
Sorting out Searching
A User-Interface Framework for Text Searches

Ben Shneiderman
Department of Computer Science and Human-Computer Interaction Laboratory,

University of Maryland, College Park
(ben@cs.umd.edu)

Donald Byrd and W. Bruce Croft
Center for Intelligent Information Retrieval, University of Massachusetts at Amherst

(dbyrd, croft@cs.umass.edu)

June 1998

Abstract: Current user interfaces for textual database searching leave much to be desired:
individually, they are often confusing, and as a group, they are seriously inconsistent. We
propose a four-phase framework for user-interface design. The framework provides common
structure and terminology for searching while preserving the distinct features of individual
collections and search mechanisms.

This paper appeared in CACM 41, 4 (April 1998), pp. 95–98. An earlier but more detailed version
appeared as Tech Report IR-107 in this series, and online in D-Lib Magazine:

http://www.dlib.org/dlib/january97/01contents.html

This material is based on work supported in part by the National Science Foundation, Library of
Congress, and Department of Commerce under cooperative agreement number EEC-9209623,by
NRaD Contract Number N66001-94-D-6054, by NASA contract NAG-528-95, and by NSF contract
IRI-96-15534.

Any opinions, findings, conclusions and/or recommendations expressed herein are those of the
authors and may not reflect those of the sponsors.

2

Introduction

The problem. We see an opportunity to improve dramatically the user experience for textual
database searching. The ideal user interface is comprehensible, predictable, and controllable,
but many of the current text-search interfaces—especially on the World Wide Web—are
unnecessarily complex and obscure key features. The result is confusion and frustration for
advanced users as well as beginners, for scientists as well as students (Somerson, 1996).

Improved user-interface design is part of the solution, but even then, as users move from one
search system to another, inconsistencies can cause mistaken assumptions and increase
failures to find relevant documents. For example, the search string “Hall effect” could
produce (among many other possibilities) a:

• exact-match search for “Hall effect”
• case-insensitive exact-match search for “hall effect”
• best-match search for “Hall” and “effect”
• Boolean search for “Hall” AND “effect”
• Boolean search for “Hall” OR “effect”

Few systems indicate clearly the interpretation they are using. Furthermore, systems often
use surprising query transformations, unpredictable stemming algorithms (see under
“Variants” below), and mysterious weightings for fields. Finally, in many systems the results
are displayed in a relevance ranking whose meaning is a mystery to many users (and
sometimes a proprietary secret).

Towards a Solution. We propose a four-phase framework for increasing clarity and user
control while reducing inconsistencies in text-search user interfaces. The automobile user
interface is something we now take for granted, but it took decades to reach the current level
of refinement and standardization (Oliver and Berkebile, 1968)—and remaining
inconsistencies like left/right variations from country to country still cause serious problems
for travelers. We believe that by cooperation in interface design we can spare text-search
users millions of conceptual fatalities.

The Four-Phase Framework for Search

The four-phase framework gives great freedom to designers of specific systems to offer a
variety of features in an orderly and consistent way. The phases are: formulation (what
happens before the user starts a search); action (starting the search); review of results (what
the user sees resulting from the search); and refinement (what happens after review of results
and before the user goes back to formulation with the same information need).

Users begin the search process by considering their information needs and clarifying their
search goals. Then users are ready to employ a computer-based system for the four phases:

3

1. Formulation: This is the most complex phase in that it involves multiple levels of
cognitive processing and decisions of several types. These decisions include the sources of
the search, i.e., where to search; which fields of documents to search; what text to search for;
and what variants of that text to accept. Some systems walk the user through these decisions,
but they cannot always be made in a predetermined order; nor do they exhaust the query-
formulation possibilities.

a. Sources: The first step in performing a search is normally to decide where to search.
This is often a single physical database, but increasingly it is multiple and distributed
databases, accessed across a network.

Even if technically and economically feasible, searching all libraries or all collections in a
library is often undesirable. When users know where the relevant material is, they
generally prefer to limit their searches to that library, collection, or range of documents.

b. Fields: Each document in a collection may have multiple fields (sometimes called
attributes, components, or tags). Users may wish to limit their search to specific fields, or
to give a higher rank to documents whose titles contains search terms: see for example
the elaborate weighting algorithm used by THOMAS (Croft, Cook, and Wilder, 1995).

Searches may also be restricted by structured fields (year of publication, language,
publisher, etc.).

c. What to search for: There are various ways to express what to search for in full text;
the most important are probably (1) unstructured text, (2) text with embedded operators,
and (3) text with operators specified separately. Pure unstructured-text interfaces are
unusual: most of the popular Web search services and other systems such as INQUERY
accept either unstructured text or text with embedded operators. An example of the latter
is the widely-used syntax of “"city guide" +Boston” (the words “city” and “guide” must
appear nearby, and the word “Boston” is required). Finally, some systems—for example,
HotBot and Open Text—offer text with separate operators. All three ways can be
effective, but only if they are used properly.

In many situations, searches on meaningful phrases are much more effective than
searches on the words of the phrase. For example, for someone searching for information
on air pollution, the phrase “air pollution” is likely to find many fewer irrelevant
documents (higher precision) than the pair of words “air” and “pollution”—though it will
tend to overlook relevant documents that refer to “air quality” or “atmospheric pollution”
(lower recall). It should be easy for users to specify that a series of words should be
considered a phrase.

The unstructured-text approach, often called “natural language”, can be very misleading.
For example, many systems treat “and” and “not” as stop words. In such a system, the
query “bees and not honey” means the same thing as just “bees honey”: compared to the
query “bees”, it is more likely to retrieve information about honey, not less. The
traditional solution to such ambiguities is feedback to users on how the system interpreted
their queries, but it is difficult to clarify the issues for novices.

4

In theory, the text-with-embedded-operators approach can be completely unambiguous,
and it can handle phrases and fields. However, it is well-known that many users have
trouble with this approach. One reason is lack of standardization—the syntax and
meaning of embedded operators vary considerably from one system to another, so it is
easy to get confused. Another problem is the danger of inadvertent activation: innocently
using text that the user thinks of as unstructured, but which contains characters or strings
that will be interpreted as embedded operators. For example, in AltaVista advanced
search, “*” indicates a “wildcard” (matching anything); in Excite! and HotBot, it has no
special meaning. These two problems are related in that lack of standardization can
confuse users and lead to inadvertent activation. To experience these problems and
others, just use several Web search services to look for information on the electronic-
commerce company E*Trade.

Another way to specify phrases unambiguously is text with operators specified
separately: the program considers the contents of every text-entry box as a phrase, and
clearly says so on the screen. Then multiple entry boxes must be provided to allow for
multiple phrases. Of course, a text-entry box must also accept a single word. If choices
of Boolean operations, proximity restrictions or other strategies for combining the boxes
are available, then users should be able to express them; regardless of whether any
choices are available, users must be told what combining technique is being used.
Ideally, users and/or service providers should have control over stop lists (common
words, single letters, etc.); at a minimum, users should be gently warned when they try to
search for a stopword.

The basic issue is: Does the program interpret the query the way the user intended it,
and—even if it does—does the user know that the program interprets it that way?

d. Variants: Users are often unsure of the exact value of the field they want; indeed,
there may not be any single value that is appropriate. As a result, users may want
variants to be accepted. In structured fields of text databases, as in traditional databases,
this may include a range on a numeric or date field. In unstructured text fields, interfaces
may allow user control over:

• capitalization (case sensitivity)
• stemmed versions: searching for “teacher” finds words like “teach” and “teaching”
• partial matches: searching for “biology” retrieves “sociobiology” and “astrobiology”
• synonyms: searching for “cancer” finds “malignant tumor”
• abbreviations/acronyms: searching for “Digital Equipment Corporation” finds

“DEC”
• stop words: common words such as “the” or “to” are excluded.

Other possibilities include phonetic variants, e.g., from N-grams or soundex-like
methods, and broader or narrower terms, presumably from a thesaurus.

In all cases, the user interface should make it clear how variants are handled.

5

2. Action: Searches may be started explicitly or implicitly. The typical process in current
systems is for users to click on a Search button to initiate the search and then wait for the
results. But an appealing alternative is “dynamic queries”: there is no Search button but the
result set is continuously displayed and updated as the search is changed. Research
prototypes such as the FilmFinder and HomeFinder (Shneiderman, 1994) and commercial
systems such as Folio Views apply this technique. It requires adequate screen space and
rapid processing, but the advantages are great: users can broaden, narrow, or refocus their
search several times in as many seconds.

In situations where it is not practical to re-run the query and update results continuously—for
example, when the database and the user are connected by a network with limited
bandwidth—the “query preview” approach is worth considering (Doan et al, 1996). In this
approach, changes to the query simply update a display (perhaps just an estimate) of the
number of hits. The query is not actually run until the users request the full results,
presumably when they are satisfied that the number of hits is neither zero nor so high as to be
cumbersome.

3. Review of results: Many information retrieval interfaces let users specify result set size
(for example, a maximum of 100 documents), contents (which fields are displayed),
sequencing of documents (alphabetically, chronologically, relevance ranked,...), and,
occasionally, clustering (by field value, topics,...). All of these capabilities can be valuable,
but they all simply try to make a list of documents easier to handle. A query against a large
database, even a query that is well focused, can produce so many potentially-useful hits as to
be overwhelming—say, several hundred or more. Fortunately, much more can be done to
display results in a useful form.

Recent work in information retrieval interfaces, capitalizing on general information-
visualization research, has dramatically expanded the palette of display techniques. For
example, LyberWorld (Hemmje et al, 1994) displays document icons inside a circle, with
terms around the circumference “pulling” the documents towards themselves; the terms can
be moved and the strengths of their pulls varied. Rao et al (1995) describes such techniques
as tilebars, perspective walls, cone trees, and document lenses.

Search interfaces should also provide helpful messages to support progressive refinement.
For example, if a stop word or misspelling is eliminated from a search input window, or
stemmed terms, partial matches, or variant capitalizations are included, users should be made
aware of these changes to their query.

4. Refinement: One of the most important ways in which current information retrieval
technology supports progressive refinement is relevance feedback. An empirical study
confirms that users produce superior searches and are more satisfied if they can see and
manipulate the words relevance feedback adds to their query (Koenemann and Belkin, 1996).
Another aspect of refinement is supporting successive queries. As searches are made, the
system should keep track in a history buffer to allow review, alteration, and resubmission of
earlier searches.

6

Conclusions

In summary, the four-phase framework focuses on:

1. Formulation:

• Sources: specify which libraries and/or collections to search and the search range
within them.

• Fields: specify which text fields are to be searched. Searches may also be restricted
by structured fields.

• What to search for: text selected or typed by user, perhaps as one or more phrases.

• Variants: control over features like case sensitivity, word stemming, partial
matches, phonetic variants, stop words, synonyms, abbreviations, and broader or
narrower terms. In all cases, the user interface should make it clear which variants, if
any, are allowed.

2. Action: how does a search get initiated—explicitly (e.g., with a button), or implicitly (e.g.,
when some aspect of the query is changed).

3. Review of results: conventional options are, for example, to specify result set size, layout,
sequencing (alphabetically, chronologically, relevance ranked, etc.), and contents (which
parts and fields are displayed). Less conventional interfaces might employ a wide variety of
techniques, including many based on information-visualization research.

4. Refinement: provide feedback on search results with informative messages and clustering
of results. For example, enable progressive querying, especially with relevance feedback;
history keeping; and extraction of results to files, perhaps for use in e-mail.

7

Fig. 1

The sample Web interface shown in Fig. 1 requires nothing more advanced than HTML
tables and forms, but in some cases, applying the framework successfully over the Web may
require more powerful tools such as Java. On the other hand, while we have thought mostly
about text situations, we suspect our framework will prove appropriate for multimedia and
some traditional database management applications.

8

Finding common ground for search interfaces is difficult, but not finding it would be tragic.
While early adopters of technology are willing to push ahead to overcome difficulties, the
middle and late adopters will not be so tolerant. In particular, the future of the World Wide
Web as a universally acceptable tool may depend on our ability to reduce frustration and
confusion for the masses of users, while enabling them to reliably find what they need. Some
progress has been made; much more remains to do.

References

Croft, W. Bruce, Cook, Robert, and Wilder, Dean (1995). Providing government information
on the Internet: Experiences with THOMAS. Proc. Digital Libraries 95 Conference, ACM,
New York. Also available at http://csdl.tamu.edu/DL95/papers/croft/croft.html.

Doan, Khoa, Plaisant, Catherine, and Shneiderman, Ben (1996). Query Previews in
Networked Information Systems. Proc. Third Forum on Research and Technology Advances
in Digital Libraries, ADL ’96 , IEEE CS Press, 120-129. Also available as TR 95-16 at
http://www.cs.umd.edu/projects/hcil/Research/tech-report-list.html#1996.

Hemmje, M., Kunkel, C. and Willett, A. (1994). LyberWorld - A Visualization User
Interface Supporting Fulltext Retrieval. Croft, W.B. and van Rijsbergen, C.J. (eds), Proc.
17th Annual Int. Conference on Research and Development in Information Retrieval (SIGIR
94) , Springer Verlag, 249-257.

Koenemann, Juergen and Belkin, Nicholas (1996). A case for interaction: A study of
interactive information retrieval behavior and effectiveness. Proc. CHI 96 Human Factors in
Computing Systems, ACM Press, New York, NY, pp. 205-212.

Oliver, S.H., and Berkebile, D.H. (1968). The Smithsonian Collection of Automobiles and
Motorcycles. Smithsonian Institution Press, Washington.

Rao, Ramana, Pedersen, Jan, Hearst, Marti, Mackinlay, Jock, Card, Stuart, Masinter, Larry,
Halvorsen, Per-Kristian, and Robertson, George (1995). Rich Interaction in the Digital
Library. CACM 38, 4, pp. 29-39.

Shneiderman, Ben (1994). Dynamic queries for visual information seeking. IEEE Software
11, 6, pp. 70-77.

Somerson, Paul (1996). Web Coma. PC Computing (August 1996), 57.

