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ABSTRACT
Automatic query expansion is well known as a technique
that improves query effectiveness on average. Unfortunately,
it is usually very slow, increasing the time to process a query
by 20 times or more. In this study, we use relevance models
to show how the process can be made almost as fast as
running a non-expanded query.

1. INTRODUCTION
The information retrieval research community has widely
adopted various forms of pseudo-relevance feedback since it
was shown to be successful (on average) in TREC-3 [4, 9,
8]. By and large, these techniques work using two stages of
retrieval. In the first stage, the query is used to create a
normal ranked list of documents likely to be relevant. The
top N documents from that list (with N varying depending
on the particular technique) are then mined for words or
phrases that occur frequently. Those new features are added
to the query and the revised query is re-run. Because these
techniques results in an expanded query, pseudo-relevance
feedback is a type of automatic query expansion (AQE).

On average, the revised query is better. When the ini-
tial query was reasonably successful, the revised query may
be substantially better at finding relevant documents. The
caveat is that when the initial query did poorly, the feed-
back process could easily be misdirected and result in even
worse results. A good deal of research has been done to
understand when it makes sense to expand the query [3, 2],
since empirically a system improves substantially if it always
makes the right thoice. Unfortunately, predicting the value
of expansion is unreliable at this time.

Nonetheless, automatic query expansion is very popular and
is used by almost all high-performing research systems. Some
examples of approaches are:

• Rocchio is used primarily in vector space IR systems.
Here, the vectors for the top ranked documents are
added to the query vector:

Q
′ = αQ + β
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where Ri represents one of the N top-ranked “rel-
evant” documents and Li represents one of the M

“not relevant” documents taken from very far down
the ranked list (usually). The coefficients control the
weight of the different components. Often α = β = 1
and γ = 0 (i.e., there is no non-relevant automatic
feedback). The set of terms added to the query is of-
ten limited to a small number. This approach and
variations on it are very effective.

• LCA (Local Context Analysis) [10] is a modification of
the strict Rocchio approach. It examines top-ranking
passages of text and computes a weight for every word
that occurs in those passages. The weight is a complex
formula used that gives credit to terms occurring with
multiple query words and reduces the weight for terms
that occur too often in the corpus. After all terms
have been weighted, the top 50-75 are added into the
query and it is re-run. LCA was implemented in the
Inquery system.

• Relevance models [5] is a version of Rocchio approach
developed for the language-modeling framework. For
every word in the vocabulary it computes the probabil-
ity that this word would appear during random sam-
pling from the same distribution that produced the
query. Operationally, the main difference from Roc-
chio is that top-ranked documents are weighted such
that documents further down the list have smaller and
smaller influence on word probabilities.

Automatic query expansion of one form or another is widely
used in research systems, but comes one major downside:
it is slow. Because all approaches require two rounds of
retrieval, they take at a minimum twice the time of direct
retrieval. Furthermore, since document analysis takes some
time and since the revised queries are much larger than the
original queries, AQE runs are typically vastly slower. Anec-
dotal evidence suggests that queries may run 20 or more
times slower for some systems. This slowdown prevents the
adoption of AQE for real retrieval systems, but also puts a



Times
AP FT LA WSJ

# qrys. 100 150 100 200
LM 0.2165 0.2329 0.2458 0.2511

time[s] 50.6 24.4 7.6 70.2
RM 0.2740 0.2525 0.2719 0.2978
time 1446.16 1639.22 611.43 1543.32

Table 1: Comparison of time to run queries using a
language modeling technique that does not include
AQE and the relevance model (RM).

serious crimp in research: only 5% as many experiments fit
into a particular window of time.

This study shows how automatic query expansion can be
done quickly enough that it is only marginally slower than
the original query. The work is done using the type of AQE
provided by the relevance model, but is applicable to many
other AQE implementations.

We start in Section 2 by demonstrating empirically what
the slowdown is for relevance modeling. In Section 3 We
then describe a range of techniques that are commonly used
to improve the speed of AQE, but that generally result in
reduced effectiveness. Section 4 describes manipulation of
the relevance model definition that shows how some pre-
processing during index time can reduce the work needed at
query time. In Section 5 we present the results of a set of ex-
periments that measure the time savings. We discuss some
aspects of the results in Section 6, with a focus on the appli-
cability of this work to other AQE approaches, the expense
of the pre-processing step, and some additional insights that
the manipulation of Section 4 reveal.

2. SPEED OF QUERY EXPANSION
We start by demonstrating the impact of the multiple phases
of query expansion. These numbers are for an implementa-
tion of relevance models similar to though independent of
that available in the Lemur toolkit and its Indri retrieval
system1.

Table 1 shows the impact of incorporating relevance models
on four different collections. For each collection, we run from
100 to 200 queries and show the total time (in seconds)
it takes to process that set. The first row represents an
unexpanded run and is quite fast—e.g., the AP queries take
roughly a half second apiece on average. The second row
shows the impact of relevance models: the AP queries now
take about 15 seconds apiece, a factor of almost 30. The
other collections show similar or worse results, with the LA
collection being the worst at nearly 90 times the time.

We have not done similar comparisons for other AQE tech-
niques, though we know anecdotally that the results are
comparable.

3. SPEEDING EXPANSION UP
Most methods for speeding up AQE limit the amount of
processing and/or expansion. For example, fewer documents

1http://www.lemurproject.org/

Times
AP FT LA WSJ

# qrys. 100 150 100 200
LM 0.2165 0.2329 0.2458 0.2511

time[s] 50.6 24.4 7.6 70.2
RM-10 0.2280 0.2079 0.2208 0.2466

time 234.75 336.67 144.07 296.54
RM-20 0.2516 0.2189 0.2315 0.2701

time 275.08 393.56 165.36 337.45
RM-50 0.2631 0.2401 0.2435 0.2819

time 364.6 491.7 208.43 441.95
RM-100 0.2697 0.2426 0.2494 0.2901

time 470.31 631.28 253.19 562.48
RM-200 0.2711 0.2477 0.2548 0.2948

time 677.25 821.97 320.25 771.48
RM-500 0.2728 0.2520 0.2612 0.2972

time 1079.54 1110.99 462.6 1142.03
RM-full 0.2740 0.2525 0.2719 0.2978

time 1446.16 1639.22 611.43 1543.32

Table 2: Impact of reducing the number of docu-
ments considered for expansion in relevance mod-
els. The row RM-N means that the top-ranking N

documents were included in processing.

might be considered when looking for candidate expansion
terms, reducing the time to parse and process top ranking
documents and their terms. Alternatively, a smaller number
of additional terms might be added to decrease the time to
run the second query. In general, those approaches reduce
processing time to the detriment of effectiveness, because
optimal results are obtained with more documents and/or
more expansion terms.

To illustrate the impact of these approaches, we carried out
a series of experiments on the relevance model. Table 2
shows the impact of using from 10 to 500 documents in the
expansion process. Note that the increase in time can be cut
dramatically (though it is still 4 or more times slower), but
at a substantial cost in terms of effectiveness. For example,
the AP queries take just over 2 seconds each rather than
almost 15, but the effectiveness gain is 5% rather than 27%
(relative).

Similar results occur when the number of expansion terms
is reduced, though careful parameter tuning can ameliorate
that somewhat [6].

4. AN OPPORTUNITY
In this section we will take a very different approach to
speeding up relevance-based language models. We are go-
ing to closely analyze the ranking formula use by [5], and
derive an algebraic re-arrangement that will ultimately lead
to a significant increase in computational efficiency of the
approach. According to [5], good retrieval performance can
be achieved if we rank the documents D in the collection by
the cross-entropy of their language model with the estimated
relevance model R:

H(R||D) =
∑

w

P (w|R) log P (w|D) (1)



Here the summation goes over all vocabulary words w, and
P (w|D) represents a smoothed language model of document
D, which is normally [11] estimated as follows:

P (w|D) = λD

#(w, D)

|D|
+ (1−λD)

#(w, C)

|C|
(2)

where #(w, D) and #(w, C) represent the number of times
we observe the word in the document D and the entire col-
lection C. λD is a document-specific smoothing parameter,
which was set to 0.2 in all our experiments. The final com-
ponent of relevance-based ranking (equation 1) is the rele-
vance model R, which after a slight re-arrangement can be
expressed in the following form:

P (w|R) ≈ P (w|q1. . .qk) =
∑

M

P (w|M)P (M |q1. . .qk) (3)

Here q1. . .qk represents the original query, the summation
goes over a set of all document models M in our collec-
tion, and probabilities are estimates using equation (2). The
posterior probability P (M |q1. . .qk) is computed using the
Bayes’ rule under the assumption that q1. . .qk are condi-
tionally independent given M .

Now let us plug the relevance model estimate from equa-
tion (3) into the cross-entropy ranking formula:

H(R||D) =
∑

w

log P (w|D) × P (w|R)

=
∑

w

log P (w|D) ×

(

∑

M

P (w|M)P (M |q1. . .qk)

)

=
∑

M

∑

w

[P (w|M) log P (w|D)] × P (M |q1. . .qk)

=
∑

M

H(M ||D) × P (M |q1. . .qk) (4)

The first step in our derivation is a direct result of substitut-
ing equation (3) into equation (1). The second step involves
changing the order of summations (

∑

w
) and (

∑

M
), which

can always be done because the summations are finite. The
last step involves noticing that P (M |q1. . .qk) does not de-
pend on w, moving it outside of (

∑

w
), and recognizing the

inner summation to be the cross-entropy H(M ||D).

Far from being a just a curious exercise, the derivation we
carried out in equation (4) has an important probabilistic
interpretation. The original relevance-based ranking can be
thought of as a log-linear similarity (entropy) with a mas-
sively expanded query (relevance model). We demonstrated
that it is equivalent to computing a set of affinities H(M ||D)
of document D with every model M in our collection, and
then constructing a query-weighted average of these affini-
ties. When expressed in this manner, relevance-based rank-
ing may be immediately recognized as a kernel-based ap-
proach, similar to spread-activation methods, self-organizing
maps and regularization techniques.

4.1 Retrieval Algorithm
Aside from theoretical elegance, the result we derived in
equation (4) has strong implications for the computational
expense of relevance-based ranking. We observe that the
affinity component H(M ||D) is independent of the user’s
query and can be pre-computed and stored at the time when

the collection is indexed. These affinities can be thought of
as another inverted index, associated with every document
M in the collection. Given a new query q1. . .qk, we perform
retrieval as follows:

1. use the language-modeling approach [7] to retrieve a
set of top-ranked documents M from the collection.

2. convert language modeling scores P (q1. . .qk|M) into
Bayesian posteriors P (M |q1. . .qk)

3. for each of the top-ranked documents M :

• fetch its affinity list – a vector containing H(M ||D)
for documents D that are most similar to M

• merge the affinity list into the final ranked list,
weighing the components H(M ||D) by P (M |q1. . .qk)

The algorithm outlined above is very efficient because it
avoids the main pitfall of relevance-based ranking – the need
to evaluate a giant “query” potentially consisting of every
word in the vocabulary.

Original relevance-based ranking algorithm:

1. use the language-modeling approach [7] to retrieve a
set of top-ranked documents M from the collection.

2. convert language modeling scores P (q1. . .qk|M) into
Bayesian posteriors P (M |q1. . .qk)

3. for each of the top-ranked documents M :

• fetch the vector of word counts for M and convert
it into a document language model P (w|M)

• merge the document language model into the over-
all relevance model, weighing word probabilities
P (w|M) by P (M |q1. . .qk)

4. use the estimated relevance model P (w|R) as a giant
query in the language modeling approach to come up
with the final ranked list

The main computational expense of relevance-based rank-
ing comes from step (4) in the algorithm presented above.
Running a query consisting of thousands of words is very
inefficient and requires a lot of computational resources.

5. RESULTS

5.1 Datasets and processing
We use four different datasets in our evaluation of adhoc re-
trieval effectiveness. Table 3 provides detailed information
for each dataset. All four datasets contain news releases;
the majority of them are print media. The datasets vary
in size, time frame, and word statistics. All datasets are
homogeneous, i.e. they contain documents from a single
source. For each dataset there is an associated set of top-
ics, along with human relevance judgments. The datasets
contain pooled judgments, i.e. only top-ranked documents
from a set of retrieval systems were judged with respect to
each topic by annotators at NIST. TREC topics come in the
form of queries, containing title, description and narrative
portions. We used only the titles, resulting in queries which
are 3-4 words in length.



Name Sources Years #Docs #Terms dl cf Queries ql
AP Associated Press 89-90 242,918 315,539 273 210 51-150 4.32
FT Financial Times 91-94 210,158 443,395 237 112 251-400 2.95
LA Los Angeles Times 89-90 131,896 326,609 290 117 301-400 2.52

WSJ Wall Street Journal 87-92 173,252 185,903 265 247 1-200 4.86

Table 3: Information for the corpora used in ad-hoc retrieval experiments. dl denotes average document
length, cf stands for average collection frequency of a word, and ql represents average number of words per
query.

Times
AP FT LA WSJ

# qrys. 100 150 100 200
LM 0.2165 0.2329 0.2458 0.2511

time[s] 50.6 24.4 7.6 70.2
RM-full 0.2740 0.2525 0.2719 0.2978

time 1446.16 1639.22 611.43 1543.32

fRM 0.2671 0.2511 0.2653 0.2951
time 67.99 42.14 15.83 99.89

sims[h] 91.40 70.45 38.55 46.60

fRM-10 0.2500 0.2280 0.2298 0.2655
sims 16.68 13.52 4.86 8.90

fRM-20 0.2594 0.2400 0.2421 0.2817
sims 25.10 21.39 7.70 13.67

fRM-50 0.2649 0.2471 0.2526 0.2907
sims 45.53 39.37 14.29 24.39

fRM-100 — 0.2525 0.2540 0.2943
sims — 55.08 20.34 32.87

Table 4: Compares the times (in seconds) to run
queries without AQE, with RM, and then with fast
relevance models. For all fast RM runs, the pre-
processing time (in hours) needed to build the sim-
ilarity matrix is also listed.

Prior to any experiments, each dataset was processed as
follows. Both documents and queries were tokenized on
whitespace and punctuation characters. Tokens with fewer
than two characters were discarded. Tokens were then lower-
cased and reduced to their root form by applying the Krovetz
stemmer used in the InQuery engine [1]. The stemmer com-
bines morphological rules with a large dictionary of special
cases and exceptions. After stemming, 418 stop-words from
the standard InQuery [1] stop-list were removed. All of the
remaining tokens were used for indexing, and no other form
of processing was used on either the queries or the docu-
ments.

5.2 Timing runs
Table 4 shows the impact on query time for fast RMs in the
third row. The query effectiveness is nearly identical to that
of full relevance models. The differences are primarily the
result of converting very low probability values to zero, but
partially the result of rounding differences with the reorder-
ing of calculations. More importantly, the time to process
the query has dropped precipitously. Where RMs took al-
most 15 seconds per query on AP, fast RMs require about
2/3 of a second, compared to the 1/2 second for unexpanded
queries. The results are comparable on the other collections.

Of course, the downside of the high-speed query processing

is the large amount of pre-processing that needs to happen
at indexing time. The AP collection required over 90 hours
of time to build the document similarity matrix. For a col-
lection that will be indexed rarely and searched often, this
is a fine tradeoff. In other cases, the indexing time may be
unacceptable.

One way to reduce the amount of time needed is to reduce
the number of documents whose similarities are included in
the matrix. This is similar in spirit to using fewer documents
for the expansion. Table 4 shows that the time to build the
matrix can be cut to a large degree by doing that. The drop
in effectiveness is less than that seen when fewer documents
were used for RM expansion (see Table 2).

6. DISCUSSION
In the previous sections we presented a novel and efficient
algorithm for constructing relevance-based rankings. How-
ever, we omitted one very important detail in our discussion
– the computational expense of constructing a set of affinity
lists H(M ||D) for every document M in the collection. A
naive approach to this problem would involve a quadratic
algorithm that iterates over every possible document pair
M, D computing H(M ||D) along the way. The computa-
tional cost of this approach is prohibitive. A more intelli-
gent implementation would take advantage of the inverted
indices and operate as follows:

1. for each document M in the collection:

• select representative words from M forming a query
QM

• use QM to retrieve a set of top-ranked documents
D1. . .Dk

• for each top-ranked Di, compute and store the
affinity H(M ||D)

This algorithm leverages the following observation: we do
not need to know the affinity between every pair of docu-
ments in the collection, it is sufficient compute H(M ||D)
for most similar documents. The hope is that the query
QM will bring those documents to the top of the ranked
list. Computational expense of this algorithm is determined
by the size of the query QM – the fewer words it contains,
the faster we will be able to compute the similarity matrix.
However, if we use too few words from each document M ,
we will likely miss many documents D that are similar to
M , degrading the quality of our similarity matrix.

We have conducted a set of experiments analyzing the im-
pact of query size on the running time and final retrieval
accuracy of our algorithm. The results are summarized in



table 4. We have investigated several methods for select-
ing words to include in the query QM . The approach that
provided the best tradeoff between running time and per-
formance is to consider a set of k words with the highest
frequencies in M . While this might not strike an IR re-
searcher as a very sophisticated term selection formula, it
does seem to bring to the top documents D with the high-
est H(M ||D). We constructed queries consisting of 10, 20,
50 and 100 most frequent words. We also did a run (fRM )
where an entire document was used as a query, resulting in
exact retrieval of documents D with the highest H(M ||D).

7. CONCLUSION
We have shown that by expending time during indexing, we
can reduce the time needed for automatic query expansion
to the point where it provides almost no delay at query time.
Although we developed and demonstrated these results us-
ing the relevance model approach to expansion, the same
ideas should apply readily to many other (though not all)
expansion techniques.

The approach we have used depends upon substantial pro-
cessing of the corpus at index time to build a document-
document similarity matrix. We have shown that some sim-
ple ideas can reduce the cost of building that matrix, but
even those approaches will not scale well to very large collec-
tions. We have sketched some ideas of how we could improve
the speed using approximations, and are continuing to work
in that direction.

We believe that fast relevance models—and more generally,
fast query expansion—will be a tremendous boon to the re-
search community. It should allow researchers to carry out
more experiments to better understand the technique and
its applicability. It will also allow interactive studies to use
AQE techniques rather than less effective but more efficient
reterieval methods.
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