=1 xi

n
∑

i=1

xi

1

i

i
∑

j=1

xj

=
1
∑

xi

∑

i

∑

j≤i

1

i
xixj

where n is the total number of documents in the corpus.

If a document has not been judged, xi is unknown. Let Xi be a Bernoulli random variable

indicating the relevance of document i. Rewriting AP as a function of random variables Xi:

AP =
1

∑

Xi

∑

i

∑

j≤i

1

i
XiXj

we can see that average precision itself is a random variable with a distribution over possible

judgments of relevance. We make one more modification at this point: rather than index documents

by rank, we want to be able to index them arbitrarily. The resulting expression is:

AP =
1

∑

Xi

∑

i

∑

j≤i

1

max{r(i), r(j)}
XiXj.

Let pi = P (Xi = 1), i.e. pi is the probability that document i is relevant. For our example above,

we might say pA = 4
5
, pB = 2

5
, pC = 3

5
(these numbers are chosen arbitrarily). These probabilities

determine how probable each value of AP is: P (AP = 0|pA, pB, pC) = 1
5
· 3

5
· 2

5
= 0.048,

P (AP = 1|pA, pB, pC) = 4
5
· 2

5
· 3

5
+ 4

5
· 2

5
· 2

5
+ 4

5
· 3

5
· 2

5
= .512, and so on.

Expectation of AP is a sum over exponentially many terms, but we can approximate it in an

intuitive way with the following expression:

E[AP ] =
1
∑

pi

n
∑

i=1

(

1

r(i)
pi +

i−1
∑

j=1

1

max{r(i), r(j)}
pipj

)

+ ǫ (1)

The error in the approximation is represented by ǫ, which is a negligible O(2−n). We ignore it for

the remainder of this work.



Mean average precision (MAP) is simply the average of a set of average precisions calculated

for each topic in a set T . The expectation of MAP follows directly from the expectation of AP:

EMAP =
1

|T |

∑

t∈T

E[APt] (2)

where APt denotes the average precision for topic t.
Calculating EMAP requires choosing a probability of relevance for each document. Carterette

et al. (2006) simply used a uniform pi = 0.5 for all documents; in that case, all systems have the

same EMAP when no judgments are available. If probabilities are assigned nonuniformly by some

algorithm, it becomes possible to rank systems with no judgments at all. The next section describes

an expert aggregation algorithm for assigning probabilities of relevance.

4.2 Finding a Consensus Among Experts

We shall treat a ranked list as an information retrieval “expert” that is providing pairwise preferences

of documents. For example, if ranked list ℓ has ranked document i above document j, we say expert

ℓ prefers i to j, denoted i ≻ℓ j. It then follows that i ≻ℓ j ⇒ rℓ(i) < rℓ(j).
Probabilistic methods for combining experts take expert opinions on events (usually expressed

as probabilities) and compute a “consensus” probability of that event. Our events are pairs of

documents i, j; the experts’ opinions are whether i ≻ j. Carterette and Petkova (2006) presented

a maximum likelihood model for estimating the relevance of documents from expert opinions;

though the application in that work was to metasearch, there is a connection between metasearch

and evaluation (Aslam et al., 2003) that we can take advantage of to apply the same method to our

problem.

We will find a consensus by maximizing the likelihood of observing all the pairwise preferences

expressed by all the experts. Let nij be the number of experts that expressed the preference i ≻ j.

We wish to find Θ = {θ1, θ2, ..., θn}, a vector of “relevance weights” indexed in the same order

as the documents, each of which indicates our belief that the corresponding document is relevant.

Then the likelihood function is:

L(Θ) =
∏

i

∏

j

P (i ≻ j|θi, θj)
nij

=
∏

i

∏

j

P (Xi > Xj|θi, θj)
nij

If we define the logodds of P (Xi > Xj|θi, θj) to be a linear function:

log
P (Xi > Xj|θi, θj)

1 − P (Xi > Xj|θi, θj)
= θi − θj (3)

then maximizing L over Θ is equivalent to solving a logistic regression with variables equal to the

number of documents and an instance for each of the pairwise preferences from all systems. The

parameters Θ are then a measure of the relevance of each document, and

P (Xi = 1) =
exp(θi)

1 + exp(θi)
(4)

This is somewhat similar to Joachims’s ranking SVM (Joachims, 2002), except that the binary

class labels are determined by the sign of the difference in rank rather than clickthrough counts,

and the only feature is a binary feature indicating which document is under consideration.



4.2.1 Computational Issues

One potential problem with this model is that a parameter could grow without bound. If document i
is preferred to all other documents by every expert (i.e. ranked first by every system), the likelihood

has no maximum: as θi → ∞, L → ∞. The remaining parameters become irrelevant to the

maximization; we cannot expect them to have any meaning.

To solve this, we follow Mease (2003) in introducing a prior for each document. Let ξi =
P (Xi = 1). Using the conjugate prior simplifies computation over using a Gaussian or other

standard priors (Gelman et al., 2004). Since Xi is a Bernoulli trial, its conjugate prior is a Beta

distribution: ξi ∼ Beta(α, β). ξi acts as a penalization that keeps θi from increasing without bound.

The likelihood function then becomes:

L(Θ) =
∏

i

∏

j

P (Xi > Xj|θi, θj)
nij

∏

i

ξα
i (1 − ξi)

β
(5)

In the absence of any information about relevance, a reasonable choice of α and β is α = β = 1;

this is the uniform (noninformative) prior. This can be seen as introducing a “dummy” document

and a set of preferences for which it is preferred to every other document and every other document

is preferred to it.

Since the Beta distribution is the conjugate prior for the Bernoulli distribution, we can “update”

the priors each time a document is judged. We simply increment α if the judged document is relevant,

or β if the judged document is nonrelevant. We can then think of ξi as a Laplaciansmoothed topic

prior, with E[ξi] = |R|+1
|R|+|N |+1

, where |R| is the number of judged relevant documents and |N | is the

number of judged nonrelevant documents.

The second computational issue is implementation of a maximization algorithm that can handle

thousands of variables and millions of training instances. We used iteratively reweighted least

squares (IRLS), using the conjugate gradient descent algorithm described by Komarek and Moore

(2005). By taking advantage of our simple data to precompute matrices, we are able to solve

the maximization problem very fast: for one set of 2.5 million preferences and 800 documents,

the likelihood was maximized in about 3 seconds. We have made our code for this available at

http://ciir.cs.umass.edu/˜carteret.

4.2.2 Evaluating Probability Estimates

The expert aggregation model is used to infer a probability of relevance for each document. To

evaluate the probabilities, we compare them to the actual relevance of the document. In Table 2,

documents are separated into bins by their inferred probability of relevance. For each bin, we

compute the percentage of documents in the bin that are relevant. If the probability estimates are

good, the percentages should be within the bin boundaries, e.g. if the bin consists of all documents

with probability of relevance between 0.7 and 0.8, we would like to see at least 70% of the documents

in the bin be relevant. Since, as Table 2 shows, the percentages are not within the bin boundaries for

any bin or any collection, the probability estimates do not appear to be very good. The goodness

offit statistics R2 and deviance, both of which would be 1 if the predictions were perfect, confirm

that probabilities are not very good.

However, the relevance percentages tend to increase as probability increases. As we will see in

the next section, this is good enough to ensure a fairly accurate ranking of systems.



probability percent relevant

interval TREC-3 TREC-4 TREC-5 TREC-6 TREC-7 TREC-8

[0.0, 0.1) – – – – – –

[0.1, 0.2) – – – – – –

[0.2, 0.3) 0.104 – 0.016 0.042 0.019 0.003
[0.3, 0.4) 0.059 0.039 0.026 0.012 0.013 0.011
[0.4, 0.5) 0.134 0.029 0.061 0.012 0.035 0.024
[0.5, 0.6) 0.109 0.076 0.052 0.037 0.028 0.025
[0.6, 0.7) 0.189 0.113 0.067 0.055 0.060 0.042
[0.7, 0.8) 0.233 0.164 0.107 0.076 0.074 0.070
[0.8, 0.9) 0.322 0.274 0.141 0.109 0.101 0.102
[0.9, 1.0] 0.545 0.469 0.293 0.255 0.243 0.233

R2 0.123 0.120 0.066 0.079 0.085 0.096
deviance 0.118 0.143 0.100 0.148 0.149 0.172

Table 2: Evaluation of the probability estimates produced by our maximum-likelihood pairwise

preference method. R2 and dev are measures of the correlation between probability and relevance.

4.3 Ranking Retrieval Systems With No Relevance Judgments

The above expert aggregation model produces probabilities of document relevance solely from the

pairwise preferences expressed by each expert; it requires no relevance judgments. Plugging these

probability estimates into Eq. 1 for each topic gives us EMAP which we can then use to rank the

systems with no judgments.

To evaluate the ranking by EMAP , we compare it to the “true” ranking obtained by evaluating

each system using the supplied NIST judgments. Kendall’s τ rank correlation is the standard

measure in evaluation studies for comparing rankings of systems. Kendall’s τ ranges from −1 to

1, with 1 indicating a perfect correlation and −1 indicating perfect anticorrelation (the ranked lists

are inverted). The τ correlation is based on pairwise swaps, so τ = 0 means that 50% of pairs were

swapped between rankings, τ = 0.5 means that 25% of pairs were swapped, and τ = −0.5 means

that 75% of pairs were swapped.

Figure 1 shows the true ranking by MAP and estimated ranking by EMAP for each of our six

ad hoc collections. The rankings are quite good; the τ correlations are positive and significant.

The errors are almost entire due to the performance of a handful of systems being dramatically

underestimated.

Recall from Section 2 that Soboroff et al. (2001) ranked systems with no relevance judgments by

assigning relevance to a random subset of retrieved documents. In one experiment, Soboroff et al.

took a random sample of documents from a pool with no duplicates; in another, each document

was duplicated in the pool according to the number of systems it was retrieved by. Our results are

compared to both of these experiments in Table 3.

4.4 Reweighting Manual Runs

In Figures 1(c)–1(f), there are systems for which EMAP dramatically underestimates the true

performance. These are uniformly manual runs. Manual runs are known to retrieve relevant

documents that were not identified by automatic runs. Since manual runs are less wellrepresented

in the set, and since they are retrieving some different documents, the documents they retrieve tend
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(a) TREC-3 (τ = 0.528)
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(b) TREC-4 (τ = 0.591)
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(c) TREC-5 (τ = 0.355)
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(d) TREC-6 (τ = 0.425)
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(e) TREC-7 (τ = 0.416)
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(f) TREC-8 (τ = 0.500)

Figure 1: Ranking retrieval systems with no relevance judgments. Hollow circles show the “true”

ranking by MAP (labeled on the left axis); filled circles show the corresponding EMAP for each

system (labeled on the right axis).

TREC-3 TREC-4 TREC-5 TREC-6 TREC-7 TREC-8

preferences 0.528 0.591 0.355 0.425 0.416 0.500
no dups 0.430 – 0.487 0.408 0.369 0.459

dups 0.482 – 0.571 0.491 0.423 0.534

Table 3: Ranking retrieval systems without relevance judgments: τ correlations with pairwise

preferences (top row) compared to τ correlations reported by Soboroff et al. (2001) (bottom two

rows). “No dups” shows results when documents are not duplicated in the pool; “dups” shows

results when they are.

to be “overlooked” by the pairwise preference algorithm. To account for this, we can interject our

own knowledge and manually reweight the manual runs.

We take the penalized likelihood function Eq. 5 and replace the raw count nij with a weighted

count n′
ij =

∑

ℓ wℓyij , where wℓ is the weight given to expert ℓ and yij = 1 if i ≻ℓ j. This gives us
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(a) TREC-3 (τ = 0.621)
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(b) TREC-4 (τ = 0.633)
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(c) TREC-5 (τ = 0.635)
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(d) TREC-6 (τ = 0.635)
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(f) TREC-8 (τ = 0.691)

Figure 2: Weighting manual runs 8 to 16 times higher than automatic runs improves correlations

dramatically over Figure 1.

the weighted likelihood function

L(Θ) =
∏

i

∏

j

P (Xi > Xj|θi, θj)
n′

ij

∏

i

ξα
i (1 − ξi)

β
(6)

which effectively duplicates the preferences professed by each expert ℓ wℓ times.

The result of weighting manual runs 8 to 16 times higher than automatic runs is shown in

Figure 2. The correlations improve dramatically for all sets.

5 Analysis

Our analysis of these results shall use a measure of similarity between ranked lists based on the

pairwise preferences they share. Let Pℓi
be the set of pairwise preferences expressed by expert ℓi.

Define the similarity between experts ℓi and ℓj as the percentage of pairwise preferences they agree

on:

sim(ℓi, ℓj) =
|Pℓi

∩ Pℓj
|

|Pℓi
∪ Pℓj

|
(7)



TREC d ρ dAuto ρ dMan ρ drel ρ dnon ρ
3 0.216 0.776 0.245 0.698 0.189 0.842 0.324 0.718 0.150 0.706
4 0.124 0.838 0.144 0.967 0.110 0.867 0.214 0.820 0.092 0.766
5 0.160 0.577 0.165 0.880 0.156 0.599 0.261 0.640 0.129 0.492
6 0.128 0.646 0.136 0.857 0.101 0.746 0.231 0.743 0.103 0.552
7 0.185 0.605 0.192 0.921 0.149 0.171 0.325 0.649 0.150 0.505
8 0.208 0.748 0.214 0.917 0.156 0.543 0.326 0.757 0.171 0.690

Table 4: Average similarity for subsets of systems for each TREC. d is averaged over all runs in

the set. dAuto is averaged over automatic runs only; dMan is averaged over manual runs only. drel

is calculated only over the relevant documents and averaged over all runs; likewise for dnonrel. The

number ρ next to each average similarity is the correlation between that similarity and mean average

precision.

This similarity is defined for a single topic; we define Sim(ℓi, ℓj) as the average similarity over all

topics. We then define the similarity between one expert and the other k − 1 experts as:

d(ℓi) =
1

k − 1

k
∑

j 6=i

Sim(ℓi, ℓj) (8)

From here on, we will use the word similarity to refer to d(ℓi). We also define relevant similarity

drel(ℓi), computed by calculating Eq. 7 over preferences among relevant documents only, and

nonrelevant similarity dnonrel(ℓi) computed by calculating Eq. 7 over preferences among nonrelevant

documents only, and in both cases averaging over all topics and all systems as in Eq. 8.

Aslam and Savell (2003) previously defined similar distance metrics, but over common doc

uments rather than common pairwise preferences. Using documents alone abstracts away from

differences in the way the documents are ranked, which has a strong effect on average precision.

Using pairwise preferences takes the rankings into account: two systems will be more similar not

only by retrieving the same documents, but also by putting them in the same order.

Table 4 shows mean similarity d for each data set. It is striking that the systems are not

particularly similar to each other: on average they have only about 16% of preferences in common.

Even if we remove the manual runs, systems do not exhibit much similarity (dAuto in Table 4), and

the similarity among the automatic runs is not much greater than the similarity among the manual

runs (dMan in Table 4).

5.1 Analysis of Probability Estimates

Table 2 shows that the probability predictions made by our maximum likelihood method are fairly

bad at predicting relevance, but the ratio of relevant documents increases with the probability

estimates.

The likelihood is

L(Θ) =
∏

i

∏

j

P (Xi > Xj|θi, θj)
nij

∏

i

ξα
i (1 − ξi)

β

Recall from Section 4 that P (Xi > Xj|θi, θj) =
exp(θi−θj)

1+exp(θi−θj)
(Eq. 3). Since that function is

monotonically increasing, it will generally be true that greater nij results in greater difference



between θi and θj . In other words, the more often i ≻ j by the experts, the greater the difference

between pi and pj (since pi is a monotonically increasing function of θi (Eq. 4)). This is confirmed

in the data: the correlation between nij and pi − pj is 0.999 (averaged over all collections).

The correlation between d(ℓ) and EMAP is 0.988, a nearperfect relationship. This is fairly

easy to explain: consider two systems ℓi and ℓj with d(ℓi) > d(ℓj). It follows from the definition

of d that ℓi has more pairwise preferences in common with the other systems than ℓj does. By the

argument above, the more often a particular preference is expressed by the experts, the greater the

difference in probabilities will be between the two documents. Then the following theorem tells us

that EMAP (ℓi) > EMAP (ℓj):

Theorem 1. Suppose ranked lists ℓi, ℓj are identical except that ℓi prefers document A to document

B and ℓj prefers document B to A. If pA > pB, then E[AP (ℓi)] > E[AP (ℓj)].

The proof is presented in the Appendix.

If d(ℓi) > d(ℓj) implies that EMAP (ℓi) > EMAP (ℓj), then the correlation between d and

EMAP is guaranteed to be high.

5.2 Analysis of Similarity

Since d and EMAP are so highly correlated (and are expected to be highly correlated for any

data set), we can use d rather than the more complicated and less intuitive EMAP to explore the

relationship between predicted performance and actual performance.

Although both our algorithm and Soboroff’s are capturing the “popularity” of the documents

(as shown above and by Aslam and Savell (2003) respectively), the fairly low similarities shown in

Table 4 motivated us to explore the relationship between similarity and performance in more depth.

We modified the runs in two ways, both of which kept mean average precisions constant while

increasing or decreasing average similarity. The first experiment randomly permuted each ranked

list by replacing each document with a randomlychosen document with the same relevance. For the

second, we replaced each document with a document of the same relevance chosen deterministically

based on order. For example, the first relevant document retrieved by each system would be replaced

by the same relevant document for all the systems.

The first experiment decreases similarity dramatically: after randomly permuting the TREC5

ranked lists, for example, the mean similarity is around 5%. But the correlation between similarity

and MAP has the opposite effect: it increases to 0.934, a nearperfect correlation. The second

experiment has the opposite effect: it increases similarity dramatically to around 67%, but decreases

the correlation between similarity and MAP to 0.059, nearly no correspondence at all. Table 5 shows

the results of these experiments for each of the six data sets.

Popularity is therefore not necessarily a bad criterion for estimating performance; it depends on

the distribution of the relevant and nonrelevant documents in the rankings. In the first experiment,

the popularity of any given document or preference is low, but since systems are reasonably good

at retrieving relevant documents, the expectation is that any given relevant document will be ranked

above any given nonrelevant document. In the second, the popularity of any given document or

preference is high, but since they are always in the same order, there will be some nonrelevant

documents that are always ranked above the relevant documents.

Table 4 shows another factor: the similarity between these systems among relevant documents

only is greater than the similarity among nonrelevant documents only; the ratio is about two to one.



experiment statistic TREC-3 TREC-4 TREC-5 TREC-6 TREC-7 TREC-8

random d 0.063 0.046 0.043 0.048 0.054 0.056
replacement ρ(d,MAP ) 0.967 0.964 0.934 0.848 0.932 0.932

deterministic d 0.750 0.672 0.803 0.772 0.780 0.792
replacement ρ(d,MAP ) 0.605 0.327 0.059 0.219 −0.049 0.159

Table 5: Results of permuting lists for all six data sets. The first experiment decreases average

similarity d while increasing the correlation ρ(d,MAP ) between similarity and MAP. The second

increases average similarity while decreasing the correlation.

Our first experiment increased this ratio to nearly three to one, while the second decreased it to the

point that dnon was greater than drel.

This suggests another reason our algorithm works as well as it does: these systems are more

similar to each other in how they rank relevant documents than in how they rank nonrelevant

documents. Lee (1997) provided evidence for this in a metasearch context, showing that the

amount of overlap among relevant documents retrieved was greater than the amount of overlap

among nonrelevant documents retrieved. Again, using pairwise preferences allows us to measure

the similarity in ranking as well as in documents retrieved.

As alluded to above, these systems are on average reasonably good: as the MAPs in Figure 1

show, they rank relevant documents above nonrelevant documents more often than not. Our

conclusion is that these data sets have particular properties that make good results easy to obtain;

they consist of good systems with low similarity on average but higher similarity among relevant

documents than among nonrelevant documents. These properties should not necessarily be expected

to occur in other data sets. In particular, our second experiment above suggests that good systems

with high overall similarity but lower relevant similarity than nonrelevant similarity are harder to

evaluate.

5.3 Summary

We have demonstrated an algorithm that, like that of Soboroff et al. (2001), ranks retrieval systems

without relevance judgments. We have shown that it works as well as it does for two reasons:

first, it rewards systems that are most similar to the others (as Aslam and Savell (2003) showed

for Soboroff’s work); second, the systems are on average good at retrieving relevant documents.

We have argued that the combination of low overall similarity, goodness of rankings, and greater

similarity among relevant ranks than nonrelevant ranks result in these data sets being easy for any

algorithm.

We believe it is possible to get good results on these data sets almost by accident. An algorithm

need only identify those systems that are a bit different from the others but that have done a good job

at retrieving relevant documents. This is what we did in Section 4.4 when we manually reweighted

the manual runs. Next we shall show that the same effect can be achieved automatically.

6 Iterative Reweighting

In this section we illustrate how we can make a very small number of relevance judgments to give

comparable results to manually reweighting manual runs as in Section 4.4, Figure 2. Our goal is

to show that it is fairly easy to achieve good results on these data sets, even if our algorithm is not



doing what we necessarily think it is.

The algorithm is an iterative reweighting algorithm described in a general form by Arora et al.

(2006). We apply it as follows: first, we assign a weight wℓ = 1 to each expert ℓ. We then estimate

probabilities of relevance for every document by maximizing the weighted likelihood Eq. 6. We

judge the document with the highest probability of relevance for each topic.

We then look at the preferences of each expert. For each of an expert’s preferences that were

correct according to the relevance judgments, we increase its weight by a factor of 1 + ǫ1. For each

preference that was incorrect, we decrease its weight by a factor of 1 − ǫ. For example, suppose

document A is judged relevant and B nonrelevant. Experts that preferred A to B have their weight

increased; experts that preferred B to A have their weight decreased. The weights of experts that

expressed no preference (by retrieving neither A nor B) are unchanged.

We then maximize the weighted likelihood Eq. 6 to obtain new estimates of relevance Θ. We

do this for ⌊ln |L|⌋ iterations, where L is the set of retrieval systems being evaluated. This number

is chosen to minimize the expected number of errors.

6.1 Results

Reweighted rankings are shown in Figure 3. Iteratively reweighting systems using advice from the

relevance judgments increases the τ correlations above the levels seen by manually reweighting

manual runs in Figure 2.

It is interesting to look at the weights of the experts. We might expect that the weights correlate

well to the true ranking: since they are being increased for successes and decreased for errors, they

should roughly reflect that better systems make fewer errors. But in fact they do not: the correlation

is never better than about 0.3, and for some collections it is not significantly different from random!

It is always much less than the correlation between EMAP and MAP.

Why is this? It is because this algorithm is in fact identifying and reweighting the systems

that have retrieved different relevant documents, not the ones that are better. To see this, note

that the highestprobability documents will be those that were retrieved highly by many systems.

This means we are gaining information primarily about the systems that retrieved the most similar

documents: the automatic runs. As it turns out, the average weight of the automatic runs is 0.454,

while the average weight of the manual runs is 0.961. The fact that the manual weights are so

close to 1 indicates that we have gathered almost no information about them at all. Instead, we

downweighted the runs that have the highest similarity to the cluster.

It is also interesting to look at the rankings of systems by calculating MAP using only the

ln |L| documents judged, and assuming that all unjudged documents are nonrelevant. In fact, the

correlations are quite high, which again demonstrates our point that it is easy to get good results

with very little effort.

7 Solutions

The results and analysis in the previous section point towards the TREC ad hoc sets having a very

high baseline for any evaluation study. What can be done about it?

The obvious first idea is to find sets of systems that are “harder” than the TREC sets. So far, after

examining sets such as Robust results, HARD results, and Terabyte track results, we have found

that if anything they are easier than the ad hoc track results typically used in evaluation studies: the

1
ǫ ≤ 1

2
; we chose ǫ = 0.1.
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0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

0
.3

0
0

.3
5

run number

M
A

P

0 5 10 15 20 25 30

0
.0

4
0

.0
5

0
.0

6
0

.0
7

0
.0

8
0

.0
9

0
.1

0
0

.1
1

(b) TREC-4 (τ = 0.595)
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(c) TREC-5 (τ = 0.645)
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(d) TREC-6 (τ = 0.667)
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(e) TREC-7 (τ = 0.730)
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(f) TREC-8 (τ = 0.731)

Figure 3: Rank results after ln |L| judgments and iterative reweighting.

systems are about as good, but have less similarity to each other overall, and the ratio of relevant

similarity to nonrelevant similarity is higher. It appears that the ad hoc sets are the best currently

available.

One alternative is to generate random ranked lists for testing. This is not entirely satisfactory,

though, as it is not clear what a realistic simulated ranked list should look like. Furthermore, given

the results of our random replacement experiment in Section 5.2, generating random ranked lists

will most like create easier data sets!

Thus we recommend the use of formal proof (along with informal argument when necessary)

and hypothesis testing to demonstrate why a particular algorithm works. In the following two

subsections we illustrate how these may be used below before presenting general recommendations

for hypothesis testing procedures.

7.1 Formal Proof and Informal Argument

The advantage of formal proof is that it can sidestep questions about data entirely. It can also

suggest places where counterexamples may be lurking. The disadvantage is that it may only be

possible to prove weak results; in that case reasoning informally may be sufficient.

We will not prove anything new about this algorithm; Arora et al. (2006) have proved the



following results. After t iterations of judging and reweighting, let mt
ℓ be the number of mistakes

made by expert ℓ, ct
ℓ be the number of correct preferences by expert ℓ, and M t be the expected

number of incorrect preferences minus the expected number of correct preferences in the consensus.

Theorem 2 (Arora et al.). After t rounds, for any expert ℓ we have

M t ≤
ln |L|

ǫ
+ mt

ℓ(1 + ǫ) − ct
ℓ(1 − ǫ)

(In fact, they prove a more general bound, but this is strong enough for our purpose.)

Note that ℓ could be the best expert—the one that has made the fewest errors in preferences.

This means that our consensus pairwise preferences will approach those of the best expert, and

therefore we can have confidence that the run it says is best really is one of the best.

Theorem 1 in Section 5.1 implies that the more similar an expert is to the consensus, the higher

its EMAP will be. Since the consensus preferences will trend towards the best expert’s preferences,

that expert will be identified as the best by EMAP . It also means that the closer an expert is to the

best, the more likely it is to be identified as good by EMAP .

We argued in Section 5.1 that θi − θj is strongly correlated to nij . It follows that the document

with the greatest θi will be the one that is preferred most often to other documents, i.e. retrieved at

the highest rank by the most systems. Therefore judging this document tells us the most about the

majority set. If the majority set is frequently wrong, the systems in it will be downweighted, while

the minority set will remain the same or be upweighted if they are good.

7.2 Hypothesis Testing

The purpose of hypothesis testing is to decide whether a difference in some measurement is unlikely

to have occurred by chance. Hypothesis testing, while common in experiments on retrieval, has not

been used to compare evaluation algorithms, to the best of our knowledge. We argue that it should

be, even if formal proof is enough to justify the algorithm.

Our proposal for testing evaluation algorithms is as follows: first, choose random subsets of

k systems from one of the TREC corpora. Run the algorithm to some stopping point on each set

(an algorithm may not have a fixed stopping point; in that case it should be run to several different

fixed stopping points). Run a baseline algorithm to the same point on the same sets. Since both

algorithms were run on the same data and to the same point, they may be compared using a paired

(onesample) hypothesis test, thus accounting for possible explanatory variables such as corpus and

topics. This procedure should be duplicated on several different corpora.

Our iterative reweighting algorithm stops after ln |L| documents have been judged. Figure 4

shows the result of running the algorithm as well as the nocost algorithm on randomlychosen

subsets of 2, 4, 6, 8, and 10 runs from each TREC. Note that the average performance on subsets

of systems is nearly always lower than the performance on the full set of systems (indicated by the

horizontal lines). This suggests that testing on subsets is “harder”.

Table 6(a) shows the mean τ correlation for subsets of 10 runs from each TREC. It also shows

the pvalue of the paired onesided ttest between iterative reweighting and no relevance judgments

at all. We also tested whether ranking documents by EMAP (plugging in our maximum likelihood

estimates of probability) was significantly different than ranking documents by MAP alone (making

the assumption that all unjudged documents are nonrelevant). The results are shown in Table 6(b).

The results in Table 6 show how much performance can vary over data sets. Judging three

documents is actually significantly worse than judging none at all for TREC4! Table 6(b) in
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Figure 4: A comparison of the baseline no-judgment algorithm (solid lines) to the iterative

reweighting algorithm (dotted lines) on randomly-chosen subsets of systems. The straight lines

show the performance on the full set of systems.

particular reinforces the variance in performance over data set, showing that ranking my EMAP is

significantly better for two sets but significantly worse for one.

Algorithms of this type are often “anytime” algorithms, meaning they can run indefinitely. In

order to compare them using hypothesis testing, they must be stopped at some point. The choice

of stopping point depends on the measurement that is to be tested. For example, to test whether

one algorithm gives a higher τ correlation than another, we would run both algorithms for the same

number of relevance judgments. To test whether one algorithm requires fewer judgments than

another, we would run both to a stopping point (determined possibly by τ correlation) and compare

the number of relevance judgments it took to get there. Generally the choice of stopping condition

should be clear from the hypothesis that needs to be tested.

8 Conclusions

Starting from the high performance baseline when evaluating with no relevance judgments at all,

we argued that the TREC data sets usually used for experiments in evaluation studies have a much

higher baseline than previously assumed. Following Aslam et al. (2003) and Lee (1997), we



TREC baseline τ reweight τ p-value

3 0.527 0.513 0.205
4 0.574 0.542 0.029
5 0.339 0.489 0.000
6 0.420 0.557 0.000
7 0.400 0.480 0.000
8 0.532 0.575 0.004

(a) Mean τ correlations for the baseline (no judg-

ments) and iterative reweighting.

reweight+EMAP reweight+MAP p-value

0.513 0.564 0.001
0.542 0.532 0.286
0.489 0.456 0.056
0.557 0.574 0.190
0.480 0.355 0.000
0.575 0.438 0.000

(b) Mean τ correlations for iterative reweighting and

ranking by EMAP vs. iterative reweighting and rank-

ing by MAP.

Table 6: Mean τ correlations when running three algorithms over randomly-chosen subsets of 10

systems. Bold numbers indicate significant differences at α = 0.05.

analyzed the data sets to see why that is true: the systems are good, have fairly low similarity to

each other, but are more similar in their relevant rankings than their nonrelevant rankings.

Because of this high baseline, more rigorous testing is needed in evaluation studies. We

specifically recommend the use of hypothesis tests by evaluating on randomlychosen subsets of

systems from the TREC sets. We also recommend the use of formal proof to argue about algorithms.

Again, we do not claim that previous studies are wrong. We strongly believe that they will hold

up to more rigorous testing. We simply believe that these types of studies should present more

evidence to support their conclusions, just as studies on text retrieval are required to do.
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Appendix

Theorem 1. Suppose ranked lists ℓi, ℓj are identical except that ℓi prefers document A to document

B and ℓj prefers document B to A. If the consensus opinion is that A is preferred to B, then

E[AP (ℓi)] > E[AP (ℓj)].

Proof. As defined in Section 4.2, the preference A ≻ℓ1 B implies the rank of A is less than the rank

of B, i.e. rℓ1(A) < rℓ1(B). Likewise, B ≻ℓ2 A implies rℓ2(B) < rℓ2(A). The consensus preference



A ≻ B implies pA > pB . Since the two lists are identical except for A and B, it follows that for all

documents i 6= A, B, rℓ1(i) = rℓ2(i). It further follows that rℓ1(A) = rℓ2(B) and rℓ1(B) = rℓ2(A).
We will define δ such that pA = pB + δ.

Eq. 1 defined the expectation of average precision as:

E[AP (ℓ1)] =
1
∑

pi

∑

i

1

rℓ1(i)

(

pi +
∑

j≤i

pipj

)

+ ǫ

To simplify the algebra, we will split this into four parts E1, E2, E3, E4 such that E[AP ] = E1 +
E2 + E3 + E4.

E1[AP (ℓ1)] =
1

rℓ1(A)
pA +

1

rℓ1(B)
pB

E2[AP (ℓ1)] =
1

rℓ1(B)
pApB

E3[AP (ℓ1)] =
∑

i6=A,B

1

max{i, rℓ1(A)}
pipA +

∑

i6=A,B

1

max{i, rℓ1(B)}
pipB

E4[AP (ℓ1)] =
∑

i6=A,B

(

1

i
pi +

∑

j<i;j 6=A,B

pipj

)

We define the same four quantities for AP (ℓ2). The only difference is that E2[AP (ℓ2)] = 1/rℓ2(A)pApB.

Since E4 excludes documents A and B, it follows that E4[AP (ℓ1)] = E4[AP (ℓ2)]. E2[AP (ℓ1)] =
E2[AP (ℓ1)] because rℓ1(B) = rℓ2(A). We will show that E1[AP (ℓ1)] > E1[AP (ℓ2)] and E3[AP (ℓ!)] ≥
E3[AP (ℓ2)].

E1[AP (ℓ1)] =
1

rℓ1(A)
pA +

1

rℓ1(B)
pB

=
1

rℓ1(A)
(pB + δ) +

1

rℓ1(B)
(pA − δ)

=
1

rℓ2(B)
pB +

1

rℓ2(A)
pA + δ

(

1

rℓ1(A)
−

1

rℓ1(B)

)

>
1

rℓ2(B)
pB +

1

rℓ2(A)
pA = E1[AP (ℓ2)]

And for each of the terms in the sums in E3,

1

max{i, rℓ1(A)}
pipA =

1

max{i, rℓ2(B)}
pipA

≥
1

max{i, rℓ2(A)}
pipA

From these equalities and inequalities, we can conclude that

E[AP (ℓ1)] = E1[AP (ℓ1)] + E2[AP (ℓ1)] + E3[AP (ℓ1)] + E4[AP (ℓ1)]

> E1[AP (ℓ2)] + E2[AP (ℓ2)] + E3[AP (ℓ2)] + E4[AP (ℓ2)] = E[AP (ℓ2)]


