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ABSTRACT 

In this paper, we introduce the notion of ranking robustness, 

which refers to a property of a ranked list of documents that 

indicates how stable the ranking is in the presence of uncertainty 

in the ranked documents. We propose a statistical measure called 

the robustness score to quantify this notion. We demonstrate that 

the robustness score significantly and consistently correlates with 

query performance in a variety of TREC test collections including 

the GOV2 collection. We compare the robustness score with the 

clarity score method which is the state-of-the-art technique for 

query performance prediction. Our experimental results show that 

the robustness score performs better than or at least as good as the 

clarity score. We find that the clarity score is barely correlated 

with query performance on the GOV2 collection while the 

correlation between the robustness score and query performance 

remains significant. We also notice that a combination of the two 

usually results in more prediction power.  

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval –Query formulation 

General Terms 

Algorithms, Experimentation, Theory 

Keywords 

Ranking robustness, query performance prediction 

1. INTRODUCTION 
In a typical retrieval system, a user forms a query according to his 

information need and a number of documents (usually in the form 

of a ranked list) are presented to the user by the retrieval system 

in response to the query. Query performance prediction refers to 

the process of estimating the quality of the output of a retrieval 

system in response to a user’s query without any relevance 

information. Compared to the long history of developing 

sophisticated retrieval models for improving performance in IR, 

research on predicting query performance is still in its early stage. 

However, researchers have started to realize the importance of 

this problem and a number of new methods have been proposed 

for prediction recently [1]. The ability to predict query 

performance has the potential of a fundamental impact both on 

the user and the retrieval system.  

From the perspective of a user, performance prediction provides 

valuable feedback that can be used to direct a search. For 

example, when the retrieved documents are estimated to be of low 

quality, the user may rephrase his query or be more willing to 

cooperate with the system to improve retrieval effectiveness, such 

as providing relevance feedback. With the help of prediction, the 

user can quickly form a good query to acquire satisfying results 

for his information need. Otherwise, the user must spend time 

reading the returned documents to rewrite the query when the 

results for the initial query are not satisfactory. 

On the other hand, from the perspective of a retrieval system, 

performance prediction is the first step at solving the crucial 

problem of retrieval consistency. Current retrieval systems are 

evaluated by the average effectiveness on a fixed set of queries. 

Although failures on a small number of queries may not have a 

significant effect on average performance, users who are 

interested in these queries are unlikely to be tolerant of this kind 

of deficiency. A reliable system that always produces acceptable 

retrieval performance is more preferred by users than another 

system that works extremely well on a number of queries but 

occasionally makes terrible mistakes. To improve the consistency 

of retrieval systems, we first need to distinguish poorly-

performing queries by performance prediction techniques. The 

important role of performance prediction in improving retrieval 

consistency has been recognized by the IR community. For 

example, in 2003, the Robust Track [2] was proposed by TREC 

which addresses the problem of enhancing the retrieval of poorly-

performing queries. As the first footprint in finding a solution to 

this problem, the Robust Track requires systems to rank the 

queries by predicted effectiveness to investigate the capabilities of 

systems to detect hard queries [1].  

In this paper, we develop a method for predicting query 

performance by computing ranking robustness which refers to a 

property of a ranked list of documents that indicates how stable 

the ranking is in the presence of uncertainty in the ranked 

documents. The idea of predicting retrieval performance by 

measuring ranking robustness is inspired by a general observation 

in noisy data retrieval that the degree of ranking robustness 

against noise is positively correlated with retrieval performance. 

Regular documents also contain “noise” if we interpret noise as 

uncertainty. We propose a statistical measure called the 

robustness score to quantify the notion of ranking robustness. We 

demonstrate that the robustness score significantly and 

consistently correlates with query performance in a variety of 

TREC test collections including the GOV2 collection. We 

compare the robustness score with the clarity score method which 

is the state-of-the-art technique for query performance prediction. 
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Our experimental results show that the robustness score performs 

better than or at least as good as the clarity score. 

The rest of this paper is organized as follows. Section 2 describes 

related work. In section 3, we propose a statistical measure called 

the robustness score to quantify the notion of ranking robustness. 

In section 4, we present our evaluations that show the 

effectiveness of our approach. In section 5, we summarize the 

main conclusions of this paper.  

2. RELATED WORK 

2.1 Query Performance Prediction 
Prediction of query performance has long been of interest in 

information retrieval and has been investigated under different 

names such as query-difficulty or query-ambiguity. Query 

prediction is a challenging task as shown in [1] and [3]. Some of 

the first success at addressing this task was demonstrated by the 

clarity score method proposed in [4]. Since then, the clarity 

measure has been the state-of-the-art technique. At the time of 

writing this paper, we know of no published work that has 

claimed to achieve the prediction accuracy comparable to or 

better than the clarity score across a variety of test collections.     

Recently, a number of prediction methods have been tried since 

the introduction of the TREC Robust Track in 2003. In the Robust 

Track systems are required to rank the queries by predicted 

performance, with the goal of utilizing the prediction capability to 

do query-specific processing. Generally speaking, these methods 

extract features of retrieval and compute the performance score 

for each query by using the features to estimate the query 

performance. One way to measure the quality of the performance 

prediction methods is to compare the rankings of queries based on 

their actual precision (such as MAP) with the rankings of the 

same queries ranked by their performance scores (that is, 

predicted precision). Based on whether training data are needed 

when computing the performance scores, these methods can be 

classified into two groups: one that does not need training data 

and one that does. Our approach that will be introduced in Section 

3 is in the first group.  

Category I: Does Not Need Training Data  

In this category, no training data are required when predicting 

query performance. Our method that will be introduced in section 

3 belongs to this category. 

Some researchers have used IDF-related (inverse document 

frequency) features as predictors. For example, Tomlinson et al. 

[5] adopted the weighted average IDF of the query terms for 

predicting. He and Ounis [6] proposed a predictor based on the 

standard deviation of the IDF of the query terms. Plachouras [7] 

represented the quality of a query term by Kwok’s inverse 

collection term frequency. The above IDF-based predictors 

showed some moderate correlation with query performance. 

These predictors are easy to compute but they do not take the 

retrieval algorithms into account and thus are unlikely to predict 

query performance well. 

Inspired by the success of the clarity score, some researcher have 

proposed methods that are related to the ideas in the clarity score 

technique. Amati [8] proposed to use the KL-divergence between 

a query term’s frequency in the top retrieved documents and the 

frequency in the whole collection, which is very similar to the 

definition of the clarity score. He and Ounis [6] proposed a 

simplified version of the clarity score where the query model is 

estimated by the term frequency in the query. Motivated by the 

observation that the clarity score indicates the specificity of a 

query, they [6] also proposed the notion of the query scope, which 

is quantified as the percentage of documents that contain at least 

one query term in the collection. Diaz and Jones [9] extended 

clarity scores to include time features. They showed that using 

these time features together with clarity scores improves 

prediction.     

Kwok et al. [10] suggests predicting query performance by 

retrieved document similarity. The basic idea is that when 

relevant documents occupy the top ranking positions, the 

similarity between top retrieved documents should be high, based 

on the assumption that relevant documents are similar to each 

other. While this idea is interesting, preliminary results are not 

very promising.  

Bernstein et al. [11] estimate the prior probability of each 

document that will be retrieved by the retrieval system. For a 

given query, they compare the ranking of documents based on the 

prior probabilities to the ranking of documents returned from the 

retrieval system. They hypothesize that if the two ranking are 

similar, the query will be difficult since the query does not have 

strong discriminating power. Their results show some limited 

indication of query performance.     

Category II: Needs Training Data  

Elad Yom-Tov et al. [12] proposed a histogram-based predictor 

and a decision tree based predictor. The features used in their 

models were the document frequency of query terms and the 

overlap of top retrieval results between using the full query and 

the individual query terms. Their idea was that well-performing 

queries tend to agree on most of the retrieved documents. They 

reported promising prediction results and showed that their 

methods were more precise than those used in [13][7][5]. 

Kwok et al. [13] built a query predictor using support vector 

regression. For features, they chose the best three terms in each 

query and used their log document frequency and their 

corresponding frequencies in the query. They also included the 

number of top retrieved documents that contain some or all query 

terms as a feature. They observed a small correlation between 

predicted and actual query performance. 

 Using visual features, such as titles and snippets, from a 

surrogate document representation of retrieved documents, Jensen 

et al. [14] trained a regression model with manually labeled 

queries to predict precision at the top 10 documents (P@10) in the 

Web search. They reported moderate correlation with P@10.      

We point out that there kinds of predictors may highly depend on 

the amount and characteristics of available training data if the 

prediction methods do not generalize well and have to be 

retrained often.    

2.2 Information Retrieval on Noisy Data 
With regard to text document collections in information retrieval, 

it is often convenient to assume that the contents of the collections 

are clean and free of errors. With the advent of large collections 

of multimedia documents (such as audio or image document), 

techniques such as OCR (optical character recognition) or ASR 

(automatic speech recognition) have been widely used to extract 

text from multimedia archives. In the following description, the 



text output of a recognition process applied to multimedia 

documents is noisy data or corrupted data since the recognition 

process is error prone and brings significant levels of noise to the 

data. The recognition process that produces corrupted data is data 

corruption.  

One of the core problems in the field of information retrieval on 

corrupted data is to explore the impact of data corruption on 

retrieval effectiveness in order to design a ranking function that is 

robust to unexpected errors in corrupted data. Here a robust 

retrieval model means that some changes in document or 

collection statistics caused by data corruption do not alter the 

retrieval results much compared to retrieval on perfect documents 

(that is, the results of a recognition process with 100% accuracy). 

A general observation about experiments on investigating the 

effects of data corruption is that as retrieval effectiveness 

improves, the ranking function becomes more robust against data 

corruption. For example, Lopresti and Zhou [15] explored the 

effectiveness of three retrieval functions on simulated OCR noisy 

data. They found that the ranking of the three functions with 

respect to retrieval effectiveness is the same as their ranking with 

respect to their ability to deal with simulated noise. Another 

example is that Singhal, Salton and Buckley [16] proposed a new 

robust length normalization method to alleviate the problem that 

the regular cosine normalization is sensitive to OCR errors. 

Although the original motivation for this technique was to deal 

with OCR data corruption, surprisingly they found that the new 

normalization scheme also brought significant improvements on 

correct text collections in comparison to the original cosine 

normalization. Moreover, Mittendorf [17] studied data corruption 

effects on retrieval and presented a theorem on ranking robustness 

that partially explained the phenomenon that retrieval 

performance on corrupted data is often correlated with the degree 

of resilience against noise.  

The above work reveals the interesting relationship between 

ranking robustness and retrieval performance. Although this work 

was done in the context of retrieval on noisy data, clean 

documents in regular retrieval also contain “noise” if we interpret 

noise as uncertainty. In the remaining of this paper, we will 

propose a framework to quantify ranking robustness and show its 

correlation with query performance.  

3. MEASURE RANKING ROBUSTNESS 
The notion of ranking robustness originates in the field of noisy 

data retrieval, where retrieval is performed on the output of a 

recognition process that exacts text from multimedia archives. 

Ranking robustness in noisy data retrieval refers to a property of a 

ranked list of documents that indicates how stable the ranking is 

in the presence of noise brought by the recognition process. Note 

that clean documents also contain “noise” if we generalize the 

notion of noise from recognition errors to uncertainty in text 

documents. For example, the meaning of a document may remain 

the same even after adding or deleting some words. Synonymy 

and homonymy are another two popular examples that can bring 

uncertainty to clean text documents. Therefore, we can extend the 

notion of ranking robustness to regular ad hoc document retrieval. 

In essence, ranking robustness reflects the ability of a retrieval 

system to handle uncertainty.  

The idea of predicting retrieval performance by measuring 

ranking robustness is inspired by a general observation in noisy 

data retrieval that the degree of ranking robustness against noise 

is positively correlated with retrieval performance. We 

hypothesize that when it comes to regular retrieval, the correlation 

between robustness and performance still holds. Our hypothesis 

will be thoroughly examined in the next section.      

Next we describe our way of measuring ranking robustness in 

regular retrieval. We begin by considering how to calculate 

ranking robustness in noisy data retrieval. If we can acquire a 

clean version of the corrupted data, one straightforward way is to 

compare a ranked document list from the corrupted collection to 

the corresponding ranked list from the perfect collection using the 

same query and ranking function. With regard to regular 

document retrieval, usually documents are assumed to be free of 

corruption. To simulate data corruption, we assume that there 

exists a noisy channel which is analogous to the recognition 

process in noisy data retrieval. Documents are corrupted after 

going thought the channel. One way to implement the noisy 

channel is to design a document model for each document 

(Document models are distributions over words or other linguistic 

units). One corrupted version of the original document is one 

random sample from the corresponding document model. 

 

Specifically, suppose we have query Q, ranking function G and 

collection C.  We generate corrupted collection C’ by sampling 

from the document models of the documents in C. Then we 

perform retrieval on both C and C’ and two ranked list L and L’ 

are returned respectively. Finally we compute the similarity 

between the two rankings. Note that L is a fixed ranked list while 

L’ is a random variable. We call the expected similarity between 

L and L’ the robustness score and use it to measure ranking 

robustness. This process is illustrated in Figure 1.  

Let us formally define the robustness score. Consider query Q and 

a document collection of M documents C=(D1,D2,…DM). Let V 

denote the size of vocabulary, both query Q and the documents 

are represented as vectors of indexed term counts, that is, 

Q=(q1,q2,…qV)∈NV 

Dk=(Dk,1,Dk,2,…Dk,V) ∈NV 

where Dk,i is the number of times that term i appears in document 

Dk and qj is the number of times that term j appears in query Q. N 

denotes nonnegative integer and NV denotes a V-dimension vector 

space of nonnegative integer. Under our representation, collection 

Document 

Models 
Collection C Corrupted 

Collection C’

Ranking Function, Query 

Ranked List L Ranked List L’
Compare 

Figure 1: Robustness Score Calculation 



C is a M×V matrix with nonnegative integer entries, that is, 

C∈S(M×V), where S(M×V) denotes the set of a M×V  matrix 

with nonnegative integer entries .  The rows of matrix C can be 

viewed as a set of documents represented by V-dimension vectors.    

We introduce a few definitions before we show the computation 

of the robustness score.  

Definition 1: Retrieval Function G(D,Q)  

retrieval function G(D,Q) maps query Q and document D into a 

real number, that is , G(D,Q)∈R,D∈NV,Q∈  NV 

Definition 2: Ranked List L(Q,G,C)  

Let SM denote the set of permutation of {1,2..M}. Ranked list 

L(Q,G,C)∈  SM  is a permutation of the documents in collection  

C that describes the ordering of documents by decreasing G(D,Q) 

where D∈C 

Definition 3: Document Model Xk  and Probability Mass Function 

(pmf) ( )
kXf x  

We assume that document Dk, k∈ [1,M], corresponds to 

document model Xk which is a V-dimension multivariate 

distribution and can be represented by a random vector 

,1 ,2 , ,( , ,... ,.. ) V

k k k k i k VX X X X X N= ∈ , where random variable Xk,i  

denotes the number of times term i occurs. The joint pmf of  Xk is 

the function defined by 

1 ,1 1 ,( ) ( ,..., ) Pr( ,..., )
k kX X V k k V Vf x f x x X x X x= = = =   

where 
1( ,..., ) V

Vx x x N= ∈ . 

Definition 4: Ranking Similarity SimRank(L1,L2)  

Given two ranked list L1(Q,G,C1) and L2(Q,G,C2), function 

SimRank(L1,L2) returns a real number that measures the similarity 

between the two ranked lists.(we assume that the documents in C1 

have one-to-one correspondence to the documents in C1). 

Moreover, SimRank(L1,L2)  should be bounded. 

Definition 5: Random Collection  X 

Given document model X1,…XM, where Xk (k∈ [1,M]) is a V-

dimension random vector, we define random collection 

X=(X1,X2,…XM) ,that is, X is a M×V  matrix whose entries consist 

of random nonnegative integers from some distributions. The pmf 

of X is the function defined by 

1 1 1( ) ( ,..., ) Pr( ,..., )X X M M Mf T f t t X t X t= = = = , where Xk denotes 

the k-th row of  X and tk∈  NV, k∈ [1,M].  

With the above definitions, we give the definition of the 

robustness score.  

Given query Q∈NV, retrieval function G, collection 

C=(D1,D2,…DM)∈S(M×V) and random collection 

X=(X1,X2,…XM), the robustness score is defined as the expected 

value of random variable  SimRank(L(Q,G,C),L(Q,G,X)): 

( )

( , , , ) { ( ( , , ), ( , , ))}

( ( , , ), ( , , )) ( ) (1)X

T S M V

Robustness Score Q G C X E SimRank L Q G C L Q G X

SimRank L Q G C L Q G T f T
∈ ×

=

= ∑
 

To make Equation 1 feasible to calculate, we further make the 

following five assumptions: 

(1) We assume independence between any two document models 

Xi  and  Xj, that is, 

1 2

1 1

( ) ( , ,... ) Pr( ) ( ) (2)
k

M M

X X M k k X k

k k

f T f t t t X t f t
= =

= = = =∏ ∏  

(2) Instead of the whole collection, only the top J retrieved 

documents in L(Q,G,C) and the corresponding J documents in 

L(Q,G,X) are used to compute the similarity between the two 

ranked lists. For the purpose of rank comparison, the 

corresponding J documents in L(Q,G,X) will shift up in rank and 

form a new ranked list of length J. 

(3) The Spearman rank correlation coefficient [18] is adopted to 

compute the value of function SimRank(L1,L2) in Equation 1. The 

coefficient ranges from -1 to 1. A value close to 1 means a perfect 

positive correlation between the two rankings and a value close to 

-1 means a perfect negative correlation. If the two rankings have 

almost no correlation, the correlation coefficient will be close to 

zero. 

(4) For each document model, we assume independence between 

any terms. We also assume the term frequencies in the sampled 

document follow Poisson distributions with the means equal to 

the corresponding term frequencies in the original document. 

Modeling term frequencies by Poisson distributions has been 

widely adopted by other researchers [19] [20]. Furthermore, many 

retrieval models, such as the query likelihood model, only take 

query terms into account when ranking documents. In this case, 

we can simplify Equation 2 by assuming that the frequencies of 

non-query terms are constant in the sampled document. Formally 

speaking, given document Dk=(Dk,1,Dk,2,…Dk,V) and query 

Q=(q1,q2,…qV), probability mass function
kXf of document model 

Xk=(Xk,1,Xk,2,…Xk,V) is estimated as follows: 

,1 2

1

( , ,... ) ( ) (3)
k k j

V

X V X j

j

f x x x f x
=

=∏  

 where 
,

( )
k jXf x  is given by : 
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x
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k j
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x
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For better understanding, we give a toy example to show how to 

generate a simulated document given the original document based 

on the above assumptions.  

Given vocabulary V={a,b,c}, query Q={a} and document 

D1={a,a,b,b,b} , Q and D1 are represented by 3-dimension vector 

[1,0,0] and [2,3,0] respectively. Let N(D1) denotes a simulated 

document generated from X1 ,that is, the document mode of D1 . 

Since term c does not occur in D1 , it will  not occur in N(D1).  

Since term b is a non-query term and it occurs three times in D1, it 

will occur exactly three times in N(D1). The occurrence frequency 

of term a in N(D1) is a random number determined by Poisson 

distribution P(λ) with λ=2 because term a occurs twice in D1. For 

example, {a,a,a,b,b,b} and {a,b,b,b} are two possibilities of 

N(D1).  



(5)  The expectation in Equation 1 is very hard to evaluate 

directly. Instead, we independently draw K samples 

T(1),T(2),..T(K) from fX (T) to approximate the expectation, that is, 

Equation 1 is estimated as:    

1

( , , , )

1
( ( , , ), ( , , ( ))) (4)

K

i

Robustness Score Q G C X

SimRank L Q G C L Q G T i
K =

≅ ∑
 

where T(i) is a sample independently drawn from fX(T) which is 

determined by Equation 2 and 3.  

The error of this estimation is proportional to the reciprocal of the 

square root of K [21]. According to our experiments, we find that 

a relatively small value of K is good and stable enough for query 

performance prediction. 

In summary, evaluating robustness takes the following steps. 

First, we perform retrieval with query Q and retrieval function G. 

Then we generate J simulated documents using the document 

models of the top J documents retrieved and rank the simulated 

documents with the same query and retrieval function. The 

similarity between the two ranked lists is computed using the 

Spearman rank correlation coefficient. We repeat this K times and 

the average of the Spearman correlation coefficient is the 

robustness score.   

We briefly explain why the robustness score defined above gives 

us useful information on retrieval performance. A low robustness 

score means the ranking function provides a very different 

ranking in the presence of simulated noise compared to the 

perfect ranking(The ranking on the corresponding clean 

documents without any simulated noise). We assume that the 

perfect ranking is optimal, that is, performance of any ranking in 

the presence of simulated noise can not exceed that of the ranking 

without simulated noise. Under this assumption, a large deviation 

between the noisy ranking and the perfect ranking indicates that 

the noisy ranking is ineffective. If the retrieval performance on 

the documents with simulated noise is low, we have reasons to 

believe that the performance on the actual collection may also be 

low.  

4. EVALUATION 
In this section, we present the results of predicting query 

performance by the robustness score. We adopt the clarity method 

as our baseline. Query performance is measured by average 

precision.  

 First, we study the correlation with average precision. Our results 

show that robustness scores have statistically significant 

correlation with average precision across a variety of TREC 

collections. We note that the clarity score is barely correlated with 

query performance on the GOV2 collection while the correlation 

between the robustness score and query performance remains 

significant. We also observe that a combination of the two usually 

performs better than either one when used in isolation.  

Second, we perform a linear regression analysis to evaluate the 

ability to directly predict the value of average precision. This 

analysis reveals that the robustness score predicts the value of 

average precision better than the clarity score. Again, we observe 

further improvements with a combination of the two. 

4.1 Experimental setup 
Our experiments use a variety of TREC collections and the web 

collection GOV2. All queries used in our experiments are titles of 

TREC topics. Table 1 gives the summary of these test collections.  

 

Table 1  Summary of test collections 

TREC Collection Topic 

Number 

Number of 

Document 

1+2+3 Disk 1+2+3 51-150 1,078,166 

4 Disk 2+3 201-250 567,529 

5 Disk 2+4 251-300 524,929 

Robust 2004 Disk 4+5 

minus CR 

301-450;  

601-7001 

528,155 

Terabyte 2004 GOV2 701-750 25,205,197 

Terabyte 2005 GOV2 751-800 25,205,197 

 

With regard to the calculation of the robustness score, we use the 

query likelihood model [22] with Dirichlet smoothing as the 

ranking function (Dirichlet priorμ is set to 1000). We set 

parameter K in Equation 4 to 100 and choose top 50 documents to 

compute the rank similarity in Equation 4. We tried different 

values of K ranging from 10 to 500000 and found that the results 

change very little starting from 100. This means we do not have to 

require a large number of samples to compute robustness scores.   

For computing the clarity score, we use the equations defined in 

[4] .The document model is estimated by using Dirichlet 

smoothing with Dirichlet priorμ =1000. Relevance models are 

mixed from Jelinek-Mercer smoothed document models 

withλ =0.6.     

To obtain average precision, all document retrieval is done by 

using the query-likelihood model  and the results are evaluated by 

the trec_eval program. Again, Dirichlet smoothing with Dirichlet 

priorμ =1000 is used for smoothing.  

4.2 Correlation with Average Precision 
We measure the correlation with average precision by both the 

Kendall’s rank correlation test [18] and the Pearson’s correlation 

test [23]. Kendall’s rank correlation is a non-parametric test since 

it does not assume any distributions of both variables. In our 

experiments, Kendall’s rank correlation is used to compare the 

ranking of queries by average precision to the ranking by the 

clarity scores or the robustness scores of these queries. Pearson's 

correlation reflects the degree of linear relationship between the 

two variables2.The values of both kinds of correlation range 

between -1.0 and 1.0 where -1.0 means perfect negative 

correlation and 1.0 means perfect positive correlation. 

 

                                                                 

1 Topic 672 is removed because of no relevant documents.  

2 Here the two variables refer to the actual query performance 

(measured by average precision) and the predictor. 



Table 2 Pearson’s correlation coefficient for correlation with 

average precision, for robustness score, clarity score and a 

linear combination of the two features. Bold cases mean the 

results are statistically significant at the 0.05 level. 

TREC Robustness 

Score 

Clarity   

Score 

Robustness 

+Clarity 

TREC123 0.434 0.335 0.469 

TREC4 0.613 0.430 0.582 

TREC5 0.454 0.366 0.507 

Robust 04 0.550 0.507 0.613 

Terabyte04 0.341 0.305 0.374 

Terabyte05 0.301 0.206 0.362 

 

Table 3 Kendall’s rank correlation coefficient for correlation 

with average precision, for robustness score, clarity score and 

a linear combination of the two features. Bold cases mean the 

results are statistically significant at the 0.05 level. 

TREC Robustness 

Score 

Clarity   

Score 

Robustness 

+Clarity 

TREC123 0.329 0.331 0.370 

TREC4 0.548 0.353 0.499 

TREC5 0.328 0.311 0.345 

Robust 04 0.392 0.412 0.460 

Terabyte04 0.213 0.134 0.226 

Terabyte05 0.208 0.171 0.252 

 

The results for correlation with average precision are presented in 

table 2 and 3. When we combine the clarity score and the 

robustness score, we adopt a simple linear combination, that is, 

(1-α)×clarity score+α×robustness score. For the collections other 

than TREC 123, we use the α that yields the highest value of 

Pearson’s coefficient on TREC123. For TREC123, we use the 

best α on Robust 2004. In fact, we find that the optimal linear 

combination weight changes little across our test collections. Note 

that when using linear regression to combine the two, we 

essentially apply learning to our method. But we have only one 

parameter and we find the regression generalizes well.   

 From these results, we first observe statistically significant 

correlation between the robustness scores and the average 

precision over all test collections no matter which metric is 

adopted. The extent of the correlation in the Robust 2004 Track is 

visible in Figure 2 as a linear trend for average precision of 

queries to increase as their robustness score increases.  

Second, we see that the linear combination of the two features 

usually performs better than either one when used in isolation. 

This is within our expectation since clarity scores and robustness 

scores measure two different properties of a ranked document 

list.3 Note that the only exception occurs in TREC 4 because the 

                                                                 

3 We also examine the correlation between the clarity score and 

the robustness score. We observe the correlations measured by 

robustness scores correlate with the average precision much better 

than the clarity scores.  

Third, the robustness score shows a stronger linear relationship 

with average precision compared to the clarity score. The linear 

regression analysis performed in the next section will further 

confirm this observation. 

We observe that the performance of the clarity score drops greatly 

on the GOV2 collection. We speculate that this is due to the fact 

that there are a relatively large number of low quality documents 

in this collection. Moreover, it seems that this characteristic has a 

more negative impact on clarity scores than on robustness scores. 

To understand this, let us recall that the clarity score measure the 

degree of dissimilarity between the language usage associated 

with the query and the generic language of the collection. The 

ability of clarity scores to predict query performance is based on 

the following assumption: a query whose highly ranked 

documents contain many relevant documents (high query 

performance) is likely to receive a high clarity score because 

these highly ranked documents tend to be about a single topic and 

therefore have unusual word usage. However, when it comes to 

large web collections, the low quality documents retrieved in 

respond to a query are likely to have unusual word 

distributions[24], resulting in  high clarity scores. In other words, 

the clarity score method can not distinguish whether a high clarity 

score is caused by a small number of topic terms in the query 

language model or by the noise from the low quality documents 

retrieved.      
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Figure 2: Average precision versus robustness score for the 

249 title queries from the Robust 2004 Track. 

 

4.3 Linear Regression Analysis 
Both Kendall’s rank correlation and Pearson’s correlation are not 

capable of directly predicting average precision scores. To 

address this problem, we adopt the linear regression technique 

which yields an equation that predicts the values of average 

                                                                                                           

Pearson’s coefficient range from 0.27 to 0.63 on the four TREC 

collections. We find almost no correlation on the two Web 

collections.  We see that there are relations between the two 

measures, but they are not very similar to each other. 

Otherwise, a combination of the two would not lead to further 

improvement.  



precision from predictors.  Although there are fancier non-linear 

models, linear regression models often perform better in situations 

with sparse data or highly noisy data [25]. Moreover, the linear 

regression analysis provides an adequate and interpretable 

description of how the predictors affect the dependent variable.  

In this section, we first evaluate the linear prediction quality of 

the clarity score and the robustness score. Then we investigate the 

relative importance of each predictor in terms of prediction 

power.  

Table 4 Coefficient of determination (R-square) from linear 

regression: the dependent variable is average precision. The 

predictor (independent variable) is either the robustness score 

or the clarity score or a combination of the two.  

TREC Robustness 

Score only 

Clarity   

Score only 

Robustness 

+Clarity 

TREC123 0.188 0.112 0.220 

TREC4 0.376 0.185 0.339 

TREC5 0.206 0.134 0.257 

Robust 04 0.302 0.257 0.376 

Terabyte04 0.116 0.093 0.140 

Terabyte05 0.091 0.042 0.131 

 

One common way to measure how well a linear regression model 

fits data is the so-called coefficient of determination or R-square. 

The range of R-square is between 0 and 1 and a high value means 

fitting well. Here we perform simple linear regression and the 

predictor is either the robustness score or the clarity score or the 

linear combination of the two.  Table 4 shows the results which 

are consistent to what we have observed in Table 2 and 3. For 

example, we see that the robustness scores fit the average 

precision much better than the clarity scores on all collections. 

The goodness-of-fit is low on the GOV2 collection. Again, we 

observe that the linear combination of the two predictors often 

boost the quality of linear regression. The effect of linear 

regression between average precision and robustness score for the 

50 title queries from the TREC4 collection is shown in Figure 3.  

To identify the predictor that bestows the greatest impact on the 

dependent variable, we compare the regression coefficients of the 

two predictors. However, the values of the original regression 

coefficients depend on both the importance of each predictor and 

the variance of that predictor. To make a fair comparison, we 

adopt the standardized regression coefficient called Beta that 

eliminates the influence of variance. The standardized coefficient 

is what the regression coefficient would be if the model were 

fitted to standardized data, that is, if from each observation we 

subtracted the sample mean and then divided by the sample 

deviation. Hence, the magnitudes of these Beta values represent 

the importance of each predictor. Table 5 shows the results for 

standardized regression coefficients. We used the SPSS software 

to compute the standardized regression coefficients. We observe 

the similar trends as in Table 4. Based on the results from table 4 

and 5, our results suggest that when using linear regression 

robustness scores predict average precision better than clarity 

scores.  
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Table 5 standardized regression coefficients (Beta) from 

multiple linear regression: the dependent variable is average 

precision. The two predictors are the robustness score and the 

clarity score.  

Collection Robustness Score Clarity Score 

TREC123 0.357 0.195 

TREC4 0.568 0.071 

TREC5 0.376 0.246 

Robust 04 0.396 0.311 

Terabyte 04 0.270 0.216 

Terabyte 05 0.314 0.224 

 

5. CONCLUSIONS 
In this paper, we introduce the notion of ranking robustness and 

propose a statistical measure called the robustness score to 

quantify ranking robustness. We demonstrate that there is a strong 

correlation between the robustness score of a test query and the 

performance of that query. We compare the robustness score with 

the clarity score method which is the state-of-the-art technique for 

query performance prediction. Our experimental results show that 

the robustness score performs better than or at least as good as the 

clarity score. We observe that the robustness score shows a 

stronger linear relationship with query performance compared to 

the clarity score. Therefore, the robustness score can predict the 

values of average precision more accurately than the clarity score 

when using a linear regression model. We find that the clarity 

score is barely correlated with query performance on the GOV2 

collection while the correlation between the robustness score and 

query performance remains significant. We also notice that a 

combination of the two usually results in more prediction power.  

These results give fresh insight into our understanding of 

principles underlying retrieval and opens up possibilities for 

developing new techniques in the direction of ranking robustness 

for predicting or improving retrieval effectiveness.     
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Figure 3: Linear regression between average precision 

and robustness score for the 50 title queries from the 

TREC4  
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