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Abstract 

We explore the problem of discovering multiple missing values in a semi-structured database.  For this task, we 
formally develop Structured Relevance Model (SRM) built on one hypothetical generative model for 
semi-structured records. SRM is based on the idea that plausible values for a given field could be inferred from the 
context provided by the other fields in the record. Small-scale experiments on IMDb (Internet Movie Database) 
show that SRM matched three state-of-the-art relational learning approaches on the movie label prediction tasks. 
Large-scale experiments on a snapshot of the National Science Digital Library (NSDL) repository show that SRM 
is highly effective at discovering possible values for free-text fields even with quite modest amounts of training 
data, compared with state-of-the-art machine learning approaches. 

 

1. Introduction 

Recently, information processing challenges on semi-structured data have attracted more and 
more researchers. One approach arises out of the relational database community and uses SQL 
with a typical relational query (Grabs & Schek 2002).  Such an SQL approach usually assumes 
complete information for every record in the database, which means it runs into obstacles when 
dealing with real-world semi-structured data, where some field values or even whole fields 
information are missing. For example, a query: subject = ‘elementary differential’ AND 
audience = ‘undergraduate’ might miss many plausible relevant records about “elementary 
differential” only because they lack the target audience (reading level) information.  
 
One intuitive way to solve this problem is to divide the retrieval process into two steps: first 
discover the missing values for a given field by using context information provided by other 
fields in the record, and second, perform typical retrieval on all the records with this 
reconstructed complete information. In this paper, we will focus on the first step, inferring 
missing field values.  We will formally develop Structured Relevance Model (SRM), a 
generative approach to address the problem. 
 
This research is motivated by the challenges we encountered in working with the National 
Science Digital Library (NSDL) collection.1  In this collection each record is a scientific 
resource, such as a research paper, an educational video, or perhaps an entire website. In 
addition to its main content, each resource is annotated with metadata, which provides 
information such as the author or creator of the resource, its subject area, format 
(text/image/video) and intended audience -- in all over 90 distinct fields (though some are very 
related). Table 1 shows some statistics of 5 fields (title, description, subject, content and 
audience) from a January 2004 snapshot of the NSDL collection. It can be observed that 23% of 

                                                      
1 http://www.nsdl.org  



the records in the collection have no subject field and only 3.5% mention target audience. 
Therefore if a relational engine were directly applied for querying records in the NSDL 
collection, it will bump into the missing field problem. For example if a query contains 
“audience = elementary school”, it will consider at most 3.5% of all potentially relevant 
resources in the NSDL collection. However if the missing field values can be plausibly inferred 
according to the other observed field values in the record, this coverage problem will be 
alleviated and additional plausible relevant records in the collection will be retrieved. 
 

 records covered average length unique values 
title 655,673 (99%) 7 102,772 
description 514,092 (78%) 38 189,136 
subject 504,054 (77%) 12 37,385 
content 91,779 (14%) 743 575,958 
audience 22,963 (3.5%) 4 119 

 
Table 1. Summary statistics for five NSDL fields. 

 

Discovering missing field values on collections similar to NSDL can be viewed as a missing 
label problem in the multi-label machine learning scenario. But if we are directly applying a 
multi-label learning algorithm to predict missing field values, there is a big obstacle: fields 
usually consist of free text values instead of closed-vocabulary small size labels. Assuming that 
each unique value in a field is a label for a different category, it can be observed in Table 1 that 
there are 119 categories in the multi-label learning task for the audience field, and 37,385 
categories for the subject field.  To the best of our knowledge, there are few multi-label 
machine learning algorithms that directly address this missing label prediction problem with 
huge label variety. In this paper, for this challenging task, we present the SRM approach, which 
is built on one generative model for semi-structured records and follows the language model 
approach that has been successfully applied to retrieval tasks. Intuitively SRM is able to 
calculate the probability of a value occurring in certain fields of a record, then utilizes the rank 
list of these probabilities to discover some import missing field values. 
 

Our experiments show that SRM’s performance is comparable with state-of-the-art machine 
learning approaches. For the missing field discovery task on the NSDL collection, it is found 
that SRM is even preferable to Support Vector Machine (SVM) in the learning scenario where 
there are huge number of categories and modest number of training samples for each category. 
Therefore SRM can be easily adopted for the final task of answering complex structured 
queries over a semi-structured collection with corrupt and missing field values.  
 

The remainder of the paper is organized as follows. We survey previous attempts at handling 
semi-structured data and predicting missing values in section 2. Section 3 will provide the 
details of Structured Relevance Models. In section 4, we will discuss the relation between SRM 
and state-of-the-art relational learning approaches, and then compare their performance on the 
movie receipts predicting task with the IMDb collection. In section 5, the challenging NSDL 
collection, where numerous free-text field values are missing, will be utilized to show how 
SRM performs and why SRM is preferable than some state-of-the-art machine learning 
approach for the missing value discovery task on it. Section 6 will discuss the results and draw 
conclusions. 



2. Related Work 

Most of the prior work related to our research for discovering missing values in relational 
databases can be grouped into two categories: (i) research on dealing with missing data in 
relational databases, and (ii) research on dealing with multi-label data in machine learning task. 
The issue of discovering missing field values in relational databases has recently been 
addressed in a few publications in relational machine learning area. In the literature, researchers 
usually introduce a statistical model for predicting the value of a missing attribute or relation, 
based on observed values. Friedman et al. (1999) introduced a directed graphical model, 
Probabilistic Relational Models (PRM) that extends Bayesian networks for automatically 
reasoning in a relational database. Taskar et al. (2001) demonstrated how PRM can be used to 
predict the category of a given research paper and showed that categorization accuracy can be 
substantially improved by leveraging the relational structure of the data. They also explored 
undirected graphical models capable of representing and reasoning with autocorrelation in 
relational data and introduced relational Markov networks (RMNs) (Taskar et al., 2002), based 
on conditional random fields for sequence data (Lafferty et al. 2001). Neville et al. (2003a, 
2003b, 2003c) discussed predicting binary labels in relational data using Relational Naive 
Bayesian Classifier (RBC), Relational Probabilistic Trees (RPT) and Relational Dependency 
Networks (RDN). Using these powerful relational learning models they successfully predicted 
whether a movie was a box office hit based on other movies that share some of the properties 
(actors, directors, producers) with the movie in question. 
 
Our work differs from most of these approaches in that we work with free-text fields, whereas 
relational learning researchers typically deal with closed-vocabulary values, which exhibit 
neither the synonymy nor the polysemy inherent in natural language expressions. Furthermore, 
usually there are thousands of different missing values needed to be addressed in this NSDL 
collection, whereas typical relational learning task focused on predicting and selecting the 
missing labels for a given record from several given labels or categories. 
 
Our work is also related to machine learning research on multi-labeled classification problems.  
Multi-labeled classification requires classifiers to assign each sample into more than one 
category, which brings complexity and difficulty to the learning task. Zhu et al. (2005) provide 
a detailed survey for different approaches of multi-labeled classification techniques and more 
recent work is presented by Rousu et al. (2006). Instead of building complicated hierarchical 
learning models (Godbole & Sarawagi, 2004; Rousu et al., 2006), our research follows two 
other simple but important approaches: a ranking-based approach and a generative probabilistic 
model based approach. The ranking-based approach usually computes some real-value score 
for each sample-category pair, and classifies each sample by choosing all the categories having 
the scores above the given threshold. Many classic machine learning techniques have been 
adopted for learning the ranking function for the sample-category pairs, for example Schapire 
and Singer (2000) modified boosting techniques for this task, whereas Elisseeff and Weston 
(2002) utilized Support Vector Machines (SVMs). The generative approach usually creates 
generative probabilistic models for the process of generating the multi-labeled samples, and 
learns posteriors for classification. McCallum (1999) described one parametric generative 
mixture model which assumes that each multi-labeled sample is generated by a mixture of 
single-labeled generative models, then utilized EM algorithm for learning parameters; Ueda 
and Saito (2003) proposed two new different mixture schemes into the generative models and 
achieved a little bit better performance than utilizing single-labeled learning algorithms for 
multi-labeled task. 



Our work differs from previous work following these two approaches in that we focus on the 
specific task of discovering missing values in semi-structured database. We also directly handle 
large scale incomplete semi-structured data where there are a great number of missing fields. In 
addition, we borrow ideas from language model based relevance models (Ponte & Croft, 1998; 
Lavrenko & Croft, 2001) and follow the non-parametric approach (Silverman, 1986) to build 
the generative function for our hypothetical generative process of creating semi-structured 
records. For the semi-structured document classification problem, there are some recent 
approaches in machine learning committee by firstly building generative models then doing the 
classifications (Diligenti et al., 2001; Denoyer & Gallinari, 2004). Different from these 
approaches, we focus on the specific NSDL task where there are a great number of missing 
labels. 

3. Structured Relevance Models 

In this section, we will firstly describe the structured generative model for Structured 
Relevance Model (SRM) in detail, then discuss its assumption and limitation and finally 
describe how to utilize this generative model to build SRM and discover missing values in 
semi-structured database. 

3.1 Definitions 

We start with a set of definitions that will be used through the remainder of this paper. Let C  be 

a collection of semi-structured records. Each record w  consists of a set of fields 1 m
w w… . 

Each field 
i

w  is a sequence of discrete variables (words) ,1 , ii i n
w w… , taking values in the field 

vocabulary 
i
V .2 When a record contains no information for the i'th  field, we assume 0

i
n =  for 

that record. We will use 
i

p  to denote a language model over 
i
V , i.e. a set of probabilities 

( ) [0,1]
i

v ∈p , one for each word v , obeying the constraint ( ) 1iv
v =∑ p . The set of all possible 

language models over 
i
V  will be denoted as the probability simplex 

i
P . We define 

1: [0,1]
m

π × →"P P  to be a discrete measure function that assigns a probability mass 

1( )
m

π p p…  to a set of  m  language models, one for each of the m  fields present in our 

collection. 

3.2 Generative Model 

We will now present a generative process that will be viewed as a hypothetical source that 
produced every record in the collection C . We stress that this process is purely hypothetical; its 
only purpose is to model the kinds of dependencies among words within and between fields so 
that they can be utilized to discover the missing field values given the context provided by other 
field values in the record. 
 
We assume that each record w  in the database is generated in the following manner: 

1. Pick m  distributions 1 m
p p…  according to π  

2. For each field 1i m= … : 

a) Pick the length 
i

n  of the i'th  field of w  

b) Draw i.i.d. words ,1 , ii i n
w w…  from 

i
p  

                                                      
2 We allow each field to have its own vocabulary 

i
V  since we generally do not expect author names to occur in the 

audience field, etc. 



Under this process, the probability of observing a record { }, : 1.. , 1..
i j i

i m j n= =w  is given by 

the following expression: 

 
1

, 1 1...
1 1

( ) ( )
i

m

nm

i i j m m

i j

d dπ
= =

 
 
 
∏∏∫ p w p p p p… …

P P
 (1) 

A Generative Measure function 

The generative measure function π  plays a critical part: it specifies the likelihood of using 
different combinations of language models in the process of generating w . The measure 
function can be set in a number of different ways, leading to very different dependence 
structures among the fields of w . In choosing π  we tried to make as few assumptions as 
possible about the structure of our collection, allowing the data to speak for itself. We use a 
non-parametric estimate for π , which makes our generative model similar to Parzen windows 
or kernel-based density estimators (Silverman, 1986). Our estimate relies directly on the 
combinations of language models that are observed in the training part of the collection. Each 

training record 1 m
w w…  corresponds to a unique combination of language models 1 m

w wp p…  

defined by the following equation: 

 
#( , )

( ) i i v
i

i i

v c
v

n

µ
µ
+

=
+

w w
p  (2) 

Here #( , )
i

v w  represents the number of times the word v  was observed in the i'th  field of w , 

i
n  is the length of the i'th  field, and 

v
c  is the relative frequency of v  in the entire collection. 

Meta-parameters 
i

µ  allow us to control the amount of smoothing applied to language models 

of different fields; their values are set empirically on a held-out portion of the data. 
 
We define 1( )

m
π p p…  to have mass 1/ N  when its argument 1 m

p p…  corresponds to one of 

the N  records w  in the training part 
t

C  of our collection, and zero otherwise: 

 1
1

1
( ) 1

i i

t

m

m

C iN
π

=
∈ =

= ∑∏ w
p p

w

p p…  (3) 

Here 
i

w
p  is the language model associated with the training record  w ( Equation 2), and 1

x
 is 

the Boolean indicator function that returns 1 when its predicate is true and zero when it is false. 

Assumptions and Limitations 

The generative model described in the previous section treats each field in the record as a bag of 
words with no particular order. This representation is often associated with the assumption of 
word independence. We would like to stress that our model does not assume word 
independence, on the contrary, it allows for strong un-ordered dependencies among the words 
-- both within a field, and across different fields within a record. To illustrate this point, suppose 
we let 0

i
µ →  in equation (2) to reduce the effects of smoothing. Now consider the probability 

of observing the word 'elementary' in the audience field together with the word 'differential' in 
the title (equation 1). It is easy to verify that the probability will be non-zero only if some 
training record w  actually contained these words in their respective fields -- an unlikely event. 
On the other hand, the probability of 'elementary' and 'differential' co-occurring in the same 
title might be considerably higher. 
 
While our model does not assume word independence, it does ignore the relative ordering of the 
words in each field. Consequently, the model will fail whenever the order of words, or their 



proximity within a field carries a semantic meaning. Finally, our generative model does not 
capture dependencies across different records in the collection: each record is drawn 
independently according to equation (1). 

3.3 Structured Relevance Models for Discovering Missing Values 

In this section we will describe how the generative model described above can be used to build 
SRMs for discovering missing field values in semi-structured database. 
 
Suppose that the whole collection has been divided into training set 

t
C  and testing set 

e
C .  We 

are given a structured record r  from 
e

C , which has observed field values 1 m
r r…  and also 

missed some field values. Now we estimate the likely missing values which would be plausible 
in the context of the observed parts by using 

t
C . The distribution over all plausible values in the 

i'th  field is called relevance model 
i

R  for the i'th  field since it is intended to mimic the field 

values that might be relevant to the observed record r . A set of relevance models 1 m
R R…  for 

all the fields will be estimated, which are called Structured Relevance Models (SRMs). 
Formally speaking, a relevance model ( )

i
R v  in a SRMs specifies how plausible it is that word 

v  would occur in the i'th  field of a record, given that the observed parts of the record are 

1 m
r r… : 

 1

1

( )
( )

( )
i m

i

i m

P v
R v

P
=

r r r

r r r

… D …
… …

 (4) 

Here we use 
i

v rD  to denote appending word v  to the string 
i

r . Both the numerator and 

denominator are computed using equation (1) based on the described generative model. Once 
we have computed a SRM for each field, we can rank plausible values in that field according to 
their probabilities in the corresponding relevance model. By keeping the top-k values in this 
rank list, we can discover the important missing field values for record r . 

3.4 Implementation details 

In this section, we will briefly describe how to the model has been implemented in practice. We 
will use the following example which closely resembles the experiments we carried out on the 
NSDL collection.  
 
Suppose that the NSDL collection contains these five fields: title, description, content, subject, 

audience. Assume that all five fields are observable in the training records 
t

C , and that 

audience and subject are missing in every testing record in 
e

C . We proceed as follows to 

discover the missing field values of testing records: 

1. Given a record { }, ,t d c=r r r r  from testing records 
e

C  . Run 
t

r  as a query against the title 

index on the training records 
t

C . Run  
d

r  against description index and 
c

r  against  content 

index. 
2. Merge the ranked lists from the title, description and content queries. The final score of 

record w  in the merged list should be ( | ) ( | ) ( | ) ( | )
t t d d c c

P P P P= × ×r w r w r w r w  

3. Take the top 1000 records and convert their scores to posterior probabilities ( | )P w r  

4. Estimate a audience relevance model 
a

R  by averaging relative frequencies of audience 

words in the top 1000 records, weighing each record by ( | )P w r . Repeat that for the 

subject field to estimate subject relevance model 
s

R . 



5. Rank audience values according to 
a

R , keep the top-k field values as 
a

r . Similarly, get 
s

r  

by using 
s

R . Finally return 
a

r  and 
s

r  as plausible missing values in audience and subject 

fields of r . 
The procedure utilizes a text search engine that ranks documents using the standard 
language-modeling approach (Ponte & Croft, 1998) and returns ( | )P w r  in the ranked list. The 

computational complexity of this procedure is depended on the number of values in each field 

of r : { }, ,
t d c

n n n in this example, and the number of field values in returned top-1000 records in 

step 3. In order to calculate ( | )P r w  by using typical text search engine, we can utilize 

( )
t d c

O n n n+ +  inverted document lists. In order to calculate relevance models for each field 

i
R , we need to compute the scores for each value in the returned top-1000 records and sort them: 

denote '
i

n  as the average length of the ith field of a record, 
i

N  as the number of distinct values 

in the ith field of top-1000 records returned, the computation cost of this procedure is 

(1000 ' log )i i i

i

O n N N+∑  . Therefore, although the whole procedure is a little computational 

expensive, we can still implement it efficiently with a typical text search engine. 

4. SRM and Relational Learning Approach 

SRM can be utilized for a typical classification task in a semi-structured database by viewing 
the observed field values as features and the missing ones as labels to be predicted. Intuitively, 
SRM utilizes the fact that records similar in one respect will often be similar in others, which is 
similar to the autocorrelation property (i.e., the same type of objects that are related to each 
other usually have similar attributes—e.g., movies produced by the same director may have 
similar genre)  in relational data (Jensen & Neville, 2002). Therefore SRM is closely related to 
relational learning approaches, which deal directly with relational data and utilize relational 
features and attributes of related objects in the training process for the final classification.  
 
In this section, we will utilize IMDb (the Internet Movie Database) to explore SRM’s capability 
of predicting missing labels. We borrowed a classification task Neville et al. (2003b; 2003c) 
where the goal is to predict whether a movie’s opening weekend receipts will be larger than 
US$2 million or not, and compare SRM’s performance with different relational learning 
approaches.  

4.1 Experiments with IMDb 

This experiment utilized movie data drawn from the Internet Movie Database (IMDb).3 A 
sample of all movies released in the United States from 1996 through 2000 is gathered, with 
opening weekend receipt information. The resulting collection contains 1,362 movies. In 
addition to movies, the data set contains associated actors, directors, producers, and studios. 
The learning task was to predict whether a movie’s opening-weekend box office receipts are 
larger than US$2 million or not (in this data set, 45% of the movies have that property).  We 
compare our results with three state-of-the-art approaches in relational learning: 
1. Relational Bayesian classifier (RBC) is a modification of the typical Naïve Bayesian 

classifier (Neville et al., 2003a) 
2. Relational Probabilistic Tree (RPT) is a modification of the typical probabilistic 

classification tree, which uses a novel form of randomization test to adjust for statistical 
bias in relational data (Neville et al., 2003b) 

                                                      
3 www.imdb.com  



3. Relational Dependency Networks (RDN) is an undirected graphical model which is 
capable of reasoning with autocorrelation (Neville et al., 2003c). RDN utilizes Gibbs 
sampling and RPT for learning parameters. 

For using these relational learning models4 for a movie’s receipt label prediction, we follow the 
same setting as Neville et al. (2003c) and utilize both attributes of a given movie and the 
attributes of objects one or two links away from this given movie – directors, actors and studios, 
as well as movies associated with these objects.   
 
For using SRM, we created a semi-structured record for each movie with the movie’s attributes 
as well as all attributes from only adjacent directors, actors and studios; if there are multiple 
instances of one of those records, we concatenated them, e.g. all actor name fields would be 
combined into a single text field containing all the names. In this way we flattened the 
heterogeneous data into homogeneous records for SRM, which is similar in the preprocessing 
step in RBC (Neville et al., 2003a). Table 2 shows statistics of some important attributes of this 
movie data set after this flattening step. Note that all the numeric values have been discretized 
such as actor’s birth year and a person’s “Hollywood Stock Exchange” (HSX) rating5.  
 

 records covered unique values avg length 

actor_HSX_rating 1035 10 4 

actor_birth_year 1305 10 12 

actor_has_award_or_nominated 1354 2 40 

actor_gender 1354 2 40 

actor_name 1354 37988 40 

movie_is_comedy 1362 2 1 

movie_is_drama 1362 2 1 

movie_genre 1362 17 2 

first_movie_year 1360 10 5 

studio_in_USA 1360 2 5 

studio_name 1360 748 5 

first_year_directed 1360 7 1 

director_has_award_or_nominated 1360 2 1 

director_name 1360 1126 1 

 
Table 2. Summary statistics for some important attributes in this movie samples. 

 

Table 2 shows many detailed characteristics of this movie data set, e.g. the average length of 
actor_name field being 40 means that in average there are 40 actors for each movie. It can be 
observed that in this movie data set, most fields are not missing in records: the field covered by 
the fewest records is actor_HSX_rating, which appears in 1,035 records. It should be pointed 
out that many of these attributes have been utilized in experiments reported by Neville et al. 
(2003c), although not exactly the same set.   
 

                                                      
4 The Java versions of these relational learning models are included in the PROXIMITY project, downloadable at 
http://kdl.cs.umass.edu/proximity/.  
5 Hollywood Stock Exchange is a web-based, multiplayer game in which players use simulated money to buy and 
sell "shares" of actors, directors, upcoming films, and film-related options.  Check  http://en.wikipedia.org/wiki/-
Hollywood_Stock_Exchange  for more details. 



 RBC RPT RDN SRM 

1 0.801 0.688 0.719 0.734 

2 0.801 0.812 0.841 0.812 

3 0.79 0.806 0.806 0.799 

4 0.796 0.818 0.829 0.836 

avg 0.797 0.781 0.799 0.795 

stdev 0.005 0.062 0.055 0.043 

 
Table 3. Accuracy results of IMDb task. 

 

In experiments, this movie set (1,362 movies) is temporally split into five sets, one for each 
year from 1996 to 2000, and we carry out four experiments: test on the movies from one year 
with training data taken from all previous years. Similar to the experiments by Neville et al. 
(2003c), links to the future were removed from each testing sample; in contrast to their 
approach, links to the future were kept in each training sample for learning RBC, RPT and RDN. 
This is intended to reproduce the expected domain of application for these models. 
 
Table 3 shows the accuracy of different approaches for this learning task. On this binary label 
prediction task with one small scale semi-structured dataset which has only a few missing fields, 
SRM matched the state-of-the-art relational learning approaches.  
 
It is worth pointing out that in the data flattening step for SRM we do not include attributes of 
objects two links away from a given movie, which is different from the training data used for 
RBC, RPT and RDN.  However SRM can implicitly use those related movies’ information by 
knowing that they have similar director, actor, or studio field values. Therefore SRM can still 
achieve comparable performance with these powerful relational learning models. 

4.2 Relations and Difference 

There are many interesting relations between the SRM approach and the relational learning 
approach which can be found by looking at them closely. Similar to RBC, currently SRM can 
only deal with semi-structured data already flattened. Different from RBC, SRM follows a 
non-parametric approach for representing the probabilistic density function, which can employ 
a rich family of kernels in the generative function – equation (3) is only one choice for the 
generative function where the Dirac δ  kernel function has been utilized. Different from 
relational learning approaches, SRM does not capture dependencies across different records in 
the collection and assume each record is drawn i.i.d. On the other hand, SRM represents the fact 
that records similar in one respect will often be similar in others by using one hypothetical 
generative models described in section 3.2  and successfully uses it for learning. We should 
admit that, because SRM discards the relational information in the original data – similar to 
RBC approach – it lacks the interpretability of the selective models generated by RPT and 
RDN.  

5. SRMs for Discovering Multiple Missing Values in NSDL 

In order to explore SRM’s inference capability further, we return to our large scale semi-
structured database, the NSDL collection, and compare SRM’s performance on it with several 
other typical machine learning approaches. The goal here is to determine the values that should 
be in the audience and subject fields.  
 



First we confine ourselves to a subset of the NSDL collection described in Table 4, which has 
all five of the title, content, description, subject and audience fields, and that has exactly one of 
high school, middle school, undergraduate, graduate+research, or elementary school in the 
audience field.  
 

Audience Value Num of Samples 
High school 5210 

Middle school 1520 
Undergraduate 91 

Graduate or Research 69 
Elementary school 536 

 
Table 4. Statistics of NSDL subset used for classification task with five categories. 

 

This first classification task is: given the title, content and description of a record, predict the 
audience field value of the record from one the five given categories. In experiments, we use 
5-fold cross validation and compare SRM with kNN (k-nearest neighbors with 5k = ) and 
LibSVM (Chang & Lin, 2001), a publicly available implementation of support vector machine.  
(By building ( 1) / 2n n −  SVMs, LibSVM can do multiple class classification having n  

categories quite well.) Table 5 shows thee three approaches’ average recall rates for each 
category and overall average precisions for this classification task on the audience field from 
5-fold runs. Higher value means better. It can be observed that SRM outperformed kNN 
(especially for the middle school category where SRM achieved an average recall rate of 0.843 
while kNN achieves 0.641), but not decisively. The SVM learning approach solidly beat both 
of the other two, by a large degree and with statistical significance.  
 

  5-NN SVM SRM 

  avg stdev avg stdev avg stdev 

recall High school 0.874 0.010 0.988 0.004 0.862 0.006 

 Middle school 0.641 0.034 0.965 0.008 0.843 0.026 

 Undergraduate 0.518 0.153 0.870 0.087 0.606 0.184 

 Graduate or Research 0.580 0.197 0.649 0.180 0.449 0.078 

 Elementary school 0.524 0.061 0.873 0.030 0.588 0.055 

overall precision 0.792 0.010 0.970 0.003 0.831 0.011 
 

Table 5. Average Recalls and Precisions of SRM, 5-NN and SVM 
 

We highlight these results to demonstrate that in some cases SRM will not be the appropriate 
solution. It turns out that by the way that evaluation set was constructed, all five possible values 
had a large number of non-overlapped instances in the corpus: graduate or research had the 
fewest at 69 and high school had the most at 5,210. Furthermore we deleted any instance in the 
original NSDL collection which belongs to more than one of these five categories, i.e. this 
learning task has been simplified to a single-labeled classification problem. Therefore a 
state-of-the-art learning approach such as SVMs should do well in this single-labeled learning 
scenario with so much training data, and doing well on a few large classes will obscure poorer 
results on smaller classes.  
 
To confirm this hypothesis, we returned to the multi-labeled learning scenario on the subject 
field with 211 different values which appear most frequently in another subset of NSDL 



collection. This subset includes all the records that have all five of the title, content, description, 
subject and audience fields – overall there are 11,596 this type of records. We followed the 
ranking approaches for multi-labeled learning and ranked (or selected) the subject values 
according to the posteriors of a given instance belonging to each subject value. We still utilized 
LibSVM which contains a probabilistic SVM for this ranking task. Then we did 5-fold cross 
validation and calculated the per-value average error rates for the SVM and SRM approaches, 
as a function of the number of instances of the value there were. Errors are measured as the 
proportion of incorrect labels that are ranked higher than the one being measured. Figure 1 and 
Table 6 show, for example, that if a value occurs 20-30 times, the SVM error rate is 31% 
compared to only 22% for the SRM approach; on the other hand, with 160-200 instances, the 
error rates are 5% and 12%, respectively. A similar experiment with 42 audience values yielded 
the same trend though with fewer values the error crossover happened at 30. 
 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100 100-120 120-160 160-200 200-250 250-300 300-400 400-500 500-800 800-

1000

1000-

2000

SVM

SRM

 
Figure 1. Average error rates for the SRM and SVM approaches to selecting the subject field values, as 
a function of the number of instances of a subject label there are in the corpus.   
 

Num of instances 20-30 30-40 40-50 50-60 60-70 70-80 
SVM avg 31.37% 22.15% 12.57% 11.66% 9.49% 9.13% 
 stdev2.58% 2.23% 2.24% 2.16% 2.37% 3.33% 
SRM avg 22.19% 19.51% 11.91% 10.80% 11.19% 14.55% 
 stdev2.25% 2.71% 1.74% 1.78% 3.51% 1.67% 
Num of instances 80-90 90-100 100-120 120-160 160-200 200-250 
SVM avg 7.90% 6.65% 5.25% 5.40% 5.04% 3.46% 
 stdev4.75% 3.22% 0.87% 2.52% 1.54% 1.46% 
SRM avg 9.50% 12.04% 6.46% 10.72% 11.68% 5.96% 
 stdev1.06% 1.79% 0.86% 1.70% 1.35% 1.37% 
Num of instances 250-300 300-400 400-500 500-800 800-1000 1000-2000
SVM avg 3.15% 3.29% 1.94% 2.09% 1.37% 1.12% 
 stdev1.03% 0.93% 0.96% 0.86% 1.12% 0.38% 
SRM avg 8.37% 7.48% 4.70% 5.32% 2.60% 1.39% 
 stdev1.05% 1.50% 0.24% 0.21% 0.47% 0.06% 

 
Table 6. Averages and standard deviations of the error rates for the SRM and SVM approaches to 
selecting the subject field values. 

 
 
Furthermore, we present the statistics for the number of instances of different subject values in 
original NSDL collection in Table 7. It can be observed that more than 90% of subject values 
have less than 60 instances. This indicates that for discovering missing values in the NSDL 



collection for a free-text field like subject, where there are a great number of different values 
(37,385 in subject field) and a large portion of values only appear in a small number of 
instances, SRM is a much better choice than SVM. 
 

Bin 0-10 10-20 20-30 30-40 40-50 50-60 60-70 
Frequency 28724 2476 1110 658 476 355 264 

Cumulative% 76.83% 83.46% 86.43% 88.19% 89.46% 90.41% 91.11% 

Bin 70-80 80-90 90-100 100-120 120-160 160-200 200-250 
Frequency 210 176 187 268 348 270 203 

Cumulative% 91.68% 92.15% 92.65% 93.36% 94.29% 95.02% 95.56% 

Bin 250-300 300-400 400-500 500-800 800-1000 1000-2000 >2000 
Frequency 158 249 172 309 114 248 410 

Cumulative% 95.98% 96.65% 97.11% 97.94% 98.24% 98.90% 100.00% 
 

Table 7.  Statistics for the number of instances of different subject values. 
 

As a final test, we moved to an environment where the SVM training approach was 
prohibitively expensive in terms of time.  For each test record, we ask the system to select a 
subset of subject field values from the 37,385 possible values in the corpus.  That number of 
possible values is sufficiently large that we did not even consider implementing and training an 
SVM for each one; we just report results for the SRM approach.  We also ask the system to 
select one or more of the 119 values of the audience field. 
 
To evaluate this, we randomly selected 1,122 records (10% of our earlier set) that had all five 
fields.  For each record, we used the content, description, and title fields to predict values of the 
audience or subject fields (separately).  We used the remaining 655,870 records as training data, 
though it is important to note: 96.5% of the records were missing the audience field entirely and 
23% lacked a subject field; furthermore some features were missing in the training data, e.g. 
22% of the records were missing description field and 86% lacked a content field.  Each test 
record could have multiple values of the field (on average, records contain 12 subject values 
and four audience values).  The system's output was a ranked list of values for each field.  Table 
8 presents some concrete run results of predicting missing values by SRM in this experiment.  
 
We evaluated SRM’s performance using standard information retrieval measures based on 
where in the ranked list the correct values occur. Table 9 presents the evaluation results. An 
interesting measure is “P@5” showing that almost 2/3 of the audience values and just under 
half of the subject values listed in the top five items suggested were correct.  The “R-precision” 
value measures the proportion of correct suggestions in the top R listed, where R is the actual 
number of suggestions that would have ideally been found.  For example, if a record has 8 
subjects assigned, then on average the top 8 suggestions would have included 5-6 (70%) that 
were correct.  These are incredibly good results for a highly errorful and incomplete database of 
field values with very little training data. 



 
Examples Term Frequency True Terms ( )

subject
R v  Ordered term lists 

1 3 
2 
1 
1 
1 
1 
1 
1 

wave 
interference 
physics 
quantum 
tutorial 
particle 
slit 
probable 

   0.145 
   0.132 
   0.053 
   0.051 
   0.039 
   0.037 
   0.028 
   0.022 

wave 
physics 
probable 
interference 
quantum 
tutorial 
travel 
slit 

2 1 
1 
1 
1 
1 

astronomy 
historic 
myth 
legend 
constellate 

   0.348 
   0.175 
   0.174 
   0.173 
   0.006 

astronomy 
general 
historic 
constellate 
physics 

Subject 
 

3 1 
1 
1 
1 
1 
1 
1 

science 
theory 
precalculus 
calculus 
linear 
algebra 
number 

   0.182 
   0.137 
   0.137 
   0.0167 
   0.0164 
   0.0162 
   0.0131 

calculus 
variable 
single 
science 
multivariable 
geometry 
compute 

1 1 
1 

teach 
learn 

   0.518 
   0.283 
   0.002 

learn 
teach 
school 

2 1 
1 
 

teach 
researcher 
 

    0.238 
    0.235 
    0.104 

teach 
learn 
researcher 

Audience 

3 1 
1 
1 

undergraduate 
level 
professional 

    0.265 
    0.259 
    0.231 

level 
undergraduate 
professional 

 
Table 8.  Some examples of employing SRM for discovering missing subject and audience field values. 
For each given record, Column 3 shows the true field values of that record, Column 5 and Column 4 
shows top-n term lists returned by SRM (cut by the number of true field values for subject field and by 3 
for audience field) and their corresponding probabilities in relevance models, respectively.  
 

 Audience Subject 
AMAP 0.8636 0.7451 

P@5 0.6422 0.4617 

P@20 0.1847 0.1496 
R-precision 0.8259 0.7010 

 
Table 9. Evaluation of SRM for discovering missing values in the NSDL collection. 

 

6. Conclusions  

In this paper, we developed the Structured Relevance Model (SRM) for the problem of 
discovering multiple missing field values in the NSDL collection. This model is based on the 
idea that missing or corrupted values for one field can be inferred from values in other fields of 
the record.  SRM is built on one hypothetical generative model for generating semi-structured 



records, which follows the kernel-density approach and leverages training samples directly for 
representing probabilistic density function. 
 
We validated the SRM approach for inference firstly on a small scale, binary movie label 
prediction task with IMDb records, and then on a multiple missing values selection task with a 
large archive of the NSDL repository. Experiments on IMDb records show that SRM matched 
three state-of-the-art relational learning approaches on the movie label prediction tasks by 
achieving an average accuracy of 79.5%. Experiments on the NSDL collection show that 
compared with SVM, SRM is highly effective at discovering possible values for free-text fields 
even with quite modest amounts of training data. In one experiment with all NSDL records, 
SRM performed very well for the missing values discovery task where there are a huge number 
of instances and missing fields: SRM brought 5-6 correct missing subject values into the top 8 
and achieved an average precision of 74.5% for selecting the subject field values. 
 
The next step of our research is to adopt SRM for answering complex structured queries over a 
semi-structured collection with corrupt and missing field values by leveraging the discovered 
relevant missing values. For example, by seeing ‘elementary’ in the audience field of a user’s 
input query, SRM may be able to retrieve records having 'K-4', 'second grade', 'learner' or other 
related values in the audience field, which the user is plausibly interested in. Furthermore we 
will empirically test SRM’s performance on more IR tasks. 
 
Our results on the Internet movie database were much better than we anticipated and we are 
investigating that more carefully. We are interested in extending that work to require less 
supervision during the “flattening” process (when the relational structure is stripped). Can we 
predict attribute values by “flattening” to a certain distance on the graph without regard to the 
structure? 
 
In addition we have also begun explorations toward using inferred values to help a user browse 
a collection when starting from some structured information---e.g., given values for two fields, 
what values are probable for other fields. 
 
It is worth highlighting that SRM is based on relevance modeling (Lavrenko & Croft, 2003), a 
technique that has proven highly effective in a number of diverse applications in IR field. SRM 
suggests one promising way to introduce this IR technique for machine learning task, which 
can not only be used for typical multi-label classification problems, but also for the very 
difficult multi-label learning task where there are a huge number of different categories. 
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