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Abstract

This paper reports on recent work in the field of in-
formation retrieval that attempts to go beyond the
overly simplified approach of representing documents
and queries as bags of words. Simple models make it
difficult to accurately model a user’s information need.
The model presented in the paper is based on Markov
random fields and allows almost arbitrary features to
be encoded. This provides a powerful mechanism for
modeling many of the implicit constraints a user has
in mind when formulating a query. Simple instantia-
tions of the model that consider dependencies between
the terms in a query have shown to significantly outper-
form bag of words models. Further extensions of the
model are possible to incorporate even more complex
constraints based other domain knowledge. Finally, we
describe what place our model has within the broader
realm of artificial intelligence and propose several open
questions that may be of general interest to the field.

Introduction

Information retrieval, broadly defined, is the task of retriev-
ing relevant information from a collection of items in re-
sponse to a user’s query. Depending on the task, the infor-
mation items may come in the form of text documents, web
pages, images, videos, music files, or some mixture of the
aforementioned. Queries can also be expressed in many dif-
ferent forms, such as Boolean queries or those expressed in
natural language. With the advent, and subsequent popular-
ity of web search, users have become accustomed to gener-
ating short natural language queries. However, such queries
are often ambiguous or poor approximations of what the user
has in mind. This abstract mental representation is often re-
ferred to as the information need.

Information needs are often complex. They include what
the user already knows and a set of constraints about the
types of documents that are likely to be relevant. Examples
of such constraints are: all query terms should appear within
a close proximity to each other, documents matching sub-
phrases within a query are likely to be more relevant than
those that do not match any, and more recent documents
should be ranked higher than older documents. These are
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just a small sample of all the constraints a user has in mind
before formulating a query. Unfortunately, users are unable
to explicitly express their full mental state using an interface
that only accepts short natural language queries. Therefore,
the retrieval system is burdened with taking the user’s short
query and implicitly infusing it with preferences the user did
not explicitly request. Therefore, the better the system is at
representing these implicit preferences, the more likely the
user’s information need will be satisfied.

Inferring user preferences from a few keywords is a diffi-
cult task. In fact, most state of the art retrieval models ignore
this problem altogether and simply treat queries and docu-
ments as a bag of words. For example, consider the query
white house rose garden. To a bag of words model, this
query returns the same results as the query white rose house
garden, which is not even closely semantically related to the
original query. It would be desirable for a model to accu-
rately represent that the user implicitly prefers documents
that match white house and rose garden as exact phrases,
which is not possible in a bag of words model. Due to their
very nature, it is either not possible or not easy to represent
many types of user preferences within such models.

In this paper, we review recent work that has been done
to address the issue of representing various implicit prefer-
ences that are meaningful in information retrieval (Metzler
& Croft 2005). We present a formally motivated statistical
model based on Markov random fields that goes beyond bag
of words approaches. Although the model was primarily
developed to robustly model dependencies between query
terms, it is general enough to allow for a wide range of con-
straints to be easily modeled.

The remainder of this paper is laid out as follows. We first
describes the details of our model. We then provide a high
level discussion of how our work can be broadly interpreted
in the field of artificial intelligence. Finally, we summarize
our results and conclude the paper.

The Model

In this section we detail our Markov random field model for
information retrieval. Markov random fields (MRF), also
known as undirected graphical models, are commonly used
in machine learning to succinctly model a joint distribution
over a collection of random variables. We use MRFs to
model the joint distribution Pa(Q, D) over queries () and
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Figure 1: Example Markov random fields for three query terms constructed under various independence assumptions, including
full independence (left), sequential dependence (middle), and full dependence (right).

documents D, parameterized by A.

Description

A Markov random field is constructed from a graph G. The
nodes in the graph represent random variables, and the edges
define the independence semantics between the random vari-
ables. In particular, a random variable in the graph is inde-
pendent of its non-neighbors given observed values for its
neighbors. Therefore, different edge configurations impose
different independence assumptions. In this model, we as-
sume G consists of query nodes g; and a document node D,
such as the graphs in Figure 1. Then, the joint distribution
over the random variables in G is defined by:
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where Q = q1...¢n, C(G) is the set of cliques in
G, each ¢(-; A) is a non-negative potential function over
clique configurations parameterized by A and Z,
>-0.plecoe ¥(c; A) normalizes the distribution. Note

that it is generally infeasible to compute Z, because of the
exponential number of terms in the summation.
For ranking purposes we compute the conditional:

PA(Qv D)
Pr(Q)

log PA(Q, D) — log PA(Q)
> logy(cA)

ceC(Q)

PA(D|Q)

which can be computed efficiently for reasonable graphs.

Therefore, to utilize the model, the following steps must
be taken for each query @): 1) construct a graph represent-
ing the query term dependencies to model, 2) define a set
of potential functions over the cliques of the graph, 3) rank
documents in descending order of Py (D|Q).

Variants

Although any set of dependencies between query terms can
be constructed, we consider three special cases that are of
greatest interest. The three variants are full independence
(FD), sequential dependence (SD), and full dependence (FD).
Figure 1 shows graphical model representations of each.

The full independence variant makes the assumption that
query terms ¢; are independent given some document D,
which is in line with the bag of words model. The sequential
dependence variant assumes dependence between neighbor-
ing query terms. Models of this form, such as bigram or
biterm models, are popular in information retrieval (Song &
Croft 1999; Srikanth & Srihari 2002). Finally, the last vari-
ant we consider is the full dependence variant in which we
assume all query terms are in some way dependent on each
other. This model is an attempt to capture longer range de-
pendencies than the sequential dependence variant. If such
a model can accurately be estimated, it should be expected
to perform at least as well as a model that ignores term de-
pendence.

Potential Functions

The three model variants just described provide a way
of modeling different dependencies between query terms.
However, we still have not addressed the issue of how to
encode implicit user preferences into the model. As we now
show, this can be done using the potential functions.

There are two types of potential functions that directly af-
fect how documents are ranked for a query. The first type
consists of potentials over cliques that contain the docu-
ment node and one or more query nodes. The potentials
over these types of cliques can capture dependencies, se-
mantic relationships, and other constraints between terms.
For example, consider document D which is on the sub-
ject of artificial intelligence. A potential function should be
constructed in such a way that ¢ (neural, network, D) >
Y(neural, surgeon, D), for example, by taking into ac-
count a variety of evidence and knowledge.

The other type is the potential that covers only the docu-
ment node itself. In this case, implicit user preferences, such
as preferring more recent documents to older documents,
can be encoded. In this case, if document D4 is an older
document and document D5 is newer, we could construct a
potential function such that ¢)(D1) < ¢ (D3).

By constructing meaningful potential functions, many im-
plicit user preferences can be encoded into the model. Such
potential functions can be based on semantic, syntactic, con-
textual, stylistic, or other types of evidence. This results in a
more accurate representation of the user’s information need.



FI SD FD
AP | 0.1775 | 0.1867% (+5.2%) | 0.1866% (+5.1%)
WSI | 0.2592 | 0.2776T (+7.1%) | 0.2738% (+5.6%)
WTI0g | 0.2032 | 0.2167* (+6.6%) | 0.2231%* (+9.8%)
GOV2 | 0.2502 | 0.2832% (+13.2%) | 0.2844% (+13.7%)

Table 1: Mean average precision over a range of collec-
tions using each model variant. Values in parenthesis denote
percentage improvement over full independence (FI) model.
The symbols indicate statistical significance (p < 0.05 with
a one-tailed paired t-test), where * indicates a significant im-
provement over the FI variant, ** over both the FI and SD
variants, and  over the FI and FD variants.

Training

Training our model consists of learning the best setting for
A given some training data. Since we are dealing with in-
formation retrieval, training data comes in the form of rel-
evance judgments, which say whether or not some docu-
ment is relevant to some query. Rather than learning a
maximum likelihood or maximum a posteriori estimate,
we choose to find the parameter setting that directly max-
imizes the information retrieval metric under consideration.
We have derived a novel approach for carrying out such
a maximization by hill climbing on the non-differentiable
evaluation metric surface. Due to space limitations, we
refer the reader to (Metzler 2005) for more details. We
also note that a number of recent approaches have also
been proposed to solve the problem of directly maximiz-
ing information retrieval-like metrics (Burges ef al. 2005;
Joachims 2005).

Summary of Results

In (Metzler & Croft 2005), we derive potential functions that
build a simple model of term proximity. That is, we modeled
the fact that users implicitly prefer query terms to appear
within close proximity to each other within documents and
that subphrases appearing within the query (such as white
house and rose garden in our example) should also appear
as phrases within relevant documents.

Table 1 summarizes our results on four data sets. The
AP and WSJ data sets consist of news articles, whereas
the WT10g and GOV2 data sets are very large (10GB and
426GB, respectively) collections of web documents. We
note that the FI variant corresponds to a bag of words model.
As we see, by modeling the proximities between terms with
the SD and FD variants we are able to significantly improve
effectiveness on every collection. For added evidence of the
model’s potential, we note that a slightly modified version
of the model had either the best or second best results at the
2004 and 2005 TREC Terabyte Tracks (Metzler et al. 2004;
2005b), and the 2005 TREC Robust Track (Metzler et al.
2005a), which are international evaluations of information
retrieval systems held yearly by NIST.

Based on these results, we feel that further implicit user
assumptions and knowledge can be encoded into the model
to yield even better performance.

Discussion

In this section we discuss several high level issues concern-
ing knowledge representation in information retrieval.

Implicit vs. Explicit Representations

As described previously, a large amount of information is
lost when an information need is transcribed into a query.
This brings up the question of how much information a user
should explicitly input to a search system and what infor-
mation the system itself should implicitly extract from the
query. There exists an interesting tradeoff between the bur-
den put on the user and that put on the system. The more
information a user is willing to input, the less intelligent the
system has to be. However, since users are typically only
willing to enter very short queries, the burden is typically
left to the retrieval system.

Several retrieval systems exist that provide the user with
a robust query language which allows the user to express
their information need in greater detail. Two examples of
such systems are Indri and its predecessor InQuery, which
are based on the inference network retrieval model (Metzler
& Croft 2004; Turtle & Croft 1991). The following is an
example Indri query corresponding to the information need
of locating the birthplace of George Washington:

#weight[sentence]( 2.0 #uw8( george washington )
1.0 born
1.0 #any:location )

which says “I want to find sentences that contain the terms
George and Washington, in any order, within 8 words of
each other (weighted 2), the term born (weighted 1), and
any text indicative of a location (weighted 1)”. As we see,
this provides the user with a powerful tool for finding in-
formation by explicitly stating their preferences. However,
this requires users to learn a query language, which many
novice users may be unwilling to do. It is unclear if users
of a commercial search engine would use such a powerful
query language even if it significantly improved their user
experience.

Therefore, as long as a gap exists between the information
need and the query, there will be a need to build models
that implicitly capture the preferences users are unwilling
or unable to explicitly represent. We feel that the inference
network model and our model provide an interesting set of
tools for developing a better understanding of these issues.

Beyond Bags of Words

We have argued against the use of bag of words models and
shown that modeling term proximity preferences can signif-
icantly improve retrieval effectiveness. It is worth looking
into why such a model performs so much better than the bag
of words approach.

As we showed with the white house rose garden example,
permuting the terms leads to a semantically different query.
Bag of words models are inherently deficient, in that they are
incapable of capturing implicit concepts represented within
the query. Both our work and the work of others (Mishne
& de Rijke 2005) has shown that modeling these concepts,



teaching #uw8(teaching children)
disabled #uw8(disabled children)
children #uw8(teaching disabled)

#1(disabled children)  #uwl2(teaching disabled children)

#1(teaching disabled) #1(teaching disabled children)

Table 2: Implicit concepts extracted for the query teaching
disabled children, where #1 indicates the terms should ap-
pear as an exact phrase, and #uwN indicates the terms should
appear, in any order, within a window of N terms.

via the use of proximity preferences, yields improvements in
retrieval effectiveness. For example, for the query teaching
disabled children, our model extracts the implicit concepts
shown in Table 2. More details of how these concepts are ex-
tracted can be found in our previous work (Metzler & Croft
2005).

As we see, these implicit concepts represent the underly-
ing information need better than a bag of words representa-
tion. We see that concepts such as #1(disabled children) and
#uw8(teaching children) appear in the list, both of which are
items the user probably had in mind while formulating the
query, but was unable or unwilling to explicitly represent.

Even popular n-gram models are too rigid and fail to
properly model all of the implicit concepts that our gener-
alized model does. This is mostly due to the fact that n-
gram models try to explain the sequential generation of text,
whereas the idea of a concept is much more loosely defined
in the context of the query. For this reason, non-sequential
terms within a query, when combined together, may form
useful concepts.

Therefore, we again see the importance of modeling im-
plicit preferences. Queries, and texts in general, are filled
with ambiguity, where there may be a large difference be-
tween what the author had in mind and what was actually
written. We have shown that it is fruitful to consider model-
ing these implicit preferences in the context of information
retrieval, but note that these observations may also be appli-
cable to related areas, such as natural language processing
and text classification.

Conclusions

In this paper we summarized a recently proposed informa-
tion retrieval model based on Markov random fields. The
model provides a robust framework for incorporating im-
plicit preferences and knowledge that users have in mind
when formulating a query, but are unable to explicitly ex-
press. We showed that when using the model to build a sim-
ple representation of term proximity we were able to achieve
significantly better performance over standard bag of words
models. We feel that building more knowledge into the sys-
tem will only help further improve retrieval performance.
In this vein, there are several interesting open questions
with regard to this model. First, can such a model be used to
encode common sense knowledge into the search process?
Next, what are the limits as to what can be represented in
such a framework? Finally, how can the user (and their past
experiences) be modeled in such a framework in order to

infuse the model with personalized preferences?
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