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Abstract

The paper describes how to use inference networks to solve two problems in searching mul-
tiple collections: collection selection and result merging. The effectiveness of the approaches
is demonstrated with the INQUERY system and 3 gigabyte TREC collections.

1 Introduction

As hundreds or even thousands of collections are available on the Internet, the IR community
must cope with the problem of searching multiple collection. The simplest approach is to build
a single index for all collections. But this approach is practically prohibited by its obvious
drawback: it is too slow, because searching such a gigantic index takes a long time to complete.
Worse, this search may not complete due to network resource limits, such as limited bandwidth
in the case of hundreds of collections. One way to get a quick response is to narrow the search
to a portion of the index, which leads to a partition of the index. The natural way to partition
is for each partition to correspond to one collection. Heuristics are needed to determine which
partitions (collections) are the most useful. Consequently searching multiple collection becomes
a three step process:

o select the most useful collections (collection selection),
e search each selected collection,
o merge the results from each selected collection (result merging or data fusion).

In this paper, we discuss how to use the inference network, a probabilistic approach to
information retrieval, to solve the problems in searching multiple collections. In the next section,
we briefly introduce the current INQUERY inference network, a traditional use of the model
for document retrieval. In Section 3, we discuss how to solve the problem of collection selection
using the collection retrieval inference network. In Section 4, we discuss how to merge retrieval
results returned from multiple collections. In Section 5, we present the experimental results. In
Section 6, we describe related work. In the final section, we summarize the results and discuss
the future work.
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Figure 1: A document retrieval inference network.

2 The Current INQUERY Inference Network

2.1 Bayesian Inference Networks

A Bayesian inference network([l] is a directed, acyclic dependency graph(DAG) in which nodes
represent propositional variables or constants and edges represent dependence relations between
propositions. If a proposition represented by node p “causes” or implies the proposition repre-
sented by node g, we draw a directed edge from p to g. The node g contains a link matriz that
specifies P(g|p) for all possible values of the two variables. When a node has multiple parents,
the link matrix specifies the dependence on the set of parents and characterizes the dependence
relationship between that node and all nodes representing its potential causes. Given a set of
prior probabilities for the root of the DAG, the network can be used to compute the probability
or degree of belief associated with all remaining nodes.

2.2 The current INQUERY Inference Network

The basic document retrieval inference network{1], shown in Figure 1, consists of two component
networks: a document network which is built once for a given collection and a query network
which is built at query processing time. The document network consists of document nodes(d;),
text representation nodes(t;), and concept representation nodes(r;). A document node corre-
sponds to a abstract document, and a text representation node corresponds to a specific text
representation of a document. A document may have multiple representations such as figure,



audio , video, etc. But in traditional collections, only the text representation is considered and
the relationship between document nodes and text representation nodes is one-to-one. A con-
cept node corresponds to a index unit; it can be a term or a phrase. The link from a ¢ node to
an r node means that the document is “about” the particular concept.

The query network consists of the query concept nodes (c;), query nodes (g;) and an infor-
mation need node (I). A query concept corresponds to a basic unit to construct a query. The
query concept nodes define the mapping between the concepts used to represent the document
collection and the concepts used in the query. In the simplest case, the query concepts are the
same as the representation concepts so that each query concept has exactly one parent (this is
the case of the current INQUERY). A query node represents an individual query. An informa-
tion need can be represented by several queries. The weights stored in the I node reflect the
importance of each query.

The retrieval inference network is intended to capture all of the significant probabilistic
dependencies among the variables represented by nodes in the document and query networks.
The retrieval task is to calculate the belief that the information need is met given that a particular
document is observed. Documents are ranked and presented to the user ordered by their belief
scores. In INQUERY, only one document is considered at a time i.e only one parent of each
representation node is true at a time so that the link matrices can be replaced by a closed-form
expression P(r;|d;) that can be calculated quickly.

The belief P(r;|d;) is estimated by the following function:

_ _th
ntf = ot K
i = log(£28)
~ log(N +1.0)

P(r,-[d,-) =a+(l-a)-ntf-idf

=k-((1-5)+b- 2cden ), where k and b are constants (k= 2,b= 0.75),
is the number of documents in the collection,

is the number of documents that contain the term r;,

is a default belief (currently 0.4).

The INQUERY belief function consists of two components: the default belief and the ¢ f-idf
component. The default belief represents a belief estimate when term t; is not observed in

document d;. The ¢f - idf component gives the additive estimate when the term ¢; is observed
in document d;.

where
tfi; is the term frequency of term r; in document d;,
K
N
n;
a

3 Applying the Inference Network to Collection Selection

The task of collection selection is to identify the collections containing the most documents about
the information need. Its major part is collection ranking. After the collections are ranked, how
many top collections are presented to users can be determined by users (designating a number
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Figure 2: A collection retrieval inference network

before searching) or a clustering algorithm (clustering collections and returning the collections
in the top clusters).

Collection ranking can be addressed by a collection retrieval inference network or CORI net
for short (Figure 2) in which the C nodes (replacing d nodes in Figure 1) represent the abstract
collections, ¢ nodes correspond to a specific representation of collections and r nodes correspond
to the concepts in the collections. The belief stored in the » node should be directly proportional
to the number of documents about the information need.

To determine what kind of information is stored in the r nodes, we investigate how to
estimate the number of documents about a particular term in a particular collection.

The number of documents about a particular term r; in the collection C,, can be estimated
by:

DF(ri|Cm) = |{djld; € Cm A P(r]d;) > 1},
where

! is a threshold, if P(r;|d;) > [, the term 7; is assigned to the document d; .

Although it is possible to get a better threshold ! by learning from the query sets and
collections whose relevant information is available, it is reasonable and convenient to set ! to
the default belief, which is equivalent to the assumption that a term is assigned to a document
when it is observed at least once in that document. Then

DF(r;|Cr) = dfim,
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where df;y, is the number of documents that the term ¢; is observed in the collection C,,. The
biggest benefit of setting [ as the default belief is that it can be obtained without knowledge
about the ¢f and idf of each term in each document so that expensive computing and storage
requirements are avoided.

Let P(r;|Cys) denote the belief that estimates the importance of a particular collection (Cp,)
for a particular term (r;) based on the number of documents about r; in C,,. The collection
ranking function is constructed in a way analogous to the ranking function for document retrieval
in INQUERY:

ndf = _DF(lCn) _ _dfim
DF(lC) + K &fom + K
lo_q(]c-c;1 + 0.5)

7= Tog(lCT+ 10)
P(r;|Cm) = a+ (1 — a) - ndf - icf
where
|C] is the number of collections,
ef is the number of collections that contain r;,
a  is a default belief, and
K =k-((1-b)+4+0b-32), where k and b are constants,
cw is the number of words in the collection C,,,
ave_cw is the mean cw.

The query processing in the CORI net is the same as that in the normal document inference
network except that the proximity operators are replaced by Boolean AND, because the location
information is not stored in the CORI net due to its high storage and computing costs.

Since the CORI net only keeps partial information on the contents of each collection, it has
moderate storage requirements and scales with the growing number of available collections.

4 Result Merging

Document retrieval in multiple collections can be modeled as an inference network illustrated
as Figure 3: the network is divided into several subnetworks, each of which corresponds to
an individual collection. Each collection may have its own stemmer, stopword list and belief
function. Belief scores returned from each individual collection need to be merged to form an
overall document ranking. Generally these belief scores are collection-specific and incomparable.

Result merging can not be done by simply sort the belief scores. The incomparability is caused
by differences in:

e stemming,
o representation(e.g., word-based, distributed/LSI),

e algorithms used to compute scores, and



Document
Network

..................

i Query
* Network

Figure 3: An inference network for searching multiple collection.

e idf and other collection-wide statistics.
The problem of result merging can be solved by two basic approaches:
e normalizing the belief score of each query unit (term, phrase, etc), and

¢ weighting the overall belief score of a query.

4.1 Normalizing the belief score of each query unit

This approach works only when each individual collection uses the same representation, the
same queries and the same query processing — the same stemming, the same stopword list and
no collection-specific query expansion allowed. Theoretically each collection can use different
belief function. But it is really hard to find mapping between two belief functions because the
functions are not linear.

Assuming that each individual collection uses the same representation, the same stemming
and the same belief function (P(r;|d;) in Section 2), normalizing the belief score of each query
unit is addressed by the document network in Figure 3: calculating P(rni|dn;) using global
document frequency and average document length.

If there are no proximity operators, this normalization can be easily done with the help of
the CORI net. The CORI net introduced in Section 3 keeps the collection-wide information
about each collection, such as df (the number of documents that contain a particular term in a
collection) and cw (the number of words in a collection). The global idf and average document
length can easily be computed using these two statistics. Since the first step of multiple collection
searching is collection selection, the global df and average document length can be dispersed



with the query to each individual collection. But when there are proximity operators, trouble
arises because the number of documents that a proximity operator matches is calculated at
the query processing time instead of being precomputed. The global statistics of the proximity
operators can only be obtained by querying all collections, which is very expensive in a wide-area
network.

4.2 Weighting the overall belief score of a query

Weighting the overall belief score of a query is addressed by the query netowrk in Figure 3: using
the weights stored in the I node to adjust the belief scores returned from different collections. In
principle, this approach can deal with all differences that cause the problem of result merging.
The problem is how to determine the weights. Here we only discuss methods which appliy to
the case that each individual collection uses the same representation, the same stemming and
the same belief function.

By analyzing the belief functions for document ranking (P(r;|d;) in Section 2), we find that

if two collections have comparable sizes, the scores in the collection containing more relevant

1o
documents tends to be smaller, because ':;( I?_:) decrease as n (the number of documents that

contain the term) increases. In addition, the scores of documents in the collection with large
average document length tend to be larger than the scores obtained when all collections are
treated as a single collection. By analyzing the belief function for collection ranking(P(r;|Cy,)
in Section 3), we find that the collection ranking scores are directly proportional to the number
of documents that contains the term, and the cw in the collection ranking function penalizes the
collections with large average document length. Therefore the collection ranking scores can be
used as complements of document scores such that the combined scores are close to the scores
in the paradigm of one large single collection.
Two weighting functions are developed to calculate the weights:

e MFL: W=1+b-log(|C|): (8r — 5)/5
where:
b is a constant,
|C| is the number of collections,
8n  is the score of the collection Cy,, and

5 is the mean of the collection scores.

o MF2: W =1+ -log(|C|)- (8 — min_s)/(maz_s — min_s)

where:
is a constant,
|C| is the number of collections,
8n is the score of the collection Cypy,,

maz._s is the potentially maximal collection score, obtained by assuming
that all terms in the query occur in a particular collection, and

min_s is the potentially minimal collection score, obtained by assuming
that all terms in the query are missing in a particular collection.
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5.2 Experiments with collection selection

5.2.1 Metrics

We define the metrics based the concepts of precision and recall. For a given query and top n
collections,

— 2?:1 Ty
o = Rel
P — Z?:l rl'

" n

where:
r; is the number of relevant documents in the collection C;,

C;  is the ith collection in the rank generated by a ranking algorithm. and
Rel is the total number of relevant documents in the all collections.

R, indicates the fraction of the relevant documents that can be retrieved when searching
the top n collections. P, indicates the average number of the relevant documents that each
collection contains when searching the top n collections.

5.2.2 Tuning the parameters k and b

Experiments were conducted with values of k ranging from 1 to 300 and with values of b ranging
from 0 to 1 (Table 3 and Table 4). The best results were obtained when & = 200 and b = 0.75.

The effectiveness of our method is also compared with the optimal ranking, shown in Figure
4 and Figure 5. The optimal ranking is obtained by ranking collections according to the number
of relevant documents they contain. In our method, the top 20% of collections cover 50% of
the relevant documents and the top 40% of collections cover 80% of the relevant documents.
In an optimal ranking, the top 10% of collections cover 50% of the relevant documents and
the top 20% of collections cover 65% (10 collections) and 80% (106 collections) of the relevant
documents. Clearly, our method has rooms for improvement. In addition, our method works a
little worse in 106 collections than 10 collections.

5.3 Experiments with result merging

The metrics used in this part are recall and precision, which are calculated by the TREC
trec2_eval program using the top 1000 documents from the merged ranking. The effectiveness of
our two weighted merging approaches were compared with the other two approaches: normalized
scores (merging based on the normalized document scores from each collection) and raw scores
(merging based on raw document scores from each collection). The normalized scores approach
is treated as the baseline, because it is equivalent to the “single collection” paradigm.

Four sets of experiments were conducted:

1. 10 collection merging using normal collection ranking scores.

2. 106 collection merging using normal collection ranking scores.



3. 10 collection merging using collection ranking scores without icf.
4. 106 collection merging using collection ranking scores without icf.

The experimental results are listed in the Tables 5§ — 8. MFn-all indicate the experiment which
merges the document scores from all collections with the merging function MFn. MFn-sel-m
indicate the experiment which merges the document scores from the selected top collections (m
is the average number of collections selected for each query) with the merging function MFn. A
single pass clustering algorithm [4] is used to select the top collections based on their collection
ranking scores.

The experiments show that the raw scores approach is significantly worse than the normalized
scores, especially in the case of 106 collections, it causes more than 30% losses in almost all levels
of recall. This result confirms the previous research suggesting that incomparable document
scores can mislead results.

Our two weighted merging approaches are almost as effective as the normalized scores in
low recall and cause losses in high recall, but the losses are significantly less than those in the
raw scores approach. M F2 produces better results than M F1 in small number of collections
with larger sizes, but worse in large number of collections with smaller sizes. The differences of
these two functions are not significant. The results on MFn-sel-m show that if we cutoff 50%
of collections, the precision at low recall is at least relatively unaffected and even get improved
in the case of 106 collections above the 30 documents. This suggests that collection selection
can lead to efficient searching without losing too much effectiveness.

A very interesting phenomenon is that the results using no-icf collection ranking scores are
much better than those using normal collection ranking scores. This suggests that the icf part
hurts the results when the number of collections is relatively small. It is not clear if icf will
hurt a large number of collections.

6 Related Work

The problem of collection selection is a specific instance of the more general resource discovery
problem [5]. The approaches to solving the resource discovery problem fall into two groups:
browsing and searching [6]. Browsing allows users to follow pre-defined links between data
items to find resources. Because the links are maintained manually, they are always out of date
or non-existent. In addition if you have no idea where to find information, finding information
following links can be very frustrating. Searching allows users to query a collection of “meta-
information” about available collections. This approach is used in increasingly many Internet
resource discovery systems (e.g. (7], [8], [9), etc). The meta information typically provides
some sort of summary of the contents of each collection. Some systems keep human-generated
summaries of each collection(7][8). Human-generated summaries are often out of date. Some
systems only index a small portion of each document such as titles [9). This approach sacrifices
important information of the contents of each collection. Some systems index all terms that
occur in the individual collections. GLOSS [10] and our approach belong to this category.
GLOSS has two versions. In its boolean version[11], GLOSS keeps the number of documents
in a collection containing a particular term and estimates the number of potentially relevant
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documents of a collection C for a Boolean AND query Q as [C| - ;g %’[, where ¢ is a term in
Q, df; is the number of documents in C containing ¢, and [C| is the number of documents in
C. In its vector space version[12], GLOSS keeps the number of documents in a collection C
containing a particular term t (df;) and the sum of weights of the term ¢ over all documents in
the collection C(w,). The collections are ranked by the estimators which are based the sum of
the similarity of each query term. The similarity is calculated as: sort the query terms in the
increasing order of df;, then the similarity of the p-th term is equal to 2i=pn i i”f; In the
high-correlation scenario, the estimator is equal to }7;_, _.(w; — w;_,) - sim;). In the disjoint
scenario, the estimator is equal to 33,;_,  .(w;- sim;).

The differences between our approach and GLOSS lie in not only different models used for
retrieval but also that we used a single model to cope with retrievals from the meta-collection
and from the normal document collections, while GLOSS used different processing for these two
kinds of retrievals.

Recently, a decision-theoretic approach is proposed to solve collection selection problem{13],
which uses expected recall-precision curve, expected number of relevant documents and cost
factors for query processing and document delivery to make decision. But no performance
studies are reported. In addition some approaches incorporate Al technology such as semantic
knowledge to locate collections[14].

Our approach to result merging assumes that the collection-wide information is accessible,
i.e. we can use the particular statistics about collections in the merging function besides the
ranked list of documents in response to a query. Voorhees, et al, proposes another approach
which assume that the only information the merging algorithm can obtain from a collection is
a ranked list of documents in response to a query[15].

7 Conclusion

This paper describes how to use inference networks to solve problems in searching multiple col-
lection. The effectiveness of the approaches is demonstrated in experiments with the IN QUERY
information retrieval system and the TREC set of document collections. The experimental re-
sults are encouraging because simple methods were quite effective with different numbers of
collections that varied widely in size and content.

But in our work so far, all of the collections used the same representation, stemming al-
gorithm, stopword list, and query processing techniques. When these differ, as they will in
collections on wide-area networks, the problems, especially the problem of result merging, be-
come more difficult. Although learning weights stored in the information need node can be
expected to “flatten” all kinds of differences, it is not clear how to do it. In addition, we have
not addressed how to perform relevance feedback in the environment of multiple collections.

Although we believe our approach is scalable with growing number of available collections, more
experiments need to be done.
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Table 2: The 106 small collections used for experiments

Docu- Moga- Docu- Mega-
Name ments Words bytes | Namo ments Words bytes
AP '02/88 4198 1,131,354 24.02 Patent 1 560 1,121,011 14.50
AP '03/88 8196 2,185,743 20.98 Patont 2 580 1,384,363 17.72
AP '04/88 7790 3,089,128 21.7% Patont 3 B60 1,647,816 331.52
AP '05/88 8302 2,196,009 13.26 Patent ¢ 880 2,187,990 27.20
AP '06/88 8081 3,147,804 as.e1 Patont B 660 1,334,895 17.34
AP '07/08 7301 1,944,858 24.48 Patent 8 680 1,457,301 18.94
AP '0s/ss 7498 1,968,891 25.74 Patont 7 560 1,051,090 35.88
AP '09/88 6822 1,860,133 25.29 Patent 8 560 1,860,079 25.34
AP '10/88 7794 2,047,714 22.84 | Pstont 9 K60 1,120,438 14.83
AP '11/88 6928 1,789,060 23.02 Patent 10 560 1,456,725 18.77
AP '12/88 7012 1,882,026 21.76 Patont 11 860 1,986,994 26.67
AP '01/90 6988 1,896,444 22.09 Patent 13 560 1,977,168 34,86
AP '02/90 6521 1,790,728 31.60 WSJ *04/90 3569 1,031,469 1.1
AP '03/90 6867 1,805,808 19.77 WSJ 06/90 3643 1,075,998 12.19
AP '04/90 6594 1,801,885 18.368 WS8J %06/00 3439 1,051,573 11.668
AP *058/90 8072 1,879,613 2097 WEJ 'o7/%0 3386 1,010,938 11.42
AP ‘06/80 8673 1,796,132 23.18 WsJ '08/90 3523 1,080,297 1217
AP *a7/%0 6845 1,783,596 31.02 wW$sJ '09/30 3244 972,240 11.03
AP '08/90 8318 1,714,108 31.9¢ WSl 12/%0 931 263,581 3.02
AP '09/%0 8731 1,675,087 21.06 WSJ *01/91 3594 1,075,323 13.24
AP '10/90 6816 1,886,108 20.04 WSJ '03/01 3143 934,107 10.864
AP '11/90 6310 1,601,637 19.81 WSJ '08/01 3528 1,006,483 11.51
AP '12/90 6029 1,680,628 1801 WS8J ‘o4/01 3969 1,126,637 13.20
Fod. Rog. '01/88 3339 1,803,898 19.78 wsJ '05[91 8 1,082,968 12.80
Psd. Reg. '02/88 2103 1,804,778 24.65 | wsa0s/o 3800 972,884 11.65
Ped. Reg. '05/88 1684 1,991,153 23.38 WS8J '07/91 3709 1,073,732 12.83
Ped. Reg. '06/838 1489 1,608,745 8.74 | WSJ'08/91 3309 998,711 11.98
Pod. Reg. '07/88 2142 3,075,110 19.61 WSJ '09/91 3308 967,309 11.44
Ped. Rog. '08/88 m7 3,154,918 21.80 WSJ *10/91 4055 1,185,133 14.28
Ped, Reg. '09/83 2437 2,433,880 1745 WSJ f11/91 3481 1,000,308 12.15
PFod. Reg. '10/83 1741 2,238,603 22.92 wsJ 13/81 3198 938,938 11.26
Pod. Reg. '11/88 2133 2,138,415 34.78 wsJ '01/93 3788 1,095,584 13.19
Ped. Reg. '12/88 (1.1} 799,738 26.51 WSJ '03/92 3437 543,365 11.43
SIM '01/91 7833 1,978,510 3715 WSJ '03/92 2938 427,919 9.89
SIM '02/91 7080 1,749,601 34.24 2ix '07/89 6614 1,687,169 17.80
SIM '03/91 76849 1,871,014 26.04 2Zifr '08/89 5579 1,632,490 18.24
SJIM '04/91 7601 1,813,333 25.18 Zift '09/89 5803 1,660,332 18.73
SIM '08/91 y748 1,833,807 26.43 zin '10/59 6363 1,877,618 21.08
SJIM '06/91 7478 1,798,817 24.82 Ziff '11/89 4888 1,524,419 17.11
SJIM '07/91 7758 1,797,531 25.11 25T '12/89 180 91,409 1.00
SJM '08/91 7630 1,794,627 24.95 Zift '01/91 12083 2,099,223 27456
SIM '09/91 7574 1,061,253 28.50 | Zif '02/91 11775 1,968,896 26.08
SJM *10/91 7908 1,893,012 26.18 Ziff *03/91 13350 2,102,378 37.60
SIM '11/91 7384 1,739,419 33.99 ZiT 04 /01 12810 2,320,771 29.96
SIM "13/91 6723 1,606,137 22.18 | 2Zifrros/e1 12515 2,282,758 20.48
Ziff ‘01/89 5042 1,336,668 15.16 ZifT ‘00 /91 13485 3,384,248 29.31
Ziff '03/89 4633 1,342,738 18.03 Zift ro7/01 12795 2,265,298 29.28
Ziff '03/89 4583 1,334,304 14.968 Zift ‘08 /91 12050 2,257,358 328.80
Ziff '04/89 5020 1,617,168 17.98 Ziff '09/01 13116 2,413,764 31.14
Ziff *05/89 5437 1,713,169 18.08 i '10/91 12819 3,479,634 31.31
Zif¥ *06/89 5091 1,696,044 17.80 Zif '11/91 11379 1,918,376 25.32
Ziff ‘88 4 8,198 0.12 Zify 13/91 20678 850,198 18.04
Ziff '90 2874 1,624,844 17.71 ZIT '01/92 41 4,353 0.068
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Table 3: The effects of varying K (10 collections in TREC volumes 2 & 3, topics 201-250).

(a) =0 and k is varied. In (b) k = 200 and b is varied.

In

°p

k=1

0.299
0.494
0.702
0.804
0.860
0.915
0.942
0.967
0.993
1.000

- RN X RN

k=1

38.39
33.02
31,38
26.92
332.84
20.49
18.00
16.20
14.70
13.27

X TR RN
> -~ H;q

3 ci

b=0
0.308
0.854
0.753
0.841
0.878
0.913
0.945
0.965
0.986
1.000

O AN A e

(-]

-]
&~

b=0
42.73
35.91
33.18
28.32
23.78
20.56
18.11
16.11
14.63
13.37

[N 0 BN N N

(a) = 0 and & is varicd

k=10
0.309 (+3.2)
0.537 f+s.a;
0.744 (+6.1
0.842 §+4.7)
0.892 {+3.6
0.925 (+1.1
0.953 {+1.1)
0.978 (+0.9)
0.992 (-0.0)
1.000 {+0.0)

k=10
41.20 (+4.8
35.66 (+8.0
32.69 (+4.3)
28.26 (+5.0)
23.99 (+5.0)
20.69 (+1.0
1018 (+0.7
168.26 (+0.3
14.69 (-0.1)
13.27 (+0.0)

b) k = 200 and b is veried

b=0.25
0.308 {4-0.1)
0.547 (-1.3)
0.733 {-2.7)
0.842 (40.1
0.908 (+3.4
0.936 (+2.5)
0.963 (+0.8)
0.973 (40.8)
0.989 (+40.3)
1.000 (490.0)

b=0.25
42.78 (+0.1)
36.00 (+0.3)
32.40 (-2.3)
37,92 (-1.4)
24.23 (+32.0
20.81 (+1.2
18.18 (+0.4)
16.92 (+1.3
14.68 (+0.3
13.37 (+0.0

k=50
0.328 {+7.9)
0.541 {+9.8
0.784 (+7.0
0.841 (+4.5)
0.888 (+3.2
0.917 (+0.3
0.945 {+0.3
0.969 (+0.2
0.991 (-0.1)
1.000 {+0.0)

k=60
42.6% (+8.1
35.80 +7.51
33.48
38.34 (+5.3
23.9¢ (+4.8)
20.62 {'I-D.G
18.02 (+0.1
18.19 (-0.1
14.67 {-0.2
13.27 (40.0)

+6.8

b=0.5
0.313 (+3.9)
0.548 (-1.0)
0.739 (-1.9
0.839 -o.z;
0.900 (+3.5)
0.936 (+1.5)
0.944 (-0.1)
0.964 (-0.1)
0.983 (+0.7
1.000 +o.o;

b=0.5

43.43 (+l.0)
35.84 (-0.3

33.90 (-0.8

28.16 (-0.6)
24.18 {+1.7
20.74 (+0.9
18.06 (-0.3)
16.17 (+0.4
14,60 (4+0.4
13.27 (4 0.0

k=100
0.318 (+6.3)
0.544 (+10.3)
0.753 (+7.1
0.838 §+",
0.884 (+2.7
0.509 (-0.6)
0.946 (40.4
0.989 (40.2
0.989 (-0.4)
1.000 (+0.0)

k=100
43.18 (+9.8
35.90 (+8.7
33.46 (+6.7
28.30 (+45.1
23.80 (+4.2
20.44 (-0.2)
18.14 (+0.8)
16.19 (-0.3)
14.86 (-0.3)
13.27 (++0.0)

b=0.75
0.313 (+2.8
0.559 (+1.0
0.755 (+0.3
0.842 (+0.3
0.851 (41.5
0.916 (+0.4
0.945 (+0.0)
0.959 {-0.6)
0.989 {+o.:

1.000 (40.0

b=0.76
43.43 [+1.e
36.39 (+1.8
33.09 {-0.3)
28.41 {+o.s
23.98 (+1.0
20.52 {-0.2)
18.14 (40.3)
16.13 (-0.0)
14.66 (+0.2
13.27 (+0.0

k=150

0.303 (+1.2)
0.546 (+10.7)
0.749 (46.8
0.838 +m§
0.878 (+3.0
0.911 (-0.8)
0.948 {+0.4)
0.965 (-0.3
0.989 {(-0.4
1.000 {+0.0)

k=150
42,63 (+8.2
35.67 (+8.0
33.12 (45.7,
28.30 (+5.1
23.74 (4.9
20.41 (-0.4)
18.14 (+0.8)
16.11 (-0.8
14.66 (-0.3
13.37 (+0.0)

b=1.0
36.69 (-14.1)
33.02 (-8.0)
27.93 (-15.8
25.29 (-10.9
22.59 (-4.9
20.43 {-0.6
18.13 (40.0'
16.18 (4+0.4
14.68 (40.3
13.27 (+0.0

k=200

0.305 (+1.9)
0.554 (4+13.2)
0.753 (+7.4)
0.841 (+4.5)
0.878 (+3.1)
0.913 (-0.2)
0,945 (40.3)
0.965 (-0.2

0.988 (-0.6

1.000 (+0.0)

k=200
42.73 (+8.5)
35.91 (48.7
33.16 (5.8
28.32 (+85.2)
23.75 (44.0)
20.56 (+0.3)
18.11 (40.8)
16.11 (-0.6)
14.88 (-0.5)
13.27 (+0.0)

k=280
0.305 (+3.0)
0.888 (+12.4)
0.745 ($6.1
0.841 (+4.6
0.878 (+2.0)
0.913 (-0.3)
0.945 (40.3)
0.964 (-0.4
0.988 (0.6
1.000 (+40.0)

k=150

432.80 (+u.1i
36.21 {49.7
32.90 (+4.9)
28.31 (4B.1
23.74 (+3.9
20.85 (+0.3)
18.10 (+0.6)
16.04 (-1.0

14.68 (-0.5

13.27 {(+0.0)

k=300
0.290 (-3.0)
0,558 (+12.0)
0.745 (46.1
0.841 (+4.6
0.875 (+1.7)
0.908 (-0.7)
0.944 (+0.2)
0.967 (-1.0
0.988 (-0.8
1.000 (+0.0)

k=300
41.92 (6.4
36.04 (+9.1
32,900 (+4.9)
38.11 {+4.4
23.67 2+a.s
20.42 {-0.3)
18.10 (40.6)
16.02 {-1.1
14.63 (-0.5
13.27 (+0.0)
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Table 4: The effects of varying K (106 small collections, topics 201-250).
varied. In b) k = 200 and b is varied.

Ina)b=0and kis

—

CO 0 oo TN i 0 )= Y
000 P

k=1
0.0407
0.0728
0.0983
0.1291
0.1872
0.2368
0.6164
0.6789
0.8007
0.9204
0.9712
0.9990

k=1
5.386
4.308
4.510
4.342
4.156
3.938
3.405
2.8683
2.630
2.062
1.837
1.326

b=0
0.0442
0.0670
0.1046
0.1438
0.1748
0.2982
0.523¢6
0.7050
0.8071
0.9316
0.9831
0.9996

b=0
5.082
4.408
4.707
4.776
4.859
4.080
3.502
3.100
2.680
3.080
1.635
1.326

a) d= 0 and k is varied

k=10
0.0377 (-7.3)
0.0707 (-2.8)
0.0990 (+0.7)
0.1332 (+3.4)
0.1639 (-+4.3
0.3088 (+4.1
0.6344 (+3.5)
0.6992 (+3.5
0.8050 (40.5
0.9350 (+1.6
0.9838 (+41.3
0.9998 (+0.1

k=10
4.857 (-8.1)
4.571 {-4.9
4.429 {-1.3
4.342 (40.0)
4.324 (+0.7
4.116 (+4.6
3.537 (+3.9)
3.063 ;-{»3-4)

2.673 {+1.6)
2.086 (+1.2)
1.637 (40.6)
1.327 (+0.0)

300 and b is varied

b=0.28

0.0370 (-16.1)
0.0813 (-7.7)
0.0863 (-17.8)
0.1252 (-12.9)
0.1539 (-12.5)
0.3977 (-0.3)
0.5262 (40.5)
0.6933 (-1.7)
0.8053 (-0.2)
0.9430 (+1.1)
0.9789 (-0.3

0.9996 (-0.0

b=0.25
4.694 (-7.6)
4.469 (+1.4
4.197 (-10.8
4.306 (-9.8
4.387 (+7.1
4.078 (-0.1
3.463 (-1.1)
2.997 (-3.3)
2.636 (-2.0)
2.087 (+0.3)
1,635 (-0.0)
1.326 (+0.0)

k=60
0.0382 (-6.2
0.0713 (-2.2
0.0991 (+40.8
0.1338 (43.8
0.1680 (6.9
0.3073 {+3.5
0.5376 (+4.1
0.7105 (+5.1
0.8121 (+1.4
0.9370 (+1.8
0.9844 {(+1.4
0.9998 (+0.1

k=50
4.551 (-13.9)
4.520 (.5.9;
4.415 (-2.1
4.546 (44.7
4.490 ($+7.0
4.180 g-u.a
3,641 (+4.0
3.109 (+4.9
2.606 {+2.8
3.086 (+1.3
1.640 (40.8
1.327 (+0.0

b=0.8
0.0381 (-13.8)
0.0661 (-1.4
0.0964 (-7.9
0.1354 (-5.8
0.1679 (-3.9
0.3078 (+43.2
0.5392 (41.1
0.7046 (-0.1)
0.8104 (40.4
0.9373 (40.8

0.9817 {.0.0
0.9094 (-0.0

b=0.5
4.796 (-5.0)
4.408 (+0.0)
4.687 (-0.4
4.668 g.z.:
4.581 (-0.3
4.288 (+5.1
3.528 (+o 4
3.070
2.673 -o.:
2.08¢ (+0.2
1.637 (+0.2
1.326 (-0.0)

k=100
0.0366 (-10.1)
0.0696 (-4.3)
0.1018 {+s.
0.1369 (+6.0
0.1608 (4+8.1
0.3069 (43.4
0.6341 (43.4
0.7073 (+4.6)
0.8108 (+1.3
0.9387 (+2.0
0.9835 (+1.8
0.9997 (+0.1

k=100
1.469 (-15.4)
4.643 (-3.4)
4.571 (+1.4
4.612 ;-I-O.ﬂ
4.482 (+6.8
4.359 (+8.3
3.561 (+4.3
3.099 (+4.6
2,688 (+3.1
2.007 (+1.2
1.639 {40.7
1.326 (+0.0

b=0.75
.0403 (-9.2
.ouoi
0.1004
0.1369 {-4.5
0.1718 (-1.7
0.3129 (+4.9
0.5329 (+1.8
0.7034 (-0.2)
0.8160 (41.1)
0.9357 (+40.4)
0.9825 (+40.0)
0.8996 (+0.0)

3.660 (+1.7
3.101 (+0.0
2,699 (+0.7
2.087 (+0.3)
1.636 (+0.1)
1.336 (+0.0)

4.373 +4.0§

k=180
0.0437 (+4.9)
0.0698 (-4.1)
0.1017 (+3.8)
0.1431 (+10.9)
0.1766 (+13.3)
0.3032 (+3.2
0.5241 (+1.8
0.7037 {+4.1
0.5075 (40.5
0.9328 (+1.3
0.9836 (+1.3
0.9997 (+0.1

k=150
5.082 -8.9)
4.673 (-2.8)
4.699 (+2.0
4.709 (+8.5
4.624 (+10.2)
4.220 (+7.3
3.820 (+3.4
3.086 (+4.2
2.683 (+3.0
2.083 (+1.0
1.636 (+0.6
1.328 (40.0

b=1.0
0.0363 {-17.8
0.0589 (-12.1
0.0837 (-21.0
0.1134 {-21.1
0.1441 (-17.5,
0.2786 (-6.6
0.4944 (5.8
0.8701 (-5.0)
0.7858 (-2.8)
0.9356 (+0.4)
0.9767 (-0.5
0.9994 (-0.0

b=1.0

4,653 (-8.4)
3.949 (-10.4
3.837 (-18.5
3.903 (-18.3)
3.873 {-18.0)

3.718 (-8.9)
3.347 (-7.3)
2.885 (-6.9
2.539 (-5.3
2,070 (0.5
1.631 2-0.3
1.326 (-0.0)

k=200

0.0442 (+8.4)
0.0670 (-7.9)

0.1048 (+6.8)
0.1438 (411.4)
0.1748 (+11.2)
0.2083 (40.5
0.5336 i-n 4
0.7050 {+4.3
0.8071 (40.8
0.9315 (+1.3)
0.98321 {+1.1)
0.9996 (+0.1)

k=300
5.082 (-3.8)
4.408 (-8.3)
4.707 (+4.4)
4.776 (+10.0)
4.859 (+8.7)
4.080 (3.7
3.5032 (43.8
3.100 (+4.6
2.680 (+1.9
2.080 (+0.9
1.658 (+0.8)
1.326 (-0.0)

k=250

0.0371 (-8.9
0.0656 (-9.9

0.1028 (+4.8)
0.1428 (410.8)
0.1741 (+10.8)
0.3981 (0.4
0.5287 (41.4
0.7013 (+3.7
0.8071 (+0.8
0.9285 (40,9
0.9831 (+1.1
0.9996 (+0.1

k=260
4.673 (-11.6)
4.357 (-9.3)
4.497 (-0.3)
4.709 (+8.5
4.563 (+8.8
4.093 (+4.0
3.492 (+2.5
3,087 (+4.2
2.680 (+1.9
2.074 (+0.6
1,838 (40.5)
1.3326 (-0.0)

k=300
0.0380 (-6.8
0.0694 (-4.6
0.1027 (+4.6
0.1307 +§-?E
0.1728 {+9.9
0.3963 (-0.2)
0.5248 (+1.6
0.6995 (+3.5
0.8064 (+0.7
0.9281 (40.8
0.9815 (+1.1
0.9996 (+0.1)

k=300

4.738 (-10.4)
4.489 (-7.3)
4.497 (-0.3)
4.714 (+8.6
4.543 (48.3
4.114 (+4.8
3.504 (+2.9)
3.082 (+4.0

+1.9

2.073
1.635 (+0.8
1.336 (-0.0)

2.680
+0.8
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Figure 4: Comparison with the optimal ranking (10 collections).
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Table 5: The effectiveness of weighted merging functions (10 collections in TREC volumes 2 &
3, topics 201-250).

Interpolated Recall - Precision Avorages (49 queries):
w M

Normalisod Ra Fl-all MFP2-all MP1-sel-5 MP32-10l-5
o% 70.27 62.81 -10.6) 68.02 -3.2 89.27 1.4 69.19 -1.5) 64.56 -2.4)
10% 48,81 40.11 -17.5) 46.87 -3.8 48.31 -6.8 46.53 -4.3) 46.99 «5.4)
20% 40,51 33.80 -16.6) 39.81 -2.2 38.47 -5.0 39.46 -2.8) 38.86 -4.1)
0% 34.21 9.3 -14.3) 33.76 -1.3 33.61 1.8 30.66 -10.7) 31.13 «9,0)
40% 28.33 25.09 -13.0) 27.65 4.1 28.02 -2.8 33.99 +16.8) 24.27 +15.8)
50% 23.61 19.96 -15.8) 32.08 -6.6) 233.04 «3.4) 19.19 ~18.7) 19.78 16.3
60% 17.83 14.31 +19.7) 16.33 -14.0) 16.28 -8.8 13.55 *34.0 14.24 +20.1
T0% 8.95 8.64 -8.8) 7.57 -17.7 a.91 -0.4 5.90 -34.1 T.18 -30.0
ao% 5.48 [N 4 +13.6} .98 -37.0 4.52 -17.1 .77 -49.3 3.40 -37.6
90% 244 336 -7.4) 154 (-36.9 213 (-13.7 0.65  (-74.3) 1.39  (-43.0)
100% 0.08 0.07 -12.8) 0.08 +35.0 0.07 *12.5 0.00 -100.0) 0.00 +100.0)
Averago procision (non-interpoleted) over all rel docs
23.82 19.904 (-16.3) 22.3¢ ( -6.0) 2156 (-5.3) 20.83  (-132.6) 21.06  (-11.8)
Precision:
& docst 51.43 42.8¢8 -16.7) 51.02 «0.8) 48.98 4.8 50.61 +1.6) 48.87 -5.6)
10 doesn: 44.29 41.02 ~7.4) 45.10 +1.8) 44.08 -0.5 43.58 -0.9 43.27 «3.3
15 docs: 41.36 37.38 -9.9) 41.63 +0.7 41.09 «0.7 40.27 -2.8 40.00 3.3
20 docst 39.08 3.7 «8.6) 40.10 +3.6 39.18 +0.3) 3948 +1.0) 38.78 «0.8
30 docms 35.78 31.87 -10.6) 36.33 +1.5 35.44 «1.0 35.17 -1.7) 36.44 1.0
100 docs: 24.96 21.82 =12.6) 24.47 «3.0 24.83 -1.3 23.9¢ 4.0 24.14 -3.3
200 docs: 19.08 17.37 -8.4 18.33 -3.8 8.7 -1.8 18.08 -5.2 18.4% -3.0
8600 docs: 11.58 10.76 6.8 11.28 3.3 11.58 +0.1) 10.82 6.3 10.98 4.9
1000 docss 7.16 6.92 -3.4 7.08 -1.4) 7.20 +0.8) 68.608 -7.0 8.79 -5.3)
R-Precision (precision after R (== num.rol for a query) doca rotrieved)s
Bxact: 28.74 2498  (-13.3) 37.81 (-3.3) 37.94 (-2.8)  28.85 [ -7.6) 2667 (-7.3)

Table 6: The effectiveness of weighted merging functions (106 collections in TREC volumes 2 &
3, topics 201-250).

Intorpolatod Rocall - Procision Avoragos (49 querios):
w

Narmalisod Ra MP1l.all MP2-all MP1.sel-E0 MPF3-5¢)-60

% 70.327 45.99 «34.8 68.19 +3.0) 67.10 -4.8) 73.82 +4.8) 74.35 +6.8)
10% 48.81 31.98 -34.3 43.40 -10.7 43.88 -11.8) 43.80 -9.9) 44.22 -9.0)
0% 40.51 25.09 «38.1 36.24 +10.5 33.50 -16.6) 32.09 -18.5) n.n +21.7
0% 34.2% 21.30 -37.7 30.02 +12.2 37.82 «18.7 25.31 -26.0) 24.83 +28.3
40% 28.83 17.77 -38.4 24.33 -15.6) 22.68 «21.4 20.08 -30.4 19.33 «33.0
50% 23.61 14.94 -36.7 18,77 -20.5) 17.58 ~35.5 15.48 -34.4 14.85 -38.0
60% 17.82  10.83 -40.9 11.97 -33.8) 11.11 «37.7 10.04 -43.7 9.18 -48.8
70% 8.98 [ N1} -36.5 B.B8 -87.7) 5.28 -41.0 4.03 -85.0 3.85 -B7.0
(113 5.45 2.93 «48.3 3.86 «34.7) 3.24 -40.8) 3.46 -54.9 2.27 -58.3
20% 2.44 1.23 -49.6 1.37 -43.9) 147 -39.8 0.8 -76.3) 0.55 «77.5

100% 0.0.8 0.08 +40.0) 0.08 +0.0) 0.07 -12.5 0.00 +100.0) 0.00 -100.0}

Average precision (. t latod) over all rel docs

3382 1449  (-39.3) 2008  (-16.7) 1867 (-20.4) 1831 (-3%.)  17.84  (-35.)

- Precisions
5 docst 51.43 28.98 -43.7 46.94 -8.7 46.53 0.5 51.02 -0.8) 50.20 -2.4
10 docs: 44.29 28.37 «35.9 43.08 -2.8 42,24 -4.8 42.688 -3.7) 43.27 *2.3
15 docs: 41.36 26.80 -36.3 39.393 -4.9) 39.59 -4.3 39.73 3.9 40.68 -1.6
20 docss 39.08 25.51 -34.7 38.561 «9.1) 35.82 -8.3 35.82 -8,3 36.84 -B.7
30 docss 35.78 24.08 -32.7 32.868 -8.3) 32.59 -8.9 33.61 -8, 33.38 -6.8
100 docs: 24,96 18.59 -25.5 23.10 -7.5) 23.59 -0.5 20.76 -16.8) 20.88 -16.3
200 docs: 19.06 15.02 -31.3 17.43 ~5.6i 17.16 -10.0) 15.4% +19.3 15.38 -19.3
500 doce: 11.58 9.98 +13.8 10.70 -7.4 10.44 -9.68) 9.37 «19.7 9.18 -20.7
1000 docss 7.16 6.40 «10.6 6.72 -6.1 6.64 «8.7) 5.65 -31.1) 5.60 -31.8
R-Precision (precision after R (= num.rol for a query) docs retrieved):
Bxacts 28.74 2050 (-28.7) 3838 (-2.0) 2571 (-10.8) 3436 (-16.6) 2424 (-1B.7)
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Table 7: The effectiveness of weighted merging functions — using no-icf collection ranking scores
(10 collections in TREC volumes 2 & 3, topics 201-250).

Interpolatod Rocsl) - Procision Averages (49 quories):

Normalised MP1.all MP2-all MP1-sel-8 MP32.3¢)-6
0% r0.27 69.95 «0.5 70.47 40.3) 69.94 -0.5 70.97 +1.0})
10% 48,61  48.00 B X 46.21 4.9 46.92 -3.5 47.38 -3.6
20% 40,581  38.78 -4.3 38.82 -4.2 39.01 =37 38.80 -4.2
30% 34.31 3348 -3.3 33.58 -1.8 32.08 -8,3 32.11 -8.1
40% 28.83 28.11 «2.8 28.18 «2.3 36.11 -9.4 26.14 +9.3
50% 23%.01 23.40 -0.9 23.50 -0.5 320.57 -ll.Oi 20.65 -li.ls
60% 17.82 16.65 -6.6 16.71 -6.3 14.58 -10.2 14.66 -18.3
70% 8.98 8.64 3.8 8,87 -3.1 6.81 -33.9 6.82 -23.8
80% 545 4.93 -0.8) 4.97 -8.8) 3.47  (-36.3 334 (-38.7)
s0% 2.44 3.87 +8.9) 2.58 +5.7) 1.76 -38.3 1.71 +20.9)
100% 0.08 0.07 -12.8) 0.07 -12.8) 0.00 -100,0) 0.00 (-100.0)

Average procision (non-interpolated) ovor all rel dacs
23.82 232.85 (-3.7) 23.08 (-3.3) 31.87  (-8.2) 2198 (-7.9)

Precision:
5 docs: 51.43 51.84 +0.8 52.24 +1.8 52.24 +1.8) 52.24 +1.6
10 docs: 44.39 44.69 +0.9 485.10 +1.8 48.7% +3.2 46.53 +5.1
15 does: 41.368 42.18 +3.0 42.45 +3.0 41.50 +1.3 41.77 +1.0
20 docs: 39.08 40.10 +3.6 40.10 +3.6 40.31 +3.1 40.00 +2.4)
30 docs: 38.78 35.93 +0.4 36.05 +0.8 36.51 -0.8) 38.78 +0.0)
100 docs: 24.98 25.04 +0.3 35.10 +0.6 24.96 +0.0) 34.88 -0.4
200 does: 19.08 19.13 +0.4 19.13 +0.4 18.99 -0.4 19.00 -0.3
500 docus 11.56 11.70 +1.3 11.72 +1.8 11.18 -3.2 11.23 -3.8
1000 dacs: 7.6 7.23 +1.0 7.24 +1.1 8.87 -4.1 ¢6.86 -4.2
R-Precision (precision after R (= num.rel for a query) docs retrioved):
Bxact: 2874 32821 (-1.8) 2817 (-3.0) 3741 ( -4.6) 27.30  {-5.0)

Table 8: The effectiveness of weighted merging functions — using no-icf collection ranking scores
(100 collections in TREC volumes 2 & 3, topics 201-250).

Intorpolated Recall - Proclsion Avoragos (49 quories):

Normalised MP1.all MP32.all MP1.scl-80 MPF2-sel-50

o% 70.37  69.19 -1.5 69.04 -1.8 71.26 +1.4) 70.89 +0.9)
10% 48,01  46.50 -4.8 46.08 5.2 46.60 -4.1) 46.47 -4.4)
20% 40.51  36.49 «9.9 36.41 +10.1 35,82 -11.6 35.87 -11.8
0% 34.31 30.11 -12.0 39.93 -12.5 26.65 ~22.1 26.67 -22.0
40% 38.83  28.92 -17.0 28.84 +17.3 19.38 -82.8 19.38 -33.7
0% 23.61  18.87 -20.1 19.08 -19.3 14.70 -37.7 14.72 -37.7
60% 17.83  11.87 -33.4 11.88 -38.3 7.80 -86.2 7.75 -58.5
70% 8.95 5.38 ~41.3 5.58 -37.7 4,08 -54.7 4.04 -54.9
80% B.45 s.00 -45.0 2.95 -45.9 2.25 -58.7 2.3¢4 -58.9
20% 2.44 1.10 +54.9 1.14 -53.3 0.75 +69.3 0.78 +69.3

100% 0.08 0.09 +12.8) 0.09 +12.5) 0.00 -100.0) 0.00 (-100.0)

Average procision (non-interpolated) over all rel docs
23.82 2028  (-14.9) 2037  (-14.9) 1845  (-22.5) 18.42  (-22.7)

Procision:
B docs: 51.43 5143 +0.0 53.43 +0.0) 60.61 ~1.8 50.61 1.6
10 docs: 44.29 44.49 +0.5 44.08 «0.8 44.08 -0.8 43.67 -1.4
18 docs: 41.36 40.95 -1.0 40,64 «3.0 40.00 3.3 40.00 3.3
20 doce: 39.08 37.45 4.2 37.14 5.0 36.53 6.5 36.43 «6.8
30 doce: 35.78 34.29 -4.2 34.39 -4.3 34.36 -4.0 34.36 -4.0
100 docs: 24.96 33.20 -7.1 23.27 -6.8 32.45 -10.3 23,29 -10.7)
200 docs: 19.08 17.36 «8.9 17.46 8.4 16.09 -15.8 16.03 -15.9
800 docs: 11.58 10.63 -8.0 10.65 -7.8 9.46 -18.1 2.48 -18.3
1000 docs: 7.18 6.61 7.7 6.63 74 5.78 +19.3 5.78 «19.7,
R-Procision (procision after R (= num.rel for a query) docs rotrieved):
Bxact: 2074 2633 (-8.7) 26.3¢ (-8.7) 24.43  (-16.0) 24.38  (-16.3)
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