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Abstract

We extend the traditional active learning framework to include feedback on features in addition

to labeling instances, and we execute a careful study of the effects of feature selection and human

feedback on features in the setting of text categorization. Our experiments on a variety of cate-

gorization tasks indicate that there is significant potential in improving classifier performance by

feature re-weighting, beyond that achieved via membership queries alone (traditional active learn-

ing) if we have access to an oracle that can point to the important (most predictive) features. Our

experiments on human subjects indicate that human feedback on feature relevance can identify a

sufficient proportion of the most relevant features (over 50% in our experiments). We find that

on average, labeling a feature takes much less time than labeling a document. We devise an al-

gorithm that interleaves labeling features and documents which significantly accelerates standard

active learning in our simulation experiments. Feature feedback can complement traditional active

learning in applications such as news filtering, e-mail classification, and personalization, where the

human teacher can have significant knowledge on the relevance of features.

Keywords: active learning, feature selection, relevance feedback, term feedback, text classifica-

tion

1. Introduction

Automated text categorization has typically been tackled as a supervised machine learning problem

(Sebastiani, 2002; Lewis, 1998). The training data should be fairly representative of the test data

in order to learn a fairly accurate classifier. In document classification where categories can be as

broad as sports, this means that a large amount of training data would be needed. The training data

is often labeled by editors who are paid to do the job. Now consider a scenario where a user wants

to organize documents on their desktop into categories of their choice. The user might be willing to

engage in some amount of interaction to train the system, but may be less willing to label as much

data as a paid editor. To build a generic text categorization system that could learn almost arbitrary

categories based on an end user’s changing needs and preferences, for example in applications such

as news filtering and e-mail classification, the system should extract a large number of features. In
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e-mail classification for example, any subset of the features extracted from the subject, the sender,

and the text in the body of the message could be highly relevant. While algorithms such as Winnow

(Littlestone, 1988) and Support Vector Machines (SVMs) (Joachims, 1998) are robust in the pres-

ence of large numbers of features, these algorithms still require a substantial amount of labeled data

to achieve adequate performance.

Techniques such as active learning (Cohn et al., 1994), semi-supervised learning (Zhu, 2005),

and transduction (Joachims, 1999) have been pursued with considerable success in reducing labeling

requirements. In the standard active learning paradigm, learning proceeds sequentially, with the

learning algorithm actively asking for the labels (categories) of some instances from a teacher (also

referred to as membership queries). The objective is to ask the teacher to label the most informative

instances in order to reduce labeling costs and accelerate the learning. Still, in text categorization

applications in particular, active learning might be perceived to be too slow, especially since the

teacher may have much prior knowledge on relevance of features for the task. Such knowledge may

be more effectively communicated to the learner than mere labeling of whole documents. There has

been very little work in supervised learning in which the teacher is queried on something other than

whole instances.

One possibility is to ask the user questions about features. That users have useful prior knowl-

edge which can be used to access information is evident in information retrieval tasks. In the infor-

mation retrieval setting, the user issues a query, that is, states a few words (features) indicating her

information need. Thereafter, feedback which may be either at a term or at a document level may

be incorporated. In fact, even in traditional supervised learning, the editors may use keyword based

search to locate the initial training instances 1. However, traditional supervised learning tends to

ignore this knowledge of features that the user has, once a set of training instances have been ob-

tained. In experiments in this paper we study the benefits and costs of feature feedback via humans

on active learning.

We try to find a marriage between approaches to incorporating user feedback from machine

learning and information retrieval and show that active learning should be a twofold process – at

the term-level and at the document-level. We find that people have a good intuition for important

features in text classification tasks, since features are typically words, and the categories to learn

may often be approximated by some disjunction or conjunction of a subset of the features. We show

that human knowledge on features can indeed increase active learning efficiency and accelerate

training significantly in the initial stages of learning. This has applications in e-mail classification

and news filtering where the user has knowledge of the relevance of features and a willingness to

label some (as few as possible) documents in order to build a system that suits her needs.

This paper extends our previous work in employing such a two-tiered approach to active learning

(Raghavan et al., 2005). We state the active learning problems that we address and present our

approach to use feedback on both features and instances to solve the problems in Section 2. We

give the details of the implementations in Section 3. In Section 4 we describe the data and metrics

we will use to evaluate the performance of active learning. We obtain a sense of the extent of the

improvement possible via feature feedback by defining and using a feature oracle. The oracle and

the experiments are described in Section 2, and the results are reported in Section 5. In section 6 we

show that humans can indeed identify useful features. Furthermore, we find that labeling a feature

1. See http://projects.ldc.upenn.edu/TDT4/Annotation/label instructions.html. The annotators at the

LDC (Linguistic Data Consortium, home-page: http://ldc.upenn.edu) use a combination of techniques like

nearest neighbors and creative search to annotate corpora for the Topic Detection and Tracking (Allan, 2002) task.
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takes one fifth of the time of labeling a document. In Section 6.2 we show that the human-chosen

features significantly accelerate learning in experiments that simulate human feedback in an active

learning loop. We discuss related work in Section 7 and conclude in Section 8.

Standard Active Learning

Input: T (Total number of feedback iterations), U (Pool of unlabeled instances), init size (number

of random feedback iterations)

Output: M T (Model)

t = 1; U 0 = U ; M 0 =NULL;

1. While t ≤ init size

a. 〈Xt ,U t〉 = Instance Selection(M 0, U t−1, random)
b. Teacher assigns label Yt to Xt

d. M t = train classifier({〈Xi,Yi〉|i = 1...t}, M t−1)

c. t ++
2. While t ≤ T

a. 〈Xt ,U t〉 = Instance Selection(M t−1, U t−1,uncertain)
b. Teacher assigns label Yt to Xt

c. M t = train classifier({〈Xi,Yi〉|i = 1...t}, M t−1)

d. t ++
Return M T

Instance Selection

Teacher/

Oracle

  M

Steps 1,2

t<=T

Figure 1: Algorithm and block diagram for traditional active learning where the system asks for

feedback on instances only (System 1).

2. Active Learning

For background on the use of machine learning in automated text categorization as well as active

learning, we refer the reader to the works of Sebastiani (2002) and Lewis and Catlett (1994). Ac-

tive learning techniques are sequential learning methods that are designed to reduce manual training

costs in achieving adequate learning performance. Active learning methods reduce costs by request-

ing training feedback selectively and intelligently from a teacher. The teacher is a human in the text

categorization domain. The teacher may also be called the user, especially when the teacher training

the model is the same as the person using it, for example a user who is training a personalized news

filtering system. Traditionally in active learning the teacher is asked membership queries which are

questions on the class labels or categories of selected instances (documents in our case).

The teacher is sometimes referred to as an oracle in the literature (Baum and Lang, 1992). We

will also use the term oracle to refer to a source that gives feedback on instances and/or features, but

in this paper we make a distinction between teacher and oracle. We will reserve the term teacher

or user to refer to a real human, whose feedback may not be perfect, and we use the term oracle to

refer to a source whose feedback is (close to) perfect for speeding active learning. See Section 2.1

for a longer discussion of the distinction between the two.
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A typical algorithm for active learning and a block diagram are shown in Figure 1. An instance

X (which is a document in our case) belongs to a class Y . X is represented as a vector x1...xN of

features, where N is the total number of features. The features we use for documents are words,

bi-grams (adjacent pairs of words) and tri-grams (adjacent triples of words), since these have consis-

tently been found to work well for topic classification. The value of x j is the number of occurrences

of term i in document X . We work on binary one-versus-rest classification. Therefore the value of

Y for each learning problem of interest is either -1 or 1, signaling whether the instance belongs to

the category of interest, or not. An instance in the document collection is unlabeled if the algorithm

does not know its label (Y value). The active learner may have access to all or a subset of the

unlabeled instances. This subset is called the pool (denoted by U ).

Active Learning Augmented with Feature Feedback

Input: T (Total number of feedback iterations), U (Pool of unlabeled instances), init size (number

of random feedback iterations)

Output: M T (Model)

t = 1; U 0 = U ; M 0 =NULL;

1. While t ≤ init size

a.〈Xt ,U t〉 = Instance Selection(M 0, U t−1,random)
b. Teacher assigns label Yt to Xt

c. M t = train classifier({〈Xi,Yi〉|i = 1...t}, M t−1)

d. t ++
2. While t ≤ T

a. 〈Xt ,U t〉=
Instance Selection(M t−1, U t−1,uncertain)

b. Teacher assigns label Yt to Xt

c. M t = train classifier({〈Xi,Yi〉|i = 1...t}, M t−1)

d. i. {F1, ...,Ff} = Feature Selection(M t ,U t)

ii. Teacher selects {F1, ..,Fk} ⊆ {F1, ...,Ff}
e. Incorporate Feature Feedback(M t , {F1, ...,Fk})

c. t ++
Return M T .

Feature Selection

Instance Selection

Teacher/

Oracle

t <= T

Step 2

Instance Selection

t <= init_size

Step 1

M

M

Figure 2: An active learning system where feedback on features is also requested (System 2).

The algorithm begins by training the classifier or model M on some initial set of labeled in-

stances of size init size. The subscript t onM , U , X and Y correspond to the value when t instances

have been labeled. The initial set is picked by a random sampling procedure (step 1) from U . The

parameter random is passed to it. Sometimes one may use keyword based search or some other pro-

cedure in place of random sampling. Next, active learning begins. In each iteration of active learning

the learner selects an instance from U using some criterion (e.g., a measure of informativeness) and

asks the teacher to label it (step 2.a). In a popular active learning method, called uncertainty sam-

pling, the classifier selects the most uncertain instance (Lewis and Catlett, 1994), for a given model

(M) and a pool of unlabeled instances (U ). The newly labeled instance is added to the set of labeled
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instances and the classifier is retrained (step 2.c). The teacher is queried a total of T times. The

train classifier subroutine uses the labeled data as training, as well as the model (M ) learned in a

previous iteration, allowing for the case of incremental training (Domeniconi and Gunopulos, 2001)

or the case when the model may be initialized by prior knowledge (Wu and Srihari, 2004).

We will also consider the variant in which instances are picked uniformly at random in all

iterations, which we call random sampling (it is equivalent to regular supervised learning on a

random sample of data). In the pseudo-code in Figure 1, random sampling corresponds to the case

when init size > T .

2.1 Our Proposal: Feature Feedback and Instance Feedback in Tandem

In this paper we propose to extend the traditional active learning framework to engage the teacher in

providing feedback on features in addition to instances. A realization of this idea is system 2 shown

in Figure 2, where the active learner not only queries the teacher on an informative document, but

also presents a list of f features for the teacher to judge (step 2.d) at each iteration. The simplest

implementation of such a system can consist of one where f = |X | (the length of the document X),

and where the user is simply asked to highlight relevant words or phrases (features) or passages

while reading the document in order to label the document (step 2b), akin to the system in the

paper by Croft and Das (1990). In our experiments, individual features are presented to the user for

selection. Section 6.3 provides the details of our method.

In our proposed system the teacher is asked two types of questions: (1) membership queries

and (2) questions about the relevance of features. A relevant feature is highly likely to help dis-

criminate the positive class from the negative class. In this paper we aim to determine whether a

human teacher can answer the latter type of question sufficiently effectively so that active learn-

ing is accelerated significantly. A human and a classifier probably use very different processes to

categorize instances. A human may use her understanding of the sentences within the document,

which probably involves some reasoning and use of knowledge, in order to make the categorization

decision, while a (statistical) classifier, certainly of the kind that we use in this paper, simply uses

patterns of occurrences of the features (phrases). Therefore, it is not clear whether a human teacher

can considerably accelerate the training of a statistical classifier, beyond simple active learning, by

providing feedback on features.

Before we address that issue, we determine whether feature feedback can accelerate active learn-

ing in an idealized setting. We seek to get a sense of the room for improvement. We will then exam-

ine how actual human teachers can approximate this ideal. Towards this goal we define a (feature)

oracle. We use the oracle to obtain an upper bound on the performance of our proposed two-tiered

approach. The oracle knows the correct answer needed by the learning algorithm. For example the

word ct is a highly relevant feature for classifying Reuters news articles on the earnings category

and our oracle would be able to determine that this feature is relevant when asked. However, a

teacher (human) who did not understand that ct stood for cents may not be able to identify ct as

relevant (we will see this exact example in Section 6.1). Therefore, the oracle and teacher may

differ in their answers to questions about features, that is, questions of type (2) above. We assume

that the oracle and the teacher always agree on the labels of documents that is, questions of type (1)

above. After showing the usefulness of oracle feature selection, we will then show that humans can

emulate the oracle for feature feedback to an extent that results in significant improvements over

traditional active learning.
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2.2 Extent of Speed Up Possible: Oracle Experiments

We perform two types of experiments with the oracle. In the first kind, the oracle, knowing the

allotted time T , picks the best subset of features to improve, as much as possible, the performance of

active learning. The procedure is shown in Figure 3. In Figure 3, the Incorporate Feature Feedback

subroutine is called to initialize the model. When System 3 is used with a user instead of the oracle

it is equivalent to a scenario where prior knowledge is used to initialize the classifier (Schapire et al.,

2002; Wu and Srihari, 2004; Godbole et al., 2004; Jones, 2005). In Section 3.4 we describe how

this oracle is approximated in our experiments.

Use of Feature Feedback Before Active Learning

Input: T (Total number of feedback iterations), U (Pool of unlabeled instances), init size (number

of random feedback iterations)

Output: M T (Model)

t = 1; U 0 = U ; M 0 =NULL;

1.a. {F1, ...,Ff} = Feature Selection(U 0)

b. Oracle selects {F1, ..,Fk} ⊆ {F1, ...,Ff}
2.Incorporate Feature Feedback(M 0, {F1, ...,Fk})

3. While t ≤ init size

a. 〈Xt ,U t〉=Instance Selection(M t−1, U t−1,random)
b. Oracle assigns label Yt to Xt

c. M t = train classifier({〈Xi,Yi〉|i = 1...t}, M t−1)

d. t ++
4. While t ≤ T

a. 〈Xt ,U t〉=Instance Selection(M t−1, U t−1,uncertain)
b. Oracle assigns label Yt to Xt

c. M t = train classifier({〈Xi,Yi〉|i = 1...t}, M t−1)

d. t ++
Return M T

Instance Selection

Teacher/

Oracle

M

Feature Selection M

Steps 1,2

t<= T

Step 3,4

Figure 3: An active learning system where feature selection is done before instance selection (Sys-

tem 3). This is one of the two set-ups used in our oracle experiments described in Section

2.2. The second set-up is shown in Figure 4.

The second type of experiment is a slight variation designed to isolate the effect of oracle feature

selection on example selection versus model selection during active learning. In these experiments,

active learning proceeds normally with all the features available, but after all the instances are picked

(after T iterations), the best set of k features that improve the resulting trained classifier the most

are picked and the resulting performance is reported. This is shown schematically and with pseudo-

code in Figure 4. We note that even when starting with the same initial set of labeled instances,

the classifiers learned during active learning, hyperplanes in our case, in these two systems may

be different as they are learned in different spaces (using different feature subset sizes). Besides,

the set of labeled instances is small, so the learning algorithm may not be able to find the best

“unique” hyperplane. In turn, the instances picked subsequently during active learning may differ
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substantially as both the spaces the instances reside in and the learned classifiers may be different.

The classifier learned in the feature reduced space may have better accuracy or lead to better choice

of instances to label during active learning, though this is not guaranteed or the benefits may be

negligible. In short, the trajectory of the active learning process, that is, the instances labeled and

classifiers learned, can be different in the two regimes, which may lead to substantially different

active learning performance. In Section 5 we provide the details of these experiments.

Systems 3 and 4 can also be used with a teacher (a human) instead of an oracle. For an actual

use in practice, we prefer an approach that combines feature selection and instance selection (e.g.,

as proposed in Section 2.1) because it also allows the system to benefit from the increase in the

knowledge of the teacher or the process may help remind the teacher about the usefulness of features

as she reads the documents. For example, the teacher who did not know that ct stood for cents may

realize that the word is indeed relevant upon reading documents containing the term. We will discuss

these related approaches in Section 7.

Use of Feature Feedback After Active Learning

Input: T (Total number of feedback iterations), U (Pool of unlabeled instances, init size (number

of random feedback iterations)

Output: M T (Model)

t = 1; U 0 = U ; M 0 =NULL;

1. While t ≤ init size

a. Xt = Instance Selection(M 0, U t−1,random)
b. Oracle assigns label Yt to Xt

c. M t = train classifier({〈Xi,Yi〉|i = 1...t}, M t−1)

c. t ++
2. While t ≤ T

a. 〈Xt ,U t〉 = Instance Selection(M t−1, U t−1, instance)
b. Oracle assigns label Yt to Xt

c. M t = train classifier({〈Xi,Yi〉|i = 1...t}, M t−1)

d. t ++
3. a. {F1, ...,Ff} = Feature Selection(M T , U T )

b. Oracle selects {F1, ..,Fk} ⊆ {F1, ...,Ff}
4. Incorporate Feature Feedback(M T , {F1, ...,Fk})

Return M T

Instance SelectionTeacher/

Oracle

 M

Feature Selection   M

t<=T

Step 1,2

Step 4,5

Figure 4: An active learning system where feature selection is done after instance selection (System

4). This is one of the two set-ups used in our oracle experiments described in Section 2.2.

The first set-up is shown in Figure 3.
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3. Implementation

In this section we give implementation details for our experiments. While our approach is applicable

to a variety of machine learning algorithms and feature selection approaches, we give the details of

our implementation. We use Support Vector Machines (SVMs) as the machine learned classifier,

uncertainty sampling as our approach to active learning and information gain as the feature selection

technique. We also give details on how we construct the approximate feature oracle.

3.1 Classifier: Support Vector Machines

We use support vector machines (SVMs) in our experiments (the modelM is a Support Vector Ma-

chine (SVM)) (Joachims, 1998). An SVM learning algorithm tries to find a hyperplane of maximum

margin that separates the data into one of two classes (Y ∈ {−1,+1}). A linear SVM is a binary

classifier given as

f (X) = sign(w•X +b), (1)

where w is the vector of weights and b is a threshold, both learned by the SVM learning algorithm.

SVMs are considered to be state-of-the-art classifiers in the domains that we described in Sec-

tion 4.1 and have been found to be fairly robust even in the presence of many redundant and irrele-

vant features (Brank et al., 2002; Rose et al., 2002.). Our SVM implementation uses the LibSVM

toolkit (Chang and Lin).

3.2 Active Learning: Uncertainty Sampling

Uncertainty sampling (Lewis and Catlett, 1994) is a type of active learning in which the instance

that the teacher is queried on is the unlabeled instance that the classifier is most uncertain about.

In the case of a naive Bayes classifier, this is the instance which is almost equally likely to be in

either of the two classes in a binary classification setting. When the classifier is an SVM, unlabeled

instances closest to the margin are chosen as queries (Schohn and Cohn, 2000; Tong and Koller,

2002). This results in the version space being split approximately in half each time an instance is

queried. We use a pool size of 500 in our experiments, such that for each instance selection, we

look at a new random sample of 500 instances from the unlabeled data. All our methods start out

with two randomly picked instances, one in the positive class and one in the negative class. Each

subsequent instance is picked through uncertainty sampling.

3.3 Feature Selection: Information Gain

We could have chosen any one of several methods for the ordering of features (Sebastiani, 2002;

Brank et al., 2002). Information gain is a common measure for ranking features and has been found

to be quite effective (Sebastiani, 2002; Brank et al., 2002), and is easy and quick to compute.

Information gain is given as

IG = ∑
c∈{−1,+1}

∑
τ∈{0,1}

P(c,τ) log
P(c,τ)

P(c)P(τ)
(2)

where c denotes the class label (+1 or -1) from section 3.1, and τ is 0 or 1 indicating the presence

or absence of a feature respectively. We used information gain wherever we needed to do feature

selection.
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3.4 Construction of the Approximate Feature Oracle

The (feature) oracle in our experiments has access to the labels of all documents in the data-set

(hence the name oracle) and uses this information to return a ranked list of features sorted in de-

creasing order of importance. We use information gain for feature ranking since it is easy to com-

pute, especially with a large number of training instances. Other feature selection methods (e.g.,

forward selection) may somewhat increase our upper bound estimates of usefulness of oracle fea-

ture feedback. Such improvements will further motivate the idea of using feature feedback, but we

don’t expect the improvements to be very high. In our oracle experiments, we cut off the ranked

list (therefore obtaining a feature subset) at the point that yields the highest average active learning

performance. The next section describes our experiments and performance measures.

4. Experimental Set Up

We will now describe our data sets and our data collection methodology for experiments which use

teacher feedback on features.2 We then describe our evaluation framework.

4.1 Data Sets

Our test bed for this paper comes from three domains. The first data set consists of the 10 most

frequent classes from the Reuters-21578 corpus (Rose et al., 2002.). The 12,902 documents are

Reuters news articles categorized based on topics such as earnings and acquisitions. The Reuters

corpus is a standard benchmark for text categorization. The second corpus is the 20-Newsgroups

data set collected by Lang (1995). It has 20,000 documents which are postings on 20 Usenet news-

groups. This is a slightly harder problem because it has a large vocabulary compared to the Reuters

corpus (news articles tend to be more formal and terse) and it has many documents in each category

which are tangentially related to the topic. The topics reside in a hierarchy with broader topics like

sports and computers at the top level which are further divided into narrower subdivisions. For ex-

ample, sports encompasses more focused groups like baseball and hockey. There are 20 categories

at the lowest level of the hierarchy.

The third corpus is the TDT3 corpus (Allan, 2002) . We used 10 topics from the TDT3 corpus

which has 67,111 documents in three languages from both broadcast and news-wire sources. The

Linguistic Data Consortium (LDC) provides the output of an automatic speech recognizer (ASR) for

the broadcast news sources. Similarly they provide the machine translations of all documents that

are not originally in English. We use the ASR and machine translated documents in our experiments.

The noise in the ASR and machine translation output makes the TDT corpus particularly difficult

to work with. The topics in the TDT corpus are based on news events. Thus, hurricane Mitch

and hurricane George would be two different topics and developing a classifier to separate the two

classes is seemingly a more difficult problem. The two classes would have a lot of common words

especially with regard to lives lost, rescue operations etc. For example, the words storm and damage

each respectively occur in 50% and 27% of the documents on hurricane Mitch and in 75% and

54% of the documents on hurricane George. These common words are probably useful to detect a

generic topic like hurricane but are not that useful in discriminating hurricane Mitch from hurricane

George. However, we think it would be fairly trivial for a human to point out Mitch and George

as two keywords of importance which could then accelerate learning. The word Mitch occurs in

2. The data sets have been made available at http://ciir.cs.umass.edu/∼hema/data/jmlr2006/.
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42% documents on hurricane Mitch and in 0 documents on hurricane George. Similarly, the word

George appears in 0.05% documents on the topic of hurricane Mitch and in 88% of the documents

on hurricane George.

For all three corpora we consider each topic as a one-versus-rest classification problem, giving

us a total of 40 such problems listed in Appendix A. We also pick two pairs of easily confusable

classes from the 20-Newsgroups domain to obtain two binary classification problems viz., baseball

vs hockey and automobiles vs motorcycles. In all we have 42 classification problems. As features

we use words, bi-grams and trigrams obtained after stopping and stemming with the Porter stemmer

(Porter, 1980) in the Rainbow toolkit (McCallum, 1996).

4.2 Data for Whether Humans Can Emulate the Oracle

We picked five classification problems which we thought were perceptible to a non-expert and also

represented the broad spectrum of problems from our set of 42 classification problems. We took the

two binary classification problems and from the remaining 40 one-versus-rest problems we chose

three (earnings, hurricane Mitch and talk.politics.mideast). For a given classification problem we

took the top 20 features as ranked by information gain on the entire labeled set. We randomly mixed

these with features which are much lower in the ranked list. We showed each user one feature at a

time and gave them two options – relevant and not-relevant/don’t know. A feature is relevant if it

helps discriminate the positive or the negative class. We measured the time it took the user to label

each feature. We did not show the user all the features as a list, though this may be easier, as lists

provide some context and serve as a summary. Hence we expect that our method provides an upper

bound on the time it takes a user to judge a feature. The instructions given to the annotator are given

in Appendix B.

Similarly, we obtain judgments on fifteen documents in each of five categories (see Appendix

C). In this case we gave the user three choices – Class 1, Class 2, Don’t know. We randomly sampled

documents such that at least five documents belonged to each class. We have complete judgments

on all the documents for all three data sets. The main purpose of obtaining document judgments

was to determine how much time it would take a person to judge documents. We compare the time

it takes a user to judge a feature with the time it takes a user to judge a document. We measure

the precision and recall of the user’s ability to label features. We ask the user to first label the

features and then documents, so that the feature labeling process receives no benefit due to the fact

that the user has viewed relevant documents. In the learning process we have proposed, though,

the user would be labeling documents and features simultaneously, so the user would indeed be

influenced by the documents she reads. Hence, we expect that the feature labels we obtained by

our experimental method are worse in terms of precision and recall than the real setting. We could

in practice ask users to highlight terms as they read documents. Experiments in this direction have

been conducted in information retrieval (Croft and Das, 1990).

Our users (participants) were six graduate students and two employees of an Information Tech-

nology company, none of whom were authors of this paper. Of the graduate students, five were

in computer science and one from public health. All our users were familiar with the use of com-

puters. Five users understood the problem of document classification but none had worked with

these corpora. One of our users was not a native speaker of English. The topics were distributed

randomly, and without considering user expertise, so that each user got an average of two to three

topics. There were overlapping topics between users such that each topic was labeled by two to
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three users on average. A feedback form asking the users some questions about the difficulty of the

task was handed out at the end (see Appendix D).

4.3 Evaluation

The deficiency measure was proposed by Baram et al. (2003) as a measure of the speed of an active

learning algorithm, useful for comparing different active learning algorithms. Baram et al. defined

deficiency in terms of accuracy. Accuracy is a reasonable measure of performance when the positive

class is a sizable portion of the total. Since this is not the case for all the classification problems we

have chosen, we modify the definition of deficiency, and define it in terms of the F1 score (harmonic

mean of precision and recall). For deficiency a lower value is better. As we also report on the F1

scores, for which higher values are better, for consistency and easier interpretation of our charts and

tables we define efficiency = 1− deficiency. Efficiency has a range from 0 to 1, and a larger value

indicates a faster rate of learning. Thus, in all our reports higher values are better.

Let F1t(RAND) be the average F1 achieved by an algorithm when it is trained on t randomly

picked instances and F1t(ACT) be the average F1 obtained using t actively picked instances.

Efficiency, ET is defined as

ET = 1−
∑

T
t=2(F1M(RAND)−F1t(ACT))

∑
T
t=2(F1M(RAND)−F1t(RAND))

. (3)

F1M(RAND) is the F1 obtained with a large number (M) of randomly picked instances. The

value F1M(RAND) represents the performance of a classifier with a large amount of training data,

and can be considered the optimal performance under supervised learning. With large amounts of

training data, we expect the performance of a classifier trained using active learning to be about the

same as a classifier trained using random sampling. However, we would like active learning to ap-

proach this level as quickly as possible. The metric therefore takes into consideration how far the per-

formance is from the optimal performance by computing the difference F1M(RAND)−F1t(ACT)
and F1M(RAND)− F1t(RAND). The metric compares this difference when t documents have

been actively picked to the difference when t documents have been randomly picked for increasing

number of training documents t.

Since we are concerned with the beginning of the learning curve, we stop after T = 42 number

of documents have been sampled. For expedience, we did not measure performance at every point

from 2 to 42 labeled documents, but compute the summation at discrete intervals, measuring F1

after each additional five documents have been labeled: t = 2,7,12,17...42. For this paper we take

M = 1000, that is, we consider the optimal random-learning performance to be attained after the

classifier has seen 1000 labeled instances. In our experiments F1t(•) is the average F1 computed

over 10 trials. In addition to efficiency we report F1t for some values of t.

To understand the intuition behind efficiency, we can draw the active learning curve by plotting

F1t(ACT) for increasing values of t, as shown in Figure 5(a). Similarly we can draw the random

learning curve by measuring F1t(RAND) for increasing values of t. F1M is a straight line repre-

senting the best achievable performance. Then efficiency is one minus the ratio of the solid colored

area to the spotted area. The higher the efficiency, the better the active learning algorithm. We aim

to maximize both efficiency and F1. In some of our experiments we obtain efficiencies exceeding

1. This is due to using a finite M: it is possible that a classifier produced by active learning on 42 or

fewer instances may do better than a classifier trained on a random sample of a 1000 instances.
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Figure 5: The figure on the left (a) illustrates efficiency, the performance metric which captures

rate of learning. The figure on the right illustrates the learning surface. The plot is a

measure of F1 as a function of the number of features and training documents. The

dotted line traces the region of maximum F1. With few training documents, aggressive

feature selection (few features) are needed to maintain high accuracy. The thick dark

band illustrates traditional active learning.

5. Results: Experiments with an Oracle

In this section we seek the answer to the following questions:

• Can feature feedback significantly boost active learning performance?

• Should we use feature feedback during the entire active learning process (both instance selec-

tion, and model selection) or only for model selection?

To measure how much gain we can get from feature feedback we can measure the impact of the

oracle (which has knowledge of the best set of features) on active learning. This gives us an upper

bound on how useful feature feedback is for active learning. Then in the next section we go on to

measure the extent to which humans can emulate the oracle.

We will use systems 3 and 4 (described in Section 2.2) to help understand the answers to the

above questions.

5.1 Improvements to Active Learning with Feature Selection

Following the algorithm for system 3 (see Section 2.2, Figure 3), let f = N (the total number of

features) and let us assume that the oracle selects the k most important features (by information

gain) in step 1.b, which is used to initialize the model in step 2. Random sampling (step 3.a), in this

particular implementation, does not use any of the feature information or the initial model. Then

in step 3.c, we prune the data set by retaining only the chosen k features for each instance. We

now perform active learning on the instances in this reduced feature space (step 4). We evaluate

these experiments at many points in the two-dimensional space of number of features k versus num-

ber of labeled documents t by measuring the F1 score: F1t(ACT,k). We can similarly measure
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E42(k) F17(ACT,k) F122(ACT,k) F11000

Data Set k k n k k m k k p

↓ = N = n = N = m = N = p

Reuters 0.59 0.68 11179.3 0.36 0.48 8481.1 0.580 0.66 11851.6 0.73

20 NG 0.40 0.66 41.5 0.07 0.22 48.3 0.21 0.29 487.1 0.45

TDT 0.26 0.34 1275.7 0.19 0.29 11288 0.28 0.41 10416.1 0.75

Bas vs Hock 0.29 0.55 25 0.59 0.70 25 0.78 0.83 200 0.96

Auto vs Mot. 0.68 0.32 125 0.43 0.72 62 0.76 0.86 31 0.90

Table 1: Improvements in efficiency, F17 and F122 using an oracle to select the most important

features (Figure 3). We show results for each metric at N (total number of features for

a particular data set) and at feature set sizes for which the scores are maximized (n, m

and p for E42, F7, and F22 respectively). For each of the three metrics, figures in bold

are statistically significant improvements over uncertainty sampling using all features (the

corresponding columns with feature set size of N). We see that with only seven documents

labeled (F17) the optimal number of features is smaller (8481.1 on average), while with

more documents labeled, (22 documents labeled for F122) the optimal number of features

is larger (11851.6 on average). When 1000 documents are labeled (F11000) using the entire

feature set leads to better scores with the F1 measure. This suggests that our best active-

learning algorithm would adjust the feature set size according to the number of training

documents available.

performance in the reduced feature space when instances are picked randomly. Thus we can com-

pute efficiency in the reduced feature space as ET (k). When f = k = N the algorithm reduces to

traditional active learning (Figure 1).

Figure 5(b) shows a plot of F1t(ACT,k) for different values of the number of features k and

number of labeled training instances t, for the earnings category in Reuters. The dotted curve traces

the maximum Ft for each value of t. The x, y and z axes denote k, t and F1t(ACT,k) respectively.

The number of labeled training instances t ranges from 2 to 42 in increments of 5. The number

of features used for classification k has values from 33,378 (all features), 33378/2, 33378/4 to

32. The dark band represents the case when all features are used. This method of learning in one

dimension is representative of traditional active learning. Clearly when the number of documents is

few, performance is better when there is a smaller number of features. As the number of documents

increases the number of features needed to maintain high accuracy increases. From the figure it is

obvious that we can get a big boost in accuracy by starting with fewer features and then increasing

the complexity of the model as the number of labeled documents increase.

Table 1 captures the behavior of all the problems in the Reuters corpus when there is an oracle to

do the feature selection. The second column (k = N) in Table 1 shows the efficiency obtained using

uncertainty sampling and all (N) features. The third column (k = n) indicates the average efficiency

obtained using uncertainty sampling and a reduced subset of features. The feature set size n at which

this efficiency is attained is shown in column four. For each classification problem, we identify the

feature set size which optimizes the efficiency, that is, optimizes the rate at which classification

performance under active learning approaches learning with all of the data. This optimal feature set

size for active learning n is given by
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n = argmaxkE42(k).

Figure 6 shows the efficiencies at E42(N) and E42(n) for the individual problems in the three corpora.

In many cases, E42(N) is much less than E42(n).
Column 5 (k = N) in Table 1 shows the value of F17(ACT,N): the F1 score with seven in-

stances selected using active learning, when all features are used. Column 6 shows the average

F17(ACT,m) using a reduced feature subset. As for efficiency the best feature subset size (m) for

each classification problem is obtained as the feature subset size at which F17(ACT,k) is maximum.

For example in Figure 5(b) at seven instances the best F1 is obtained with 512 features. Figure 7

shows the values of F17 computed using all (N) features and using a reduced subset of (m) features

for individual problems.

Columns 7, 8, and 9 in Table 1 show similar results for F122(ACT,k) with the best feature

subset size at t = 22 being denoted by p. The values for individual problems is illustrated in Figure

8. The last column shows F11000(RAND).
All 42 of our classification problems exhibit behavior as in Figure 5(b). For all classification

problems, n, m and p are less than the maximum number of features. Also, for 31 of 42 cases m ≤ p

(that is, the number of features optimal for seven labeled instances, m is less than the number of

features optimal for 22 labeled instances, p) meaning that as the number of labeled instances (t)

increases, the complexity of the classifier also needs to increase. For 20-Newsgroups, for all classes

we observe that efficiency, F17 and F122 are best at very small feature subset sizes. For Reuters

and TDT there are classes for which a large number of features become important very early (for

example: trade, Bin Laden indictment, NBA labor disputes).

5.2 Feature Selection for Instance Selection or Model Selection

As mentioned in Section 2.2 the difference between systems 3 and 4 is in that feature selection

precedes active learning in the former, and the best feature subset is picked in a retrospective manner,

while it follows active learning in the latter. The two systems when used with oracle feature selection

will help us understand the extent to which oracle feedback aids different aspects of the active

learning process. Figure 9 compares the results of using system 4 and system 3 on the Reuters

corpus.

There is hardly any difference between systems 3 and 4, especially on F17. All other data sets

exhibit the same behavior. The F122 and E42 values are slightly better for the method that does

feature selection before active learning (system 3) but it is not significantly different (determined

using a t-test at the 0.05 level of confidence) from the method where feature pruning is done after

instance selection (system 4). Thus, our experimental results suggest there is some benefit for

instance selection but most of the benefit from oracle feature selection comes from improving the

model learned (model selection).

5.3 Discussion: Why Does Feature Selection Help?

Intuitively, with limited labeled data, there is little evidence to prefer one feature over another, so

the learner has to spread the feature weights more or less evenly on many features. In other words,

the learner has to remain conservative. Feature/dimension reduction by the oracle allows the learner

to “focus” on dimensions that matter, rather than being overwhelmed with numerous dimensions
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Figure 6: Improvements in efficiency using an oracle to select the most important features. For

each problem we show efficiency at N (total number of features for a particular data set)

on the right and efficiency at the feature set sizes for which the efficiency is maximized

(n) on the left. The class keys are given in Appendix A.
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Figure 7: Improvements in F17 using an oracle to select the most important features. For each

problem we show F17 at N (total number of features for a particular data set) on the

left and F17 at the feature set sizes for which the F17 is maximized (m) on the right.

Remember, the objective is to maximize F17. The class keys are given in Appendix A.
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Figure 8: Improvements in F122 using an oracle to select the most important features. For each

problem we show F122 at N (total number of features for a particular data set) on the

right and F122 at the feature set sizes for which the F122 is maximized (p). Remember

that the objective is to maximize F122. The class keys are given in Appendix A.
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Figure 9: F17, F122 and efficiency E42 for the Reuters corpus when feature selection is done be-

fore active learning (system 3) and when feature selection is done after active learning

(system 4).
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right at the outset of learning. Oracle feature reduction allows the learner to assign higher weights

to fewer features. This tends to improve accuracy, since the oracle selected features are the actual

most predictive features. Oracle feature reduction may also improve instance selection as the learner

obtains instances to query that are important for finding better weights on the features that matter. As

the number of labeled instances increases, feature selection becomes less important, as the learning

algorithm becomes better capable of finding the discriminating hyperplane (feature weights) on its

own. We experimented with filter based methods for feature selection, which did not work very

well (we got tiny or no improvements). This is expected given such limited training set sizes, and

is consistent with most previous findings (Sebastiani, 2002). Next we determine if humans can

identify these important features.

6. Results: Experiments with a Human (Teacher)

Consider our introductory example of the editor who was looking for training instances for the

topic hurricane Mitch. From a human perspective the words hurricane, Mitch etc may be important

features in documents discussing this topic. Given a large number of documents labeled as on-topic

and off-topic, and given a classifier trained on these documents, the classifier may also find these

features to be most relevant. With little labeled data (say two labeled instances) the classifier may

not be able to determine the discriminating features. While in general in machine learning the source

of labels is not important to us, in active learning scenarios in which we expect the labels to come

from humans we have valid questions to pose:

1. Can humans label features as well as documents? In other words are features that are impor-

tant to the classifier perceptible to a human?

2. If the feature labels people provide are imperfect, is the feedback still beneficial to active

learning?

We address the first question in the following section. Our concern in this paper is asking people

to give feedback on features, or word n-grams, as well as entire documents. We may expect this to

be more efficient, since documents are often long and may contain redundant or irrelevant content,

and results from our oracle experiments indicate great potential in doing feature selection. We

then move on to discuss a real system which employs a two-tiered approach of document feedback

and feature feedback like the system in Figure 2 which we evaluate using a simulation: we obtain

feedback on features and documents apriori, and use the judgments so obtained to measure the

effectiveness of our approach. We employed this approach rather than one where an actual user

labels features and documents in tandem because our approach allows us to run many repeated

trials of our experiments, enabling us to do significance testing. Given that we have demonstrated

the effectiveness of our algorithm, we reserve a more realistic evaluation with a true human in the

loop for future work.

6.1 Can Humans Emulate the Oracle?

We evaluated user feature labeling by calculating their average precision and recall at identifying

the top 20 features as ranked by an oracle using information gain on the entire labeled set. Table

2 shows these results. For comparison we have also provided the precision and recall (against the
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Class Precision Recall Avg. Time (secs) kappa

Problem Hum. @50 Hum. @50 Feat. Docs

baseball vs hockey 0.42 0.30 0.70 0.30 2.83 12.60 0.503

auto vs motorcycle 0.54 0.25 0.81 0.25 3.56 19.84 0.741

earnings 0.53 0.20 0.66 0.25 2.97 13.00 0.495

talk.politics.mideast 0.68 0.35 0.55 0.35 2.38 12.93 0.801

hurricane Mitch 0.72 0.65 0.56 0.65 2.38 13.19 0.857

Average 0.580 0.35 0.65 0.38 2.82 14.31 0.68

Table 2: Ability of users to identify important features. Precision and Recall against an oracle,

of users (Hum.) and an active learner which has seen 50 documents (@50). Note that

precision and recall denote the ability of the user to recognize the oracle features and are

not measures of classification accuracy. Average labeling times for features and documents

are also shown. All numbers are averaged over users.

same oracle ranking of top 20 features) obtained using 50 labeled instances (picked using uncer-

tainty sampling) denoted by @50. Precision and recall of our participants is high, supporting our

hypothesis that features that a classifier finds to be relevant after seeing a large number of labeled

instances are obvious to a human after seeing little or no labeled data (the latter case being true

of our experiments). Additionally the precision and recall @50 is significantly lower than that of

humans, indicating that a classifier like an SVM needs to see much more data before it can find

discriminatory features.

Table 2 also shows the times taken for labeling features and documents. On average humans

take five times longer to label one document than to label one feature. Note that features may be

even easier to label if they are shown in context – as lists, with relevant passages etc. We measured

whether document length influences document labeling time. We found the two to be correlated

by r = 0.289 which indicates a small increase in time for a large increase in length. The standard

deviations for precision and recall are 0.14 and 0.15 respectively. Different users vary significantly

in precision, recall and the total number of features labeled relevant. From the post-labeling survey

we are inclined to believe that this is due to individual caution exercised during the labeling process.

We also measure the extent to which our users tend to agree with each other about the importance

of features. For this we use the kappa statistic (Cohen, 1960) which is a measure that quantifies the

agreement between annotators that independently classify a set of entities (in our case the features)

into classes (relevant versus non-relevant/don’t know). Kappa is given by:

kappa = (po − pc)/(1− pc) (4)

Where po is the observed proportion of agreement and pc is the agreement due to chance (Cohen,

1960; Landis and Koch, 1977). Landis and Koch (1977) provide a table giving guidelines about how

to interpret kappa values. We find a value of 0.68 to be the average kappa across the five categories

in our user study. According to Landis and Koch (1977) this indicates substantial agreement.

We obtained judgments on a handful of documents for each user. We used those judgments to

measure time. Some of our users had difficulty judging documents. For example, for the earnings

category, one of our users had very low agreement with the true Reuters categories. This person did
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not have a finance background and could not distinguish well between earnings and acquisitions,

often confusing the two. But this user did quite a good job of identifying useful features. She

missed only six of 20 of the relevant features and had only five false alarms. The features that she

marked relevant, when used in the human-in-the-loop algorithm resulted in an efficiency of 0.29.

This is still an improvement over traditional uncertainty sampling which has a efficiency of 0.10.

These results can be explained by looking at the question posed to the annotator. When it came to

features, the question was on the discriminative power of the feature. Hence a user did not have to

determine whether the words shares was pertinent to earnings or not but rather she only needed to

indicate whether the word was likely to be discriminatory. Additionally, one of our users suggested

that terms shown in context would have carried more meaning. The user said that she did not realize

the term ct stood for cents until she read the documents. But since she was made to judge terms

before documents this user’s judgment had marked the term ct as non-relevant/don’t know.

Some of the highlights of the post-labeling survey are as follows. On average users found the

ease of labeling features to be 3.8 (where 0 is most difficult and 5 is very easy) and documents 4.2. In

general users with poor prior knowledge found the feature labeling process very hard. The average

expertise (5=expert) was 2.4, indicating that most users felt they had little domain knowledge for

the tasks they were assigned. We now proceed to see how to use features labeled as relevant by our

naive users in active learning.

6.2 Using Human Feature Feedback simultaneously with Document Feedback in Active

Learning

We saw in Section 5 that feature selection coupled with uncertainty sampling gives us big gains in

performance when there are few labeled instances. In Section 6.1 we saw that humans can discern

discriminative features with reasonable accuracy. We now describe our approach of applying term

and document level feedback simultaneously in active learning. In Section 2.2 we discussed the

possible cognitive advantages of an interleaved approach of feature selection and instance selection.

Additionally, we found that feature selection does not hurt uncertainty sampling and may aid it. In

the following section we describe an implementation for system 2.

6.3 Implementation

Following Figure 2, the features to be displayed to the user (in step 2.d.i) are the top f features

obtained by ordering the features by information gain. More specifically, we trained the SVM

classifier on these t labeled instances. Then to compute information gain, we used the five top

ranked (farthest from the margin on the positive side) documents from the unlabeled set in addition

to the t labeled documents. Using the unlabeled data for term level feedback is very common

in information retrieval and is called pseudo-relevance feedback (Salton, 1968). The user labels

k ≥ 0 of the f features as relevant or discriminative (step 2.d.ii). If a user has labeled a feature in a

previous iteration, we don’t show the user that feature again (the top f are picked from the unlabeled

features). We set f to 10 in our experiments.

We incorporate feature feedback (step 2.e) as follows. Let ~s = s1...sN be a vector containing

weights of relevant features. If a feature number i that is presented to the user is labeled as relevant

then we set si = a, otherwise si = b, where a and b are parameters of the system. For each X in the
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labeled and unlabeled sets we multiply xi by si to get x′i. In other words, we scale all the features

that the user indicated as relevant by a and the rest of the features by b. We set a = 10 and b = 1. 3

By scaling the important features by a we are forcing the classifier to assign higher weights to

these features. We demonstrate the intuition with the following example. Consider a linear SVM,

N = 2 and two data points X1 = (1,2) and X2 = (2,1) with labels +1 and −1 respectively. An SVM

trained on this input learns a classifier with w = (−0.599,+0.599). Thus, both features are deemed

equally discriminative by the learned classifier. If feature 1 is indicated to be more discriminative

by our user, then by our method X ′
1 = (10,2) and X ′

2 = (20,1) and w′ = (0.043,−0.0043), thus

f1 is assigned a much higher weight in the learned classifier. Now, this is a “soft” version of the

feature selection mechanism of section 5. But in that case the oracle knew the ideal set of features.

Those experiments may be viewed as a special case where b = 0. We expect that human feedback

is imperfect and we do not want to zero-out potentially relevant features.

6.4 Simulating User Feedback

We use the relevance judgments on features obtained as described in Section 6.1 to simulate the

user in each iteration. At each iteration of the algorithm, if a feature that is presented had been

marked by the user as relevant, in the relevance judgment experiments of the previous section, we

mark the value of that feature as 1 in the vector ~s. The vector ~s is noisier (less complete) than the

case where we would have obtained relevance judgments on features during the actual execution

of the algorithm. This is because in addition to mistakes made by the user, we lose out on those

features that the user might have considered relevant, had she been presented that feature when we

were collecting relevance judgments for a relatively small subset of features. In a real life scenario

this might correspond to the lazy user who labels few features as relevant and leaves some features

unlabeled in addition to making mistakes.

To make our experiments repeatable (to compute average performance and for convenience) we

simulate user interaction as follows. For each classification problem we maintain a list of features

that a user might have considered relevant had she been presented that feature. For these lists we

used the judgments obtained in Section 4.2. Thus for each of the five classification problems we

had two or three such lists, one per user who judged that topic. For the 10 TDT topics we have topic

descriptions as provided by the LDC. These topic descriptions contain names of people, places and

organizations that are key players in this topic in addition to other keywords. We used the words

in these topic descriptions to be equal to the list of relevant features. Now, given these lists we

can perform the simulated HIL (human in the Loop) experiments for 15 classification problems.

Figure 10 shows the performance of the HIL experiments. Like before we report efficiency (E42),

the F1 score with 7 labeled documents (F17), and the F1 score with 22 labeled documents (F122)

for each of uncertainty sampling (Unc), oracle feature selection with uncertainty sampling (Ora)

and the Human in the Loop (HIL) algorithm. As a baseline we also report results for the case

when the top 20 features as obtained by the information gain oracle are input to the simulated

HIL experiments (this represents what a user with 100% precision and recall would obtain by our

method). The oracle is (as expected) much better than plain uncertainty sampling, on all three

measures, validating the effectiveness of our proposed system Section 2.1. The performance of the

HIL experiments is almost as good as the oracle, indicating that user input (although imperfect)

3. We picked our algorithm’s parameters based on a quick test on three topics (baseball, earnings, and acquisitions)

using the oracle features of Section 5.
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can help improve performance significantly. The plot on the right is of F1t(HIL) for hurricane

Mitch. As a comparison F1t(ACT) is shown. The HIL values are much higher than for uncertainty

sampling.

Dataset E42 F17 F122

Unc Ora HIL Unc Ora HIL Unc Ora HIL

Baseball 0.29 0.59 0.54 0.49 0.63 0.60 0.63 0.79 0.70

Earnings 0.10 0.36 0.36 0.61 0.79 0.73 0.80 0.85 0.86

Auto vs Motor 0.18 0.66 0.40 0.35 0.62 0.60 0.71 0.83 0.73

Hurr. Mitch 0.11 0.62 0.62 0.04 0.46 0.60 0.08 0.63 0.58

mideast 0.51 0.72 0.72 0.14 0.28 0.29 0.32 0.49 0.49

TDT (avg) 0.14 0.23 0.11 0.09 0.21 0.24 0.18 0.32 0.22
(a)
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(b) The graph shows the learning curves for Hurricane Mitch (6th row of

the above table) with the x-axis being the number of labeled documents and

y-axis F1(HIL).

Figure 10: Improvements due to human feature selection. The F17 and F122 scores in the table

show the points on the curves where 7 and 22 documents have been labeled. The differ-

ence between no feature feedback (Unc) and human-labeled features (HIL) is greatest

with few documents labeled, but persists up to 42 documents labeled.

When to stop asking for labels on both features and documents and switch entirely to documents

remains an area for future work. We provide some initial results in this regard. Consider that we ask

for both document and feature feedback up to j iterations and after that we only ask for document

feedback. Figure 11 shows the active learning curves for different values of j for the hurricane

Mitch problem in the TDT corpus. The case when j = 0 represents traditional uncertainty sampling.

When j = 5 there is improvement over the case when j = 0, and when j = 10 there is even more

improvement. Beyond j = 10 there is little gain in obtaining feature feedback. It seems that relevant

features are usually spotted in very early iterations. We see similar behavior for other problems in

our domains. For the auto vs motorcycles problem, the user has been asked to label 75% of the
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oracle features (averaged over multiple iterations and multiple users) at some point or the other.

The most informative words (as determined by the oracle) – car and bike are asked of the user in

very early iterations. The label for car is always (100% of the times) asked, and 70% of the time the

label for this word is asked to the user in the first iteration itself. This is closely followed by the word

bike which the user is queried about within the first five iterations 80% of the time. Most relevant

features are asked within 10 iterations which makes us believe that we can often stop feature level

feedback in around 10 iterations.
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Figure 11: Human Feature Selection for Hurricane Mitch for different amounts of feature feedback.

The legend indicates the number of iterations ( j) for which there was both feature and

document feedback, after which only document feedback was asked for. The line at

the bottom, labeled j = 0 corresponds to regular uncertainty sampling or the case when

feature feedback was asked for 0 iterations. The line corresponding to j = 5 iterations

is significantly better than when j = 0. All other cases, j = 10 ... j = 40 are clumped at

the top.

7. Related Work

Our work is related to a number of areas including query learning, active learning, use of (prior)

knowledge and feature selection in machine learning, term-relevance feedback in information re-

trieval, and human-computer interaction.

Term level feedback has been studied in information retrieval (Anick, 2003; Croft and Das,

1990; Belkin et al., 2001). Many participants in the TREC HARD track (Voorhees and Buckland,

2005) generate clarification forms for users to refine or disambiguate their query. Many of the

effective forms are composed of lists of terms and the user is asked to mark terms as relevant or not,

and some have found that term level feedback is more effective than document level feedback (Diaz

and Allan, 2005). The TREC interactive task has focused on issues regarding the kinds of questions

that can be asked of the user. They find that users are happy to use interfaces which ask the user to

reformulate their queries through a list of suggested terms. They also find that users are willing to

mark both positive and negative terms (Belkin et al., 2001).
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Our proposed method is an instance of query-based learning and an extension of standard

(“pool-based”) active learning which focuses on selective sampling of instances from a pool of

unlabeled data alone (Cohn et al., 1994). Although query-based learning can be very powerful in

theory (Angluin, 1992), arbitrary queries may be difficult to answer in practice (Baum and Lang,

1992). Hence the popularity of pool-based methods, and the motivation for studying the effective-

ness and ease of predictive feature identification by humans in our application area. To best of our

knowledge, all prior work on query learning and active learning focused on variants of membership

queries, that is, requesting the label of a possibly synthesized instance. Our work is unique in the

field of active learning as we extend the query model to include feature as well as document level

feedback.

Feature feedback may be viewed as the teacher providing evidence or an explanation for the

learner on the reasoning behind the labeling. The field of explanation-based learning, however,

concerns itself on a deductive rather than an inductive learning task, using one instance and a given

domain theory to generalize (Mitchell et al., 1986; DeJong and Mooney, 1986).

Feature selection can lead to improvements in the performance (accuracy) or in the space or time

efficiency of the classifier. When there are sufficient labeled instances, most state of the art learning

algorithms are able to distinguish the relevant features from the irrelevant ones (Brank et al., 2002).

Hence there is little improvement in performance with an additional feature selection component.

When there are few labeled instances, working with a small set of relevant features tends to be more

useful. This phenomenon has been referred to in statistics as the Hughes phenomenon (Hughes,

1968). Weight regularization may be viewed as a soft version of feature selection: for best per-

formance, in general the smaller the training set, the smaller the total weight that is allowed to be

spread over the features. Unfortunately, to do automatic feature selection well, we need sufficient

training data, leading to a chicken-and-egg problem. Fortunately, in document classification users

have the intuition to point out a small subset of useful features which would be beneficial when

there are few labeled instances.

Budgeted learning also works on identifying the predictive features during an active learning

setting, but in this case the feature values are unknown and there is a cost to finding each feature’s

value for each instance of interest (such as the outcome of blood test on an individual) (Lizotte et al.,

2003). That human prior knowledge can accelerate learning has been investigated by Pazzani and

Kibler (1992), but our work differs in techniques (they use prior knowledge to generate horn-clause

rules) and application domains. Beineke et al. (2004) use human prior knowledge of co-occurrence

of words, at feature generation time, to improve classification of product reviews. None of this

work, however, considers the use of prior knowledge in the active (sequential) learning setting.

Our study of the human factors (such as quality of feedback and costs) is also a major differen-

tiating theme between our work from previous work in incorporating prior knowledge for training.

Past work has not addressed this issue, or might have assumed experts in machine learning taking a

role in training the system (Schapire et al., 2002; Wu and Srihari, 2004; Godbole et al., 2004; Jones,

2005). We only assume knowledge about the topic of interest. Our algorithmic techniques and the

studied modes of interaction also differ somewhat and are worth further comparison. Jones (2005)

also used single feature-set labeling in the context of active learning: the user was queried on a

feature rather than the whole instance. The labeled feature was taken as a proxy for the label of any

instance containing that feature, so a single feature labeling potentially labeled many documents

(similar to the soft labeling technique discussed next). This was found to be more economical than

whole-instance labeling for some tasks. The instances in this work consisted of only two features (a
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noun-phrase and a context), so labeling one feature is equivalent to labeling half an instance. Our

work differs in that our instances (documents) contain many features (words) and we combine both

feature labeling and document labeling. Our work also differs in that we use the labeled features for

feature selection and feature re-weighting, rather than as proxies for document labels.

Both Wu and Srihari (2004) and Schapire et al. (2002) assume that prior knowledge is given at

the outset which leads to a “soft” labeling of the unlabeled data. This extra labeling is incorporated

into training via modified boosting or SVM training. By soft labeling, we mean the extra labels,

generated via prior knowledge, are not certain and a method that uses such information may for

example assign low confidences to such labellings or lower the misclassification costs compared

to misclassification costs for instances labeled directly by a human. However, in our scheme the

user is labeling documents and features in an interactive and interleaved fashion. We expect that

our proposed interactive mode has an advantage over requesting prior knowledge from the outset,

as it may be easier for the user to identify or recall relevant features while labeling documents in

the collection and being presented with candidate features. Our method of scaling the dimensions

and training (without using the unlabeled data) has an advantage over soft labeling in situations

where one may not have access to much unlabeled data, for example in online tasks such as filtering

news streams and categorizing personal emails. Furthermore, we simplify the user’s task in that

our technique does not require the user to specify whether the feature is positively or negatively

correlated with the category, just whether the user thinks the feature is relevant or predictive. On the

other hand, in the presence of ample unlabeled data, soft labeling methods might more effectively

incorporate the information available in the unlabeled data. Both approaches require extra param-

eters specifying how much to scale the dimensions or the confidence or misclassification costs to

assign to the generated labellings, though some fixed parameter settings may work for most cases,

or automated methods could be designed.

The work of Godbole et al. (2004) emphasizes system issues and focuses on multi-class train-

ing rather than a careful analysis of effects of feature selection and human efficacy. Their pro-

posed method is attractive in that it treats features as single term documents that can be labeled by

humans, but they also study labeling features before documents (and only in an “oracle” setting,

without using actual human annotators). They do not observe much improvements using their par-

ticular method over standard active learning in the single domain (Reuters) they test on. Finally, we

mention another method of incorporating prior knowledge that has much similarity to our method

of differential scaling of dimensions: differential weightings of features in feature weight initial-

izations when using online methods such as Winnow. A better understanding of effective ways of

incorporating (prior) knowledge in various learning scenarios is a promising research direction.

8. Conclusions and Future Work

We have demonstrated experimentally that for learning with few labeled examples good (oracle-

based) feature selection is extremely useful. As the number of examples increases, the “vocabulary”

of the system, in other words, the effective feature set size for best performance, also needs to

increase. A teacher, who may not necessarily be knowledgeable in machine learning, but has prior

knowledge on the relevance of the features, can help accelerate training the system by pointing out

the potentially important features for the system to focus on. We conducted a user study to see how

well naive users performed as compared to a feature oracle in the domain of text categorization.

Our technique weighted the features marked relevant by the users more than the other features. We
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used our users’ outputs in realistically simulated human in the loop experiments and observed a

significant increase in learning performance with our techniques over plain active learning.

In summary, our contributions are:

1. We demonstrated that access to a feature importance oracle can improve performance (the F1

score) significantly over uncertainty sampling, even with as few as 7 examples labeled.

2. We found that even naive users can provide effective feedback on the most relevant features

(about 60% accuracy of the oracle in our experiments).

3. We measured the manual costs of relevance feedback on features versus labeling documents:

we found that feature feedback takes about one fifth of the time taken by document labeling

on average.

4. We devised a method of simultaneously soliciting class labels and feature feedback that im-

proves classifier performance significantly over soliciting class labels alone.

Consider a user who is interested in training a personalized news filter that delivers news stories

on topics of their interest as and when they appear in the news. The user is probably willing to

engage in some form of interaction in order to train the system to better suit their need. Similarly

a user wanting to organize their e-mail into folders may be willing to train the e-mail filter as long

as training is not too time consuming. Both the news filter and the e-mail filter are document clas-

sification systems. The idea of using as few documents as possible for training classifiers has been

studied in semi-supervised learning and active learning. In this paper we extended the traditional

active learning setting which concerns the issue of minimal feedback and proposed an approach

where the user provides feedback on features as well as documents. We showed that such an ap-

proach has good potential in significantly decreasing the overall amount of interaction required for

training the system.

This paper points to three promising inter-related questions for further exploration. The first

question concerns what to ask from the user. In general, the active learner has to make decisions at

various time points during active learning regarding the choice of feedback. For example, whether

to ask for feedback on a document or on a feature, or even whether to stop asking questions all

together (ask nothing), appropriate for a scenario where no additional feedback is likely to improve

performance significantly. This involves some implicit or explicit assessment of the expected bene-

fits and costs of different kinds of feedback. Furthermore, there are alternate kinds of feedback that

are potentially useful – feedback on clusters of features for example. The second question involves

human computer interaction issues and seeks to explore how to translate what the learner needs to

know, into a question, or a user interface, that the human teacher can easily understand. In our case,

the learner asked the teacher labels on word features and documents, both of which required little

effort on the part of the teacher to understand what was being asked of him. Our subjects did in-

deed find labeling words without context a little hard, and suggested that context might have helped.

An attractive alternative or complementary method of soliciting feature feedback is asking users to

highlight some relevant or predictive terms as they read a document. Experiments in this direction

have been conducted in information retrieval (Croft and Das, 1990). The third question is about the

choice of learning algorithms for effectively incorporating these alternate forms of feedback. We

explored one method in this paper and discussed alternatives in Section 7. Related to the above is

better understanding and quantifying the potential of active learning enhanced with feature feedback
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as a function of various aspects of the learning problem, such as measures of the difficulty of the

category that one seeks to learn.
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Appendix A. Class Key

The class key for the Reuters corpus is given below:

1. earnings 2. acquisitions 3. money-fx 4. crude 5. trade 6. interest 7. wheat

8. corn 9. money supply 10. gold

The class key for the 20 Newsgroups corpus is given below:

1. alt.atheism 2. comp.graphics 3. comp.os.wind.misc 4. comp.sys.ibm.pc.hw

5. comp.sys.mac.hw 6. comp.windows.x 7. misc.forsale 8. rec.autos

9. rec.motorcycles 10. rec.sport.baseball 11. rec.sport.hockey 12. sci.crypt

13. sci.electronics 14. sci.med 15. sci.space 16. soc.rel.christian

17. talk.politics.guns 18. talk.politics.mideast 19. talk.politics.misc 20. talk.religion.misc

Similarly the class key for the TDT corpus is:

1. Cambodian government coalition 2. Hurricane Mitch 3. Pinochet Trial

4. Chukwu Octuplets 5. Bin Laden Indictment 6. NBA Labor Disputes

7. Congolese Rebels 8. APEC Summit Meeting 9. Anti-Doping Proposals

10. Car Bomb in Jerusalem

Appendix B. Instructions for Annotating Features

Class 1: Documents from the Usenet newsgroups that discuss baseball

Class 2: Documents from the Usenet newsgroups that discuss hockey

Instructions: You will be shown a list of features one at a time. For each feature you will be

asked to determine whether it is relevant or not for the given classification problem. If it is relevant

to Class 1 or to Class 2, mark the radio button which says “Relevant”. If it is not relevant or you

don’t know whether the feature is relevant mark DONT KNOW correspondingly

A feature is relevant if it helps discriminate between documents in Class 1 versus documents in

Class 2. Features are words, pairs of words (bi grams) and so on. Think of a bi gram as a pair of

words that may occur in close proximity to each other For every feature ask yourself the following

question: “Is this more likely to occur in a document in Class 1 as opposed to Class 2?”. If that is the
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case mark the feature as relevant. If the reverse is true then again mark the feature as relevant. If the

feature is not really relevant, for example “banana” may make no sense in trying to find documents

in either class mark the “Not relevant/Don’t know” option. DO NOT use any resources(the web,

encyclopedias etc) to determine your answer. If you are not sure simply click the “Don’t Know”

option

The time between which you are shown a feature and you hit the submit button is timed. So do

not do anything else in this time. After you submit, A THANK YOU page is displayed. You may

take a break here before you proceed to the next feature.

To modify the last annotation use the browsers BACK button.

To begin annotating click here.

Appendix C. Instructions for Annotating Documents

Class 1: Documents from the Usenet newsgroups that discuss baseball

Class 2: Documents from the Usenet newsgroups that discuss hockey

Instructions: You will be shown a list of documents one at a time. For each documents you will

be asked to determine whether it belongs to class 1 or class 2. You also have the option to mark

a document as DONT KNOW. Read as much of the document as is needed to make an informed

judgment. The time between which you are shown a document and you hit the submit button is

timed. So do not do anything else in this time. After you submit, A THANK YOU page is displayed.

You may take a break here before you proceed to the next document.

To modify the last annotation use the browsers BACK button

To begin annotating click here

Appendix D. End of Labeling Survey

Please take 2 minutes to fill out the following:

1. How easy was it to mark features?

(a) On an integer scale of 1-5 (1=very difficult, 5=very easy) (b) Remarks:

2. How easy was it to mark documents?

(a) On an integer scale of 1-5 (1=very difficult, 5=very easy) (b) Remarks:

3. For each of the following tasks please state your domain knowledge (only if you did relevance

assessments for them) on a scale of 1-5 (1=very little, 5=expert):

(a) Baseball versus Hockey. (b) Earnings versus All.

(c) Automobiles versus Motorcycles. (d) Hurricane Mitch versus all.

(e) Middle eastern crisis versus all.

4. Your Internet connection

(a) DSL/Cable (b) T1 LAN (c) Dial-up
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