
Training Algorithms for Linear Text Classi�ersDavid D. Lewis Robert E. SchapireAT&T ResearchMurray Hill, NJ 07974; USAlewis@research.att.com, schapire@research.att.com James P. Callan Ron PapkaCenter for Intelligent Information RetrievalDepartment of Computer ScienceUniversity of MassachusettsAmherst, MA 01003, USAcallan@cs.umass.edu, papka@cs.umass.eduAbstractSystems for text retrieval, routing, categorization and otherIR tasks rely heavily on linear classi�ers. We propose thattwo machine learning algorithms, the Widrow-Ho� and EGalgorithms, be used in training linear text classi�ers. In con-trast to most IR methods, theoretical analysis provides per-formance guarantees and guidance on parameter settings forthese algorithms. Experimental data is presented showingWidrow-Ho� and EG to be more e�ective than the widelyused Rocchio algorithm on several categorization and rout-ing tasks.1 IntroductionDocument retrieval, categorization, routing, and �lteringsystems often are based on classi�cation. That is, the IR sys-tem decides for each document which of two or more classesit belongs to, or how strongly it belongs to a class, in orderto accomplish the IR task of interest. For instance, the twoclasses may be the documents relevant to and not relevantto a particular user, and the system may rank documentsbased on how likely it is that they belong to the relevanceclass.The rules or classi�ers used to perform these tasks areoften trained on data rather than, or subsequent to, beingconstructed by hand. For instance, a ranked retrieval sys-tem using relevance feedback will ask its user to indicatewhich of the top ranked documents retrieved for a queryare relevant and which are not. The judged documents areused as training data to produce a more e�ective query andthus a new and better ranking. In text categorization, doc-uments that have been categorized by human indexers canbe used as training data for a classi�er to categorize futuredocuments.In this paper we compare the widely used Rocchio train-ing algorithm to two other algorithms, the Widrow-Ho� andEG algorithms, which produce the same kind of classi�er,

a linear classi�er. The Widrow-Ho� and EG algorithmsare better understood from a theoretical standpoint, lead-ing to performance guarantees and guidance on parametersettings. In addition, we show experimentally that Widrow-Ho� and EG are more e�ective than Rocchio on both routingand categorization tasks.2 Linear Functions in IRIR systems often represent texts as feature vectors, that is,tuples of values: x = (x1; x2; : : : ; xd)where xj is the numeric value that feature j takes on for thisdocument, and d is the number of features. For example, dmight be the number of distinct non-stopwords in a textbase,and xj the number of times a particular word occurs in thisdocument.In order to rank documents, a text retrieval system typ-ically applies a d-ary function f to each vector x, producinga score f(x). Documents with the largest values of f(x) ap-pear at the top of a ranking. A text categorization systemmight similarly compute scores f(x) and assign to a categoryonly those documents where f(x) exceeds some threshold orsatis�es some other criterion. Systems for �ltering, routing,and other text classi�cation tasks operate similarly.The simplest such functions are linear, that is, they maybe expressed as the dot product of a weight vector w andthe feature vector x:f(x) = w � x = dXj=1wjxj:Most approaches to ranked retrieval use linear functions.For instance, in the Robertson/Sparck Jones probabilisticretrieval model documents are ranked by this linear function:dXj=1xj log pj(1� qj)(1� pj)qj ;where pi and qi are probabilities to be estimated based ontraining data [Robertson & Sparck Jones, 1976] or the textof a user request [Croft & Harper, 1979], and the xj's arebinary (1 if a word is present in a document, 0 otherwise).The classical vector space model [Salton & McGill, 1983,pp. 120{123] [Harman, 1992a], ranks documents using a non-linear similarity measure called the cosine correlation:SIM(q;x) = q � xkqk kxk



where kxk =qPdj=1xj2, and q is a query vector with thesame features as x. For instance, qj might be 1 if a wordappeared in a textual user request and 0 otherwise, while xjis the number of times the word occurs in the document ofinterest, times its inverse document frequency, i.e., a form oftf � idf weighting [Salton & McGill, 1983, p. 63], [Harman,1992a]. This model can be recast as linear classi�cation bytreating the query as a classi�er and incorporating its lengthnormalization into each of the elements of its weight vector:w = qkqkand similarly incorporating the document length normaliza-tion into the document vector feature values:x0 = xkxk :Indeed, recent work on the vector space model replacesthe cosine normalization with other length normalizations,but maintains the linear form of the classi�er [Singhal et al.,1996]. Many commercial ranked retrieval systems also arebased on linear functions, the evaluation of which can bemade very e�cient via inverted �les and other techniques.Basing an IR system on linear classi�ers requires usingcorpus statistics, the text of a user request, or other knowl-edge about a class to choose an initial weight vector. Theseinitial values can usually be improved by learning from train-ing data, as discussed in the next section.3 Algorithms for Training Linear Classi�ersBy training a linear classi�er, we mean using training data(a set of texts of known class membership) to �nd a weightvector which accurately classi�es new texts. We distinguishbetween parametric and nonparametric training algorithms[Duda & Hart, 1973, p. 130]. Parametric algorithms usetraining data to estimate parameters of a probability distri-bution, and a classi�er is produced under the assumptionthat the estimated distribution is correct. Many probabilis-tic IR algorithms, for instance the Robertson/Sparck Jonesrelevance feedback algorithm, are parametric algorithms.Nonparametric training algorithms do not assume thatthe training data has a particular distributional form. Theyinstead search directly for a good weight vector, as measuredby some criterion function. The hope is that the weightvector will generalize well, i.e., that it will also optimize thecriterion function, or some other e�ectiveness measure, onnew data.Di�erent training algorithms can be produced by vary-ing the criterion function and search procedure used [Duda& Hart, 1973, pp. 130-131]. Search procedures can operatein either online or batch fashion. Online algorithms are pre-sented with one training example at a time. They updatetheir current weight vector based on that example and thendiscard the example, retaining only the new weight vector.Batch algorithms, on the other hand, optimize the criterionfunction on the entire set of training data at once. Batchalgorithms typically do a better job of optimizing the cri-terion function than online algorithms, and can more easilyuse criterion functions that are not simple functions of per-example criteria. However, batch algorithms tend to putlarge demands on memory, and typically require that pasttraining data be saved if additional training is to be done inthe future.

In the remainder of this section we review three impor-tant nonparametric algorithms for training linear classi�ers,showing how they vary in their criterion functions and searchprocedures. Throughout this section, xi = (xi1; : : : ; xid) de-notes the ith training document, and yi its associated classlabel (1 if relevant/a class member, 0 if irrelevant/not a classmember).3.1 The Rocchio AlgorithmThe Rocchio algorithm [Rocchio, Jr., 1971, Harman, 1992b]is a batch algorithm. It produces a new weight vectorw froman existing weight vector w1 and a set of training examples.The jth component, wj, of the new weight vector is:wj = �w1;j + �Pi2C xi;jnC � Pi62C xi;jn� nC (1)where n is the number of training examples, C = f1 � i �n : yi = 1g is the set of positive training examples (i.e.members of the class of interest), and nC is the number ofpositive training examples. The parameters �, �, and control the relative impact of the original weight vector, thepositive examples, and the negative examples, respectively.If � = 0, � = 1 and  = 1, then w=kwk is the weight vectorof unit length which maximizesPi2C w � xnC �Pi62C w � xn� nC ; (2)i.e., the di�erence in the mean scores for positive and nega-tive training instances. Rocchio refers to such a w as an op-timal query, though he does not show a connection betweenoptimizing the criterion (2) and optimizing more usual e�ec-tiveness measures for ranking or binary classi�cation. SinceRocchio was working in a relevance feedback context, he alsodid not address how well these weight vectors generalize tonew data.Typically, classi�ers produced with the Rocchio algo-rithm are restricted to having nonnegative weights, so thatinstead of using the raw w from Equation (1), one uses w0where w0j = � wj if wj > 00 otherwise:3.2 The Widrow-Ho� AlgorithmThe LMS or Widrow-Ho� algorithm [Widrow & Stearns,1985, Ch. 6] [Duda & Hart, 1973, p. 156] (here abbreviatedWH) is an online algorithm. It runs through the trainingexamples one at a time updating a weight vector at eachstep. We denote the value of this weight vector before pro-cessing the ith training example by wi. Initially, the weightvector is typically set to the all zeros vector, w1 = (0; : : : ; 0);however, other initial settings are possible. At each step thenew weight vector, wi+1, is computed from the old weightvector wi using training example xi with label yi. The jthcomponent of the new weight vector is found by applyingthe rule: wi+1;j = wi;j � 2�(wi � xi � yi)xi;j : (3)The parameter � > 0, usually called the learning rate, con-trols how quickly the weight vector w is allowed to change,and how much inuence each new example has on it.WH is usually viewed as a gradient descent proceduresince the term 2(w �x� y)x is the gradient (with respect to



w) of the square loss (w � x� y)2. Thus, WH tries to movein a direction in which this loss is (locally) decreasing thefastest.For classifying new instances, it may seem natural to usethe �nal weight vector wn+1. However, there are theoreticalarguments (e.g. [Kivinen & Warmuth, 1994]) which suggestthat a better choice is the average of the weight vectorscomputed along the way:w = 1n+ 1 n+1Xi=1 wi: (4)3.3 Kivinen & Warmuth's EG AlgorithmThe exponentiated-gradient or EG algorithm was introducedby Kivinen and Warmuth [Kivinen & Warmuth, 1994]. Thisalgorithm is similar to WH in that it maintains a weight vec-tor wi and runs through training examples one at a time.With EG, however, the components of the weight vector wiare restricted to be nonnegative and to sum to one. Theusual initial weight vector assigns equal weight to all com-ponents so that w1 = (1=d; : : : ; 1=d). The update rule forEG, analogous to Equation (3) for WH, is:wi+1;j = wi;j exp(�2�(wi � xi � yi)xi;j)Pdj=1 wi;j exp(�2�(wi � xi � yi)xi;j) :Thus, each component wi;j is multiplied by exp(�2�(wi�xi�yi)xi;j), and then the entire weight vector is renormalized.The name of the algorithm comes from the exponentiationof the same gradient that appeared in WH. As before, thelearning rate � > 0 controls the impact of each new trainingexample.Kivinen and Warmuth give a detailed motivation forboth EG and WH. Briey, the new weight vector wi+1 canbe shown to minimize a formula which trades o� the con-icting goals of (1) minimizing the loss (wi+1 � xi � yi)2 ofthe new vector wi+1 on the current example xi, and (2)penalizing the choice of a new vector wi+1 which is \far"from the old vector wi. The di�erent rules EG and WH arederived using di�erent choices of distance functions in (2).The parameter �, in their framework, determines the rela-tive importance given to (1) and (2).3.4 Binary Classi�cationThe algorithms described above produce classi�ers whichoutput a numeric value w � x. This value can be used, forinstance, to rank documents or classes for presentation toa user. Something more is needed if binary classi�cationis required, that is, if we must explicitly decide for eachdocument whether it belongs to the class of interest. Theapproach taken in our experiments is to de�ne a thresholdt, and assign a document x to the class if w � x > t. Thethreshold is chosen so as to optimize the desired e�ectivenessmeasure on the training set, with the hope that e�ectivenesson the test set will also be optimized, though this approachhas weaknesses [Lewis, 1995a].4 Error Bounds for WH and EGKivinen and Warmuth [Kivinen & Warmuth, 1994] studyin detail the theoretical behavior of EG and WH, build-ing on previous work [Cesa-Bianchi et al., 1993, Widrow& Stearns, 1985]. Kivinen and Warmuth focus on deriving

upper bounds on the error of WH and EG for various set-tings of the learning rate �. For instance, for the settingof � = 1=(4X2) used in our experiments, and with appro-priate assumptions about the random presentation of exam-ples, their results imply the following upper bound on theexpected square loss of the vector w computed by WH:1E�(w � x� y)2� � 2�E�(u � x� y)2�+ kuk2X2n+ 1 �: (5)Here, expectation is with respect to the random presentationof examples (x; y), X is an assumed upper bound on kxk forall instances x, u is the vector which gives \best" �t to thedata (actually, the bound holds for all u), and n as usual isthe number of training instances. Thus, the expected squareloss of w is upper bounded by a small constant times theexpected square loss of the best vector u, plus a term thatis quadratic in the Euclidean length of u and the maximumlength of any instance, but which vanishes at the rate 1=n.This bound helps us to predict when WH will performwell (in terms of square loss), namely, when there is somevector u which �ts the data well and when the number oftraining examples n is large relative to the lengths of u andof the document representatives.Kivinen and Warmuth prove bounds of a somewhat dif-ferent form for EG. With similar assumptions as above andfor the setting � = 2=(3R2) used in our experiments, theyshow that2E�(w � x� y)2� � 32�E�(u � x� y)2� + R2 ln dn+ 1 � (6)where u is the probability vector (nonnegative componentssumming to one) which best �ts the data, and where hereR is a value such that maxi(maxj xij�minj xij) � R for allinstances xi.Note that the \additional term" for EG depends on verydi�erent parameters than it does for WH (R and ln d ratherthan X and kuk). In particular, for a binary representationof documents, this additional term is small even for a hugenumber of features, since R = 1 and the dependence on thenumber of features d is only logarithmic. It is this milddependence on the number of features which suggested tous that EG might do well on an IR task.In sum, Kivinen and Warmuth's results suggest that EGis likely to work well on high dimensional problems. Theirresults also give insight into how to deal with di�erent doc-ument representations. Blum's recent success [Blum, 1995]with a related multiplicative update algorithm on a learn-ing problem with some textual features also encouraged usto try EG.5 Evaluation TechniquesWe tested the algorithms described above on two IR taskswhere supervised learning is particularly applicable: cate-gorization and routing. The overall evaluation strategy wassimilar for the two tasks, and is described in this section.The details of the particular tasks are described in later sec-tions.Our experiments were of the batch-mode machine learn-ing type. For each data set, a group of classes were de�ned.1This bound follows from Kivinen and Warmuth's Theorem 5.3combined with the results in Section 8.2This bound follows from Kivinen and Warmuth's Theorem 5.10combined with the results in Section 8.



A training set of document feature vectors plus class labelswas used by the learning algorithm to produce a classi�er foreach class. The classi�ers were evaluated on a separate testset of document vectors for which class labels were known.Evaluations of both binary classi�cation and rankingwere performed. For binary classi�cation, the weight vec-tor plus a threshold (produced as described in Section 3.4)were used to classify each test document. The e�ectivenessof this classi�cation was summarized in four contingency ta-ble values:� a = number of class members put in class� b = number of nonclass members put in class� c = number of class members not put in class� d = number of nonclass members not put in classSeveral e�ectiveness measures can be de�ned in terms ofthese values, for instance:� recall (R) = a=(a + c)� precision (P ) = a=(a+ b)We used the F-measure [Lewis & Gale, 1994] (see also[van Rijsbergen, 1979, pp. 173{176]), a weighted combina-tion of recall and precision that can be de�ned in terms ofthe contingency table values:F� = (�2 + 1)PR�2P + R = (�2 + 1)a(�2 + 1)a+ b+ �2cWe use F� with � = 1, i.e., F1 = 2a=(2a + b + c). If a, b,and c are all 0, we de�ne F1 to be 1.On the routing data set, we also evaluated the e�ective-ness of classi�ers for ranking. A classi�er is applied to eachtest document, and the documents are sorted by the result-ing scores. We measure how close to perfect ranking theclassi�er came using simple average precision (SAP), whichis the mean of precision measured at each class member inthe ranking [Harman, 1995b, p. A-9].6 Text Categorization TaskText categorization systems classify units of natural lan-guage text into pre-de�ned categories. We describe two newtext categorization data sets and how they were used in ourexperiments.6.1 The OHSUMED Text Categorization Test Col-lectionThe �rst collection consists of Medline records from theyears 1987 to 1991, distributed as part of the OHSUMEDtext retrieval test collection [Hersh et al., 1994]. For textcategorization experiments, we ignore the queries and rel-evance judgments in the collection, and make use of theMeSH [Lowe & Barnett, 1994] controlled vocabulary termsassigned to the records by National Library of Medicine in-dexers.Of the 348,566 OHSUMED records, all but 23 haveMeSH categories assigned. These 348,543 records all havetitles, but only 233,445 of them have abstracts. Our exper-iments used only the 233,445 records with both. We usedthe 183,229 such documents from the years 1987 to 1990 as

Training TestCategory Number Freq. Number Freq.Set 1tickertalk 88 0.0006 35 0.0005boxo�ce 109 0.0008 61 0.0009nielsens 163 0.0011 85 0.0013bonds 272 0.0019 115 0.0017burma 341 0.0024 93 0.0014ireland 348 0.0024 127 0.0019quayle 400 0.0028 113 0.0017dukakis 716 0.0050 20 0.0003budget 420 0.0029 443 0.0066hostages 549 0.0038 367 0.0055Set 2yugoslavia 388 0.0027 188 0.0028aparts 588 0.0041 202 0.0030dollargold 1053 0.0074 561 0.0084w.p.w. 1188 0.0083 636 0.0095german 1231 0.0086 1161 0.0173gulf 575 0.0040 2896 0.0432britain/british 2441 0.0171 1074 0.0160israel 2495 0.0175 1164 0.0174bush 2553 0.0179 1368 0.0204japan 2901 0.0203 1436 0.0214Table 1: TREC-AP categories, separated into Set 1 and Set2 and sorted by total frequency on the TREC-AP data. Weshow frequencies on TREC-AP training (years 1988-1989)and test (year 1990) sets. w.p.w. is the category weather-pageweather.our training set, and the 50,216 such documents from theyear 1991 as our test set.MeSH terms consist of a main heading optionally aggedwith subheadings and importance markers. A total of 14,626distinct main headings occur in the OHSUMED records. Intext categorization research with OHSUMED we have fo-cused on the set of 119 MeSH categories in the Heart Dis-ease subtree of the Cardiovascular Diseases tree structure[Lowe & Barnett, 1994]. The frequencies of these 119 heartdisease categories vary widely, and some in fact do not actu-ally appear in the OHSUMED data. The experiments hereused the 49 categories with a training set frequency of 75 orhigher, and the 28 categories with a training set frequencybetween 15 and 74. Results on the remaining 42 categoriesare omitted here, since their high variance requires addi-tional analysis.The OHSUMED text retrieval test collection was devel-oped by William Hersh and colleagues at Oregon HealthSciences University. It is available by anonymous ftp fromthe server medir.ohsu.edu in the directory /pub/ohsumed.Procedures for the use of OHSUMED in text categorizationresearch were developed by David Lewis and Yiming Yang,with invaluable advice from Christopher Chute, Bill Hersh,Betsy Humphreys, Stephanie Lipow, Henry Lowe, Nels Ol-son, Peri Schuyler, Mark Tuttle, and John Wilbur. The119 MeSH Heart Disease categories was extracted by Yim-ing Yang from the April 1994 (5th Ed.) UMLS CD-ROM,distributed by the National Library of Medicine. Furtherdetails are available from Lewis (lewis@research.att.com) orYang (yiming@cs.cmu.edu).6.2 The TREC-AP Text Categorization Test Col-lection



Our second data set is a subset of the AP newswire storiesfrom the TREC/TIPSTER text retrieval test collection. Atotal of 242,918 AP stories from the years 1988 through1990 are included in the collection. In processing this data,we corrected some formatting anomalies in the stories andscreened out certain internal editorial notes. We then se-lected only those stories which had exactly one <HEAD>�eld (i.e., title) and <TEXT> �eld (i.e., the body of thearticle), and meeting other well-formedness criteria. Theresult was a set of 209,783 AP stories which we call theTREC-AP text categorization test collection.Several previous text categorization studies with a pro-prietary AP collection have used two sets of 10 categories:Set 1 [Lewis & Gale, 1994, Cohen, 1995, Cohen & Singer,1996] and Set 2 [Lewis, 1995b]. We have de�ned these cate-gories on the TREC-AP data set as well (see Table 1). Forthe experiments reported here, we use the years 1988 and1989 (142,791 documents) as a training set, and the year1990 (66,992 documents) as the testing set.The TREC-AP data covers a di�erent date range thanthe aforementioned proprietary AP collection, and we useit here with a chronological training/test split rather thana random one. Results on the TREC-AP data thereforecannot be compared to those from the previous AP studies.The documents in the TREC-AP collection appear onthe TIPSTER Information Retrieval Text Research Col-lection CD-ROMs, Volumes 1 to 3, March 1994 revision.The CD-ROMs are used in the TREC evaluations andare also distributed by the Linguistic Data Consortium(ldc@unagi.cis.upenn.edu). Information on TREC is avail-able from Donna Harman (harman@potomac.ncsl.nist.gov).Details of the TREC-AP data are available from DavidLewis (lewis@research.att.com).6.3 Details of ExperimentsThis section summarizes our text categorization experi-ments, including experimental conditions that were varied.Feature Extraction. The set of features for each prob-lem was de�ned by a crude tokenizer that replaced every-thing but alphabetic characters with a blank, and down-cased alphabetic characters. Both binary feature valuesand cosine-normalized tf � idf feature values (SMART tfcweights [Salton & Buckley, 1988]) were used for Rocchioand WH, with idf estimated on the training set for that run.(This is a deviation from the strict online learning frame-work.) EG was only run on a binary representation, due tolimitations of our current software.Feature Selection. The full feature set was used in allcases.Text Segment. The use of titles alone was comparedwith the use of the main texts (abstract or body of article)alone.Starting Vector. Rocchio was used without a start-ing vector (� = 0) or, equivalently, a starting vector of(0; : : : ; 0). WH used a starting vector of (0; : : : ; 0)and EG astarting vector of (1=d; : : : ; 1=d).Learning Rate. Rocchio used � = 16 and  = 4, assuggested by Buckley, et al. [Buckley et al., 1994], but with� = 0 since no query was used. WH used a learning rate of� = 1=(4X2), where X is the maximum value of kxk in thetraining set for that run. EG used a rate of � = 2=(3R2),which for a binary document representation is simply 2=3.(See Section 4 for details.)Training Set. Subsets of 10,000 training documents, aswell as the full training set, were tried.

Training Procedure. Training Rocchio is a simplebatch process. WH and EG were trained on a single passthrough the training set in random order.Final Classi�er. The �nal Rocchio classi�er was usedas is. For WH and EG, the mean weight vector across alltraining examples was used (see Section 3.2 and Equation 4).In all cases the threshold for binary classi�cation was foundby optimizing the F1 measure on the training set.Another inuence on e�ectiveness is randomness in thesample used as a training set and, for order sensitive algo-rithms such as EG and WH, the order in which traininginstances are presented. We addressed this by running allexperiments with ten randomly selected and randomly or-dered training sets, and computing average e�ectiveness overthe runs. The same ten randomly ordered sets of trainingdocuments were used for all algorithms and categories in acollection.7 Routing TaskBy routing systems, we mean IR systems which provideusers access to a stream of texts over a period of time. Ex-amples would be systems that fax newswire stories to a usereach morning, which sort incoming email into folders, orwhich provide a ranked retrieval view of a constantly chang-ing body of text, such as Usenet news. As such, routingsystems share characteristics of both retrieval and catego-rization systems.7.1 A TREC Routing Data SetOur routing experiments used data developed in the TRECevaluations [Harman, 1995a]. The 741,856 documents fromTIPSTER Volumes 1 & 2 were used for training, and the336,310 documents from Volume 3 were used for testing.(See Section 6.2 for availability.) The TIPSTER distribu-tion includes several sets of \topics" describing the needsof hypothetical users for information. We viewed each suchuser need as a class to be learned, and conducted routingexperiments with this training and test data on two sets ofTREC topics: numbers 51-100 and numbers 101-150.Judgments of which documents belong to each class (i.e.are relevant to each user information need) have been madeas part of the TREC evaluations and auxiliary studies, butonly a fraction of the documents have been judged. For top-ics 51-100, a mean of 1,784 training documents (328 relevantand 1,456 nonrelevant) and 2,340 test documents (220 rele-vant and 2,121 nonrelevant), selected by a pooling strategy[Harman, 1995a], have been judged for relevance. Similarly,for topics 101-150, a mean of 1,252 training documents (233relevant and 1,019 nonrelevant) and 1,333 test documents(187 relevant and 1,146 nonrelevant) were judged. In our ex-periments, we train only on the judged training documents.For the purpose of estimating e�ectiveness we assume, asdo the TREC evaluations, that test documents not judgedfor a topic are not relevant to that topic. Thus our test setfor all topics is of size 336,310.7.2 Details of ExperimentsThe routing experiments varied in a number of ways fromthe text categorization experiments:Feature Extraction. The set of features was de�nedby standard INQUERY tokenization of the text, but onlywords, not phrases were used. The basic INQUERY weight-ing formula was used [Callan et al., 1995], which has a min-



imum feature value of 0.4 and weights that tend to be inthe range 0.4 to 0.5. Due to this restricted range of values,we trained the WH and EG algorithms with a target out-put of 0.47 for relevant documents and 0.40 for non-relevantdocuments. For the EG algorithm this can also be treatedsimply as a change in the feature values used.Feature Selection. Time did not allow us to workwith the full feature set of words in the routing experiments.(There are 868,795 unique words just in the parsed version ofVolumes 1 and 2.) The features used were the content wordsoccurring in the textual description of the topic (on average7:92 words/topic for topics 51-100 and 8:76 words/topic fortopics 101-150), and either 50 or 1000 additional words cho-sen by a query expansion process similar to that used in theU Mass TREC-4 experiments [Allan et al., 1996].Text Segment. All textual material was used.Starting Vector. Rocchio was used with a startingvector of (0; : : : ; 0). WH and EG were started with the out-put of the Rocchio algorithm. EG was also tested with thestarting vector (1=d; :::;1=d), producing similar results (notreported).Learning Rate. Rocchio was used with parameter set-tings of � = 1, � = 2 and  = 0:5. The ratio of � = 2to  = 0:5 is the same as in the text categorization exper-iments. The value � = 1 gives some weight to the originaltopic text, something not available in the text categorizationproblems. WH was used with a learning rate of 1=kxik2,that is a di�erent learning rate was used for each example.This di�erence from the rate used in the categorization ex-periments is unlikely to have had an e�ect given the trainingprocedure used (see below). EG used a rate of � = 2=(3R2),with R varying according to the representation used.Training Set. All documents judged for each topic wereused for training.Training Procedure. Rocchio was trained in the usualbatch mode fashion. WH was trained on a sequence of100,000 examples drawn randomly with replacement fromthe full training set. EG was trained on 100,000 examplesdrawn randomly with replacement from either the positive(probability 1/2) or negative (probability 1/2) training ex-amples.Final Classi�er. The �nal classi�er was selected by apocketing strategy [Gallant, 1986]. We pocket (record) theweight vector after 100 training examples. After every 100subsequent training examples the current weight vector isused to rank the training data and the value of SAP is mea-sured. If the SAP value is higher than that of the pocketedvector, the pocketed vector is replaced by the current vector.At the end of training the current pocketed vector is evalu-ated on the test data. The threshold for binary classi�cationwas found by optimizing F1 on the training set.Since the routing experiments always used all trainingdata available, there was no sampling variation. The poten-tial for the ordering of training data to impact e�ectivenesswas slight due to the use of pocketing, and the fact thatmost examples were examined many times.8 ResultsTable 4 summarizes our results on the three data sets. Wecompare the overall e�ectiveness of WH and EG with thatof Rocchio in two ways. First, we count the number ofclasses on which WH (or EG) has a higher F1 value thanRocchio, and vice versa, as shown in the Wins columns.WH and EG counts are signi�cantly higher (p < 0:05) thanthe corresponding Rocchio counts by a one-tailed sign test

Category Rocc. WH EG-binSet 1tickertalk .00 .06 .00boxo�ce .49 .48 .59nielsens .52 .51 .46bonds .61 .60 .59burma .74 .68 .76ireland .43 .55 .52quayle .79 .78 .77dukakis .61 .63 .61budget .59 .58 .59hostages .58 .60 .58Set 2yugoslavia .42 .66 .60aparts .07 .15 .10dollargold .90 .92 .93w.p.w. .85 .88 .72german .51 .66 .63gulf .22 .27 .31britain/british .38 .55 .52israel .60 .75 .61bush .53 .51 .53japan .50 .76 .61Table 2: Per-category e�ectiveness for Rocchio, WH, andEG on TREC-AP titles. Rocchio and WH use a tf � idfrepresentation, EG a binary representation. The full train-ing set of 142791 titles is used in all cases. We show meanvalues (over 10 runs) of F1. TopicsMethod 51-100 101-150INQUERYQ+50w / Rocchio .326 .341Q+50w / WH .361 .288Q+50w / EG .415 .403Q+1000w / Rocchio .203 .190Q+1000w / WH .216 .192Q+1000w / EG .404 .295[Buckley et al., 1994]Q+50w / Rocchio .3829 |Q+500w / Rocchio .4068 |[Buckley & Salton, 1995]Q+300w/30p : Rocchio .4045 |Q+200w/10p : DFO .4542 |Q+50w : Rocchio | .3471Q+50w : Best DFO | .4078Table 3: Mean R-precision across routing topics for varioustraining procedures. R-precision is precision at a numberof documents equal to the number of relevant documents[Harman, 1995b, p. A-10]. w indicates that expansion termsare words, p indicates phrases. DFO is Buckley and Salton'sDynamic Feedback Optimization.



Data Set Num Num WH vs. Rocchio EG vs. RocchioTraining DocRep Classes Features Wins Mean F1 Wins Mean F1AP Headline Categorization10000 bin 20 40820 16 > 4 (.45 > .33) 16 > 4 (.44 > .33)10000 tf � idf 20 40820 14 >? 6 (.48 > .44) [10 =? 10 (.44 > .44)]142791 bin 20 40820 15 > 5 (.57 > .40) 18 > 2 (.55 > .40)142791 tf � idf 20 40820 13 >? 7 (.58 > .52) [14 >? 6 (.55 > .52)]AP Body Categorization10000 bin 20 264836 18 > 2 (.48 > .25) 18 > 2 (.52 > .25)10000 tf � idf 20 264836 15 > 5 (.60 > .50) [10 =? 10 (.52 > .50)]142791 bin 20 264836 18 > 2 (.65 > .33) 18 > 2 (.61 > .33)142791 tf � idf 20 264836 16 > 4 (.72 > .63) [ 9 <? 11 (.61 < .63)]OHSUMED Title Categorization (big categories)10000 bin 49 64781 48 > 1 (.29 > .15) 47 > 2 (.29 > .15)10000 tf � idf 49 64781 41 > 7 (.34 > .29) [30 >? 19 (.29 > .29)]183229 bin 49 64781 47 > 2 (.53 > .26) 48 > 1 (.51 > .26)183299 tf � idf 49 64781 32 > 17 (.51 > .47) [35 > 14 (.51 > .47)]OHSUMED Title Categorization (small categories)10000 bin 28 64781 15 > 4 (.04 > .02) 23 > 3 (.03 > .02)10000 tf � idf 28 64781 21 > 1 (.06 > .03) [20 > 7 (.03 > .03)]183229 bin 28 64781 26 > 0 (.43 > .22) 27 > 0 (.46 > .42)183299 tf � idf 28 64781 16 > 10 (.43 > .41) [21 > 4 (.46 > .41)]OHSUMED Abstract Categorization (big categories)10000 bin 49 135531 45 > 4 (.16 > .07) 49 > 0 (.27 > .07)10000 tf � idf 49 135531 45 > 4 (.28 > .18) [43 > 6 (.27 > .18)]183229 bin 49 135531 49 > 0 (.51 > .13) 48 > 1 (.50 > .13)183299 tf � idf 49 135531 44 > 5 (.55 > .44) [34 > 15 (.50 > .44)]OHSUMED Abstract Categorization (small categories)10000 bin 28 135531 13 > 1 (.01 > .00) 24 > 1 (.02 > .00)10000 tf � idf 28 135531 11 > 1 (.03 > .00) [24 > 1 (.02 > .00)]183229 bin 28 135531 22 > 3 (.29 > .10) 26 > 0 (.39 > .10)183299 tf � idf 28 135531 15 > 12 (.39 > .33) [15 > 12 (.39 > .33)]TREC Document Routing (topics 51-100)varies INQUERY 50 Q+50 34 > 16 (.28 > .22) 42 > 8 (.36 > .22)varies INQUERY 50 Q+1000 41 > 9 (.16 > .06) 49 > 1 (.36 > .06)TREC Document Routing (topics 101-150)varies INQUERY 50 Q+50 13 <? 37 (.23 < .29) 38 > 11 (.35 > .29)varies INQUERY 50 Q+1000 36 > 14 (.13 > .07) 48 > 2 (.19 > .07)Table 4: Pairwise comparisons of WH vs. Rocchio, and EG vs. Rocchio. For each condition we show data set, training setsize, document representation, number of classes, and number of features. Wins shows the number of classes for which eachalgorithm had a higher F1 value. Rocchio is signi�cantly worse by one-tailed sign test unless a \?" is shown. Mean F1 is themean value of F1 across all classes for each algorithm. Results for EG vs. Rocchio on a tf � idf representation are bracketed\[]" to indicate that EG was actually run on a binary representation.



[Siegel, 1956, Ch. 5] unless a \?" is shown. Second, wecompute the mean F1 value across classes for each algorithmand compare this in the Mean F1 columns.The general pattern of results is as expected. The meanF1 values hide the usual high variation among classes. Themore informative tf � idf representation is generally supe-rior to the less informative binary one, more training datais better than less, and more positive training instances(\big" categories) is better than fewer. One anomaly is thatOHSUMED titles work better than OHSUMED abstracts.The high variance in length of abstracts, with a tendencytoward longer abstracts in later years may be part of thereason.9 DiscussionUnder almost all conditions the Rocchio algorithm was lesse�ective than both WH and EG, sometimes strikingly so.The one notable exception, for which we do not have a goodexplanation, is on routing topics 101-150, where the WHalgorithm does badly for small numbers of features. Similarresults (not shown) were obtained when classi�ers were usedto rank routing documents, with e�ectiveness measured bySAP. This is despite the fact that WH and EG are onlinealgorithms, and do not optimize a criterion function over anentire training set as Rocchio can.Document representation had a clear impact on results.Both WH and Rocchio were improved by moving to the moreinformative tf � idf representation. Rocchio performed par-ticularly poorly on a binary representation, as has previouslybeen observed [Salton & Buckley, 1990]. On the text catego-rization data EG was run only on a binary representation, asmentioned earlier, but had higher e�ectiveness than Rocchiorunning on a tf � idf representation in many cases. WH andEG also dominated Rocchio on the INQUERY representa-tion used in the routing experiments.These results are consistent with the theoretical prop-erties outlined in Section 4. For a binary representation,the parameter R which appears in the EG bound (Equa-tion (6)) is equal to 1, and the parameter X2 in the WHbound (Equation (5)) is equal to the number of (distinct)words in the longest document | at most in the hundreds.For cosine-normalized tf � idf , X is equal to 1. So in eachof these cases, the \additional terms" appearing in the WHand EG bounds are quite small given the large number ofdocuments used in our training sets.Though inferior to EG and WH, it is surprising, in theabsence of theoretical guarantees, how well the Rocchio al-gorithm did with such large feature sets. The per-categorydata in Table 2 and frequency data in Table 1 suggests Roc-chio does its best with relatively low frequency categories.Our routing experiments show that WH and EG canbe used to improve initial weight vectors where both theweights, and terms for which there are nonzero weights, arechosen by the Rocchio algorithm. In addition, EG in par-ticular tends to drive toward zero many of the remainingweights, resulting in a shorter and thus more e�cient classi-�er. This use of EG for term selection is expensive, however.On average, EG with 1000 features was 8 times slower thanEG with 50, but gave essentially the same e�ectiveness. Thissuggests that when e�ciency is a consideration, Rocchio orsome other more e�cient method be used to choose a limitedfeature set for which weights are found by EG or WH.Table 3 compares our results for ranking (rather thanbinary classifying) the routing data with those of other re-searchers using the same topics, training data, and test data.

For Q+50 features and Rocchio starting weights on topics101-150, EG does as well as Buckley and Salton's [Buckley &Salton, 1995] computationally intensive Dynamic FeedbackOptimization. On topics 51-100, Buckley and Salton's onlyresults used a phrasal representation, and so are not directlycomparable, but EG is at least competitive. Buckley, Salton,and Allan [Buckley et al., 1994] found Rocchio better suitedto large feature sets on topics 51-100 than we did, probablydue to di�erences in document length normalization.10 Future WorkThere are many improvements possible in our techniquesfor learning linear classi�ers for IR. Applying EG to docu-ments represented by tf � idf weights on our categorizationdata is an obvious next step, and other document weightingfunctions should be investigated as well. The logarithmicdependence of EG on feature set size suggests more radicalrepresentation changes. One could combine several variantson stemming, phrase formation, clustering, etc. in the docu-ment representation with little danger of over�tting. Cohenand Singer report preliminary results along these lines [Co-hen & Singer, 1996].It is not clear that minimizing squared error on the train-ing set is the best approach to optimizing, for instance, F�on the test set. The use of general optimization procedures[Buckley & Salton, 1995] is one answer to this problem, butone that sacri�ces e�ciency and theoretical guarantees. Onealternative would be to apply EG to sigmoidal units [Helm-bold et al., 1996], which produce probabilities usable foroptimization [Lewis, 1995a]. Another would be to de�neerror measures for learning which are more tightly coupledwith the ultimate e�ectiveness measure. This may requireusing a batch mode version of EG, which we in any casewish to compare with other batch mode error minimizationprocedures [Yang & Chute, 1994].Maintaining and updating very large weight vectorsmay take too much space or time, so methods for prun-ing weight vectors while maintaining theoretical guarantees[Blum, 1995] are also worth examining.11 SummaryIR methods are being applied to an increasingly broad rangeof problems, and by implementers who are less experiencedwith IR systems. Predictability and e�ectiveness of tech-niques under a wide range of conditions are important. Wehave shown that the Widrow-Ho� and EG algorithms fortraining linear classi�ers are not only more e�ective on IRproblems than at least one IR standby, but have a rich the-ory that lets their performance be better understood andpredicted.AcknowledgmentsThanks to William Cohen, Isabelle Moulinier, Amit Sing-hal, Yoram Singer, Manfred Warmuth, and Yiming Yangfor helpful comments on this work.References[Allan et al., 1996] Allan, J., Ballesteros, L., Callan, J. P.,Croft, W. B., & Lu., Z. (1996). Recent experiments withINQUERY. In Proceedings of TREC-4.
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