Direct Maximization of Rank-Based Metrics for
Information Retrieval

Donald A. Metzler, W. Bruce Croft, and Andrew McCallum
Department of Computer Science
Center for Intelligent Information Retrieval
University of Massachusetts, Amherst
{metzler, croft, mccallum}@cs .umass.edu

Abstract

Ranking is an essential component for a number of tasks, such as infor-
mation retrieval and collaborative filtering. It is often the case that the
underlying task attempts to maximize some evaluation metric, such as
mean average precision, over rankings. Most past work on learning how
to rank has focused on likelihood- or margin-based approaches. In this
work we explore directly maximizing rank-based metrics, which are a
family of metrics that only depend on the order of ranked items. This
allows us to maximize different metrics for the same training data. We
show how the parameter space of linear scoring functions can be reduced
to a multinomial manifold. Parameter estimation is accomplished by op-
timizing the evaluation metric over the manifold. Results from ad hoc
information retrieval are given that show our model yields significant
improvements in effectiveness over other approaches.

1 Introduction

For many information retrieval tasks, such as ad hoc retrieval, named-page finding, and
question answering, systems are evaluated based on some metric of how well they rank re-
sults. Examples of such metrics include mean average precision, mean reciprocal rank, and
precision at 10, among many others [2]. A retrieval system designer must choose a metric
appropriate to the underlying task. The end goal of the system is then to maximize the given
metric. This is often accomplished by hand tuning system parameters until a given perfor-
mance level is achieved. However, such an approach is only feasible for a small number of
parameters and relatively simplistic models. The goal of this work is to develop methods
for automatically setting parameters for a large family of retrieval models and evaluation
metrics in a supervised fashion. Given a set of training data and a suitable retrieval model
we explore how to find the parameters that maximize any rank-based metric. A rank-based
metric is any metric that depends only on the ranking of the items under consideration.
Therefore, for a fixed training set and model, our training process will yield different pa-
rameter estimates for different metrics. This is intuitively appealing, as we expect one set
of parameters will maximize average precision and another (different) set will maximize
mean reciprocal rank. Ultimately, this allows for a single set of features to be used for a
variety of different tasks. Although this work focuses mostly on information retrieval it is



applicable to any task that involves maximizing a rank-based metric, such as collaborative
filtering and certain classification tasks.

In this work, we consider ranking documents for a set of queries'. For each query, a to-
tal ordering of the documents is generated. We focus on linear and monotonically linear
models and show that their parameter spaces can be reduced to a multinomial manifold.
As we show throughout the remainder of the paper, such a reduction has several advan-
tages. Parameter estimation is done by maximizing the evaluation metric of interest over
the manifold. Since we are no longer dealing with a Euclidean search space, some care is
necessary when carrying out such optimizations. A general coordinate ascent procedure is
described.

The remainder of this work is laid out as follows. Section 2 gives a broad overview past
work done on the topic of learning rankings. Section 3 develops a theory of linear ranking
functions and shows the reduction of the parameter space to the multinomial manifold.
Section 4 describes the role of ranking in ad hoc information retrieval and empirically
evaluates our model. Finally, we conclude and detail possible future work in Section 5.

2 Related Work

Most past work on learning how to rank objects have been variants of ordinal regression.
Ordinal regression is similar to standard statistical regression, but allows ordinal, rather
than nominal or real-valued, responses. Ordinal variables are coarse grained quantitative
measures [1]. For example, in information retrieval, documents can be thought as being
“highly relevant”, “somewhat relevant”, or “non-relevant”. Such categories are ordinal
because a “highly relevant” document is (quantitatively) better than a “somewhat relevant”
document, but it is impossible to specify how much better it is. We note that this is different
than assigning relevance scores on an integer scale of 1 to 10. In this case, it is possible to
determine the exact quantitative difference between the relevance of two documents. It is
this type of response that standard regression models implicitly assume.

There are two popular approaches to ordinal regression. The most simple, yet naive, ap-
proach is to treat the ordinal responses as either class labels or real-valued targets and
then apply standard classification or regression techniques. Such an approach completely
ignores the ordinal nature of the responses and throws away a great deal of information.

The other approach, which makes use of the ordinal structure, maintains weights and cat-
egory boundary parameters. The boundary parameters are used to denote the boundary
between two adjacent ordinal responses. New instances are assigned to a category based
on the proximity of their response to the category boundaries. There have been many vari-
ations of this scheme, all based on different ways to estimate the weights and boundary
parameters. One of the earliest approaches used a perceptron-based learning technique [3],
whereas more recent techniques have made use of large margin ideas, such as those used
in SVMs [5, 6, 8].

Although many of the large margin methods have theoretically strong error rate bounds,
they are often infeasible to train on large training data sets. The reason for this is that
most add one (or more) constraints for every pair of instances in adjacent classes. For
small training sets this generates a feasible number of constraints. However, for more
realistic training sets, such as those that arise in information retrieval, this can lead to on
the order of one million or more constraints. Clearly, such an optimization problem is both
computationally and resource intensive.

"We use the terms *documents’ and *queries’ to adhere to common information retrieval terminol-
ogy, but these should be thought of more abstractly as *objects’ and ’input instances’, respectively.



3 Maximizing Rank-based Metrics

This section develops a novel way of looking at ranking. Our motivation is information re-
trieval, where ranking large sets of documents is inherently important. As discussed in the
previous section, most state of the art ordinal regression approaches cannot efficiently han-
dle such tasks. Rather than explicitly imposing an ordinal response, such as “relevant” and
“non-relevant” on documents, we focus on learning the parameters of a scoring function
that implicitly imposes an ordering on them. Since the end goal of most ranking systems is
to maximize some evaluation metric based on the rankings produced, we focus on finding
the parameters that maximize this evaluation metric. As we will show, this approach can
easily handle large training sets, such as those that typically arise in information retrieval.
The approach can be applied to any task that induces a ranking via a scoring function and
seeks to maximize some metric over the rankings. It is readily applicable to information
retrieval, collaborative filtering, and even general classification tasks.

3.1 Problem Description

Suppose we are given a set of documents D, queries Q = {Q;}Y;, and training data 7. In
addition, we are given a real-valued scoring function Sy (D; Q) parameterized by A. Given
a query @, the score function Sy (D; Q;) is computed for each D € D. The documents are
then ranked in descending order according to their score. Therefore, the scoring function
induces a total ordering (ranking) R(D, Q;, Sx) on D for each query Q;>. For simplicity we
rewrite R(D, Q;,Sx) as R;(A) and let Ry = {R;(A)}Y, be the set of rankings induced
over the queries. Finally, we need a rank-based metric (evaluation function) E(R ;7 ) that
produces real valued output given a set of ranked lists and the training data. It should be
noted that we require that & only considers the document rankings and not the document
scores. The scores are only used to rank the documents and not used to evaluate the ranking
whatsoever.

Therefore, our goal is to find the A that maximizes E over the parameter space. Formally,
this can be stated as:

A = argm/z\xxE(RA;T)
s.t. Ra ~ Sa
A e My

where R ~ Sj denotes that the orderings in R are induced using scoring function S, and
M is the parameter space over A.

3.2 Monotonically Linear Scoring Functions

Rather than tackle the general optimization problem proposed above, we aim to solve a
more constrained version. We restrict our focus to strictly increasing linear scoring func-
tions. That is, we consider scoring functions from the following family:

S={SA(D;Q) : 3i(-)s.t. I is strictly increasing and
U(SA(D;Q)) = AT f(D,Q) + 2}

where f(-,-) is a feature function that maps document/query pairs to real-valued vectors in
R?, Z is a constant that does not depend on D (but may depend on A or Q). That is, we
require there to exist some strictly increasing function [ that, when applied to .S, yields a
function that is linear in A. This family of models is strongly related to Generalized Linear
Models from statistics, with [ acting as the link function.

2We assume ties are broken by category (document) id.



By definition, every S € S can can be reduced to a linear form via a strictly increasing
function. Since such functions are rank preserving and subsequently evaluation metric
preserving, we can always write the scoring function linearly as AT f(D, Q) + Z.

Applying numerical optimization algorithms to unconstrained parameter domains can be
problematic, especially in the presence of many repeated local and global extrema as is the
case here. Also, many techniques require an intelligently chosen starting point or that an
extrema can be bracketed, both of which may be difficult in general. For these reasons,
we wish to further reduce the problem to a constrained optimization problem where the
number of repeated extrema is significantly reduced and it is always possible to bracket a
global extrema.

To facilitate the theory, we must introduce a slight modification to the feature vectors
f(D,Q). We augment f(D, () with an additional component f(D,Q)4+1, such that
f(D,Q)ay1 = K — E?Zl f(D, Q); for some arbitrary K and denote the modified feature

vector as f(D, Q). By augmenting each feature vector with this additional component we
require that the sum of the feature vectors is constant (= K). We note that this additional
component introduces redundant information but has no impact on the final result, as will
be shown. Finally, let A be the d 4+ 1 dimension version of A. Using the augmented feature
vectors, the optimization problem can be written as:

A = argmax E(Rx;T)
A

s.t. Ri ~ A f(D,Q)+Z
A e RT {01}
Adr1 =0
where we assume A is non-trivial. It is easy to see why this optimization problem is equiva-

lent to non-augmented feature case. The condition Ag+1 = 0 requires the weight associated
with the augmented feature to be 0, thus eliminating any influence the augmented feature
may have on the outcome.

3.3 Reduction to Multinomial Manifold

We will now show that this optimization problem, for the family of scoring functions S, is
equivalent to the following constrained optimization problem:

A = argmaxE(Rx;7T)
A

s.t. Ri ~Af(D,Q)+Z
A epd
where P? is a multinomial manifold (also known as a d-simplex) described by:
n+1
Pd = {AeRd“ VA= 0,) N = 1}
i=1

Theorem. Any solution to the augmented optimization problem over R4! \ {0I} has a
rank-equivalent solution to the augmented optimization over P¢.

Proof. Suppose that A is the solution to the augmented optimization problem. This is
equivalent to saying that the first d components of A are a solution to the original optimiza-
tion problem. Now, consider the following transformation to A:

. Ni—k

! w




where k& = min{0, min{)\;}} and W = 3_.(\; — k). It is easy to see that A’ € P% so
the transformation maps points onto the manifold. We must now show the transformation
preserves rank-equivalence.

There are two cases: min{);} > 0 and min{\;} < 0. If min{)\;} > 0, then k = 0 by
S\ih
Zj Aj ’ .
same positive constant (W), the parameter A’ ranks documents exactly the same as using
parameter A. Next, if min{\;} < 0, then & = min{);}. Under A’, the scoring function

becomes:

definition and therefore ;\; = Since all of the parameter values are scaled by the

Sa(D; Q)

Z [f(D,Q)i +

> AJ(D,Q); WZfDQ

K2

Nif(D,Q);

E
™M =~

K2

Where the last step follows from the fact that >, f(D, Q) is constant (= K) by definition.
Thus, the transformation preserves the rankings. We have therefore shown that any solution
to the augmented problem over R4*! \ {0I} can be transformed into a rank-equivalent
solution over P?, thus completing the proof [J

Since the two solutions are rank-equivalent, they produce the same value for E. Therefore,
for a given training set and any scoring function in S, we only need to solve the optimization
over the multinomial manifold and rank documents according to a simple linear function.
This allows us to always bracket a global extrema, because we know that any solution to
the original unconstrained problem has an equivalent solution on the manifold, including
the global extrema.

Searching over the manifold provides an augmented solution A, which requires augmented
feature vectors. Fortunately, it is always possible to transform the augmented parameter
vector to one that is rank equivalent to a scoring function over the original parameter space.

This can be done by transformlng each weight by )\’ =\ — )\d+1 for all < and renormal-
izing. The proof that this is valid is similar to the proof given above. This results in the
weight associated with the augmented feature being set to 0. Thus the solution is again
over the original space.

3.4 Summary

The following summarizes the proposed procedure:

1. Construct f(D, Q) from f(D, Q) for each feature vector in 7.
2. Solve constrained optimization problem over the multinomial manifold to find A.
3. Construct A by translating A such that the augmented component has weight 0.

4. Rank documents for query @ using scoring function A7 f(D, Q).

Steps 1, 3 and 4 are straightforward. Step 2 is the most important part of the method.
We now describe one possible numerical technique for solving the optimization procedure
required in this step.
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Feature
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Table 1: Features used in the ad hoc retrieval experiments. ¢ f,, p is the number of times
term w occurs in document D, cf,, is the number of times term w occurs in the entire
collection, df,, is the number of documents term w occurs in, | D| is the length of document
D, |C| is the length of the collection, and N is the number of documents in the collection.

3.5 Parameter Estimation

Unlike most optimization techniques that treat the parameter space as R, we must solve an
optimization problem over the multinomial manifold P?. Since the manifold is coordinate-
free, we must take care when devising an optimization strategy. We make no explicit
assumptions about the continuity or differentiability of F, the function we are attempting to
maximize. In those cases that £ is continuous and differentiable over R? the optimization
is straightforward. However, for most applications of interest, £/ will not have such a
desirable form and certain provisions will have to be made.

Coordinate ascent can be applied to the optimization problem under consideration with
minor modifications necessary to handle the fact we are optimizing over the multinomial
manifold rather than a Euclidean space. All one dimensional searches done by the algo-
rithm will be performed as if they were being done in R?. However, this does not ensure
that the updated parameter estimate will be a point on the manifold. Therefore, after a step
is taken in R%, we transform the point back onto the manifold, which we showed is always
possible in Section 3.3. Recall that this transformation preserves the function value. There-
fore, the optimization is implicitly being done in a space that we know how to optimize
over (R?), but is continually being transformed back onto to the manifold.

More concretely, suppose that \; is the current free parameter and all other parameters are
held fixed. Then, the update rule is given by:

i = argmax, E(Ra;7T)

After \] is updated the entire parameter vector is then transformed back onto the manifold.
This process is iteratively done over all parameters until some convergence criteria is met.
Finally, we note that if E is partially differentiable with respect to each parameter then the
update rule is straightforward. For those functions where E is not partially differentiable,
such as the ones considered in the remainder of this paper, a simple line search must be
done to find the arg max.

4 Experimental Results

This section describes experiments carried out using the approach described in this work
on a number of ad hoc retrieval experiments. Results are compared against Nallapati’s
SVM model [7] and language modeling [4]. The results show that the proposed approach
is not only feasible for large collections and large training sets, but also that the parameters
estimated in the model lead to superior retrieval effectiveness.

Language modeling for document retrieval is a state-of-the-art probabilistic retrieval model
inspired by similar models used in speech recognition. The model is straightforward to
implement and use, but lacks the explicit ability to represent arbitrary query-document fea-
tures. On the other hand, Nallapati’s SVM model casts ranking as a classification problem,



Disks 1,2 Disk 3 Disks 4,5
Num. Docs 741,856 | 336,310 | 556,077
Training topics | 101-150 | 51-100 | 301-350
Test topics 151-200 | 101-150 | 401-450

Table 2: Summary of TREC collections and topics (queries).

with relevant documents making up the the positive class and non-relevant documents mak-
ing up the negative class. Such a model allows arbitrary query-document features. After a
linear SVM is trained on the training data, new documents are ranked using the resulting
classifier. This is an example of an ordinal regression approach that ignores the ordinal
nature of the data. We attempted to train a model using so-called ranking SVMs, described
in [6], which considers the ordinal relationships in the training data, but stopped after five
days of training. We note that language modeling, Nallapati’s SVM approach, and our
approach each take less than an hour to train®.

We evaluate and compare the models on three standard TREC collections. For each collec-
tion, 50 topics (queries) are used for training and 50 for testing. Only the title portion of the
TREC topics are used. All documents are stemmed using Krovetz Stemmer and stopped
using a standard list of common terms. A summary of the collections used and the training
and test topics are given in Table 2. Mean average precision (MAP), a popular evaluation
metric in information retrieval, is used to evaluate the effectiveness of the models [2].

When each model is being trained it only ’knows’ about the documents contained in the
relevance judgments and not about any of the unjudged documents in the collection. For
the SVM model, we follow [7] and balance the training data by undersampling the majority
(non-relevant) class. Our model, denoted by RankMax, is trained using coordinate ascent
(see Section 3.5) with E = MAP(R;T) and the same features as the SVM model. The
features are given in Table 1 and discussed in [7]. The language modeling run ranks doc-
uments via query likelihood, with document models estimated using Bayesian (Dirichlet)
smoothing [4]. The language model is trained by finding the smoothing parameter that
maximizes the mean average on the training data.

The results are given in Table 3. For the numbers in the table, the trained model is used to
rank documents from the entire collection, not just the documents found in the relevance
judgments. The mean average precision is computed at a depth of 1000 retrieved docu-
ments. As we see from the results our parameter estimation technique consistently leads
to statistically significant improvements over the SVM estimates. Furthermore, it signifi-
cantly outperforms language modeling on 4 out of 6 runs. Language modeling, on the other
hand, significantly outperforms the SVM model on 4 out of the 6 runs.

The results indicate that language modeling, despite its simplicity, stands up well com-
pared to sophisticated feature-based machine learning techniques. The results also provide
empirical proof that SVM parameter estimation is simply not the correct paradigm here,
mainly because it is optimizing the wrong objective function. Our estimation technique,
however, is directly maximizing the evaluation metric under consideration and results in
stable, effective parameter estimates across the collections.

5 Conclusions and Future Work

In this paper we have investigated the properties of linear and monotonically linear scoring
functions when used in conjunction with the class of rank-based evaluation metrics. It was

3All SVM experiments use SVM'9"* (http://svmlight.joachims.org/).



Disks 1,2 Disk 3 Disks 4,5
Train Test Train Test Train Test
SVM 0.1577 0.1849 0.1615 0.1361 0.1671 0.1897
RankMax 0.1955% | 0.232711 | 0.20807% | 0.1773%1 | 0.223811 | 0.2328t%

| Language modeling | 0.1883% | 0.2155f [ 0.1875f | 0.1642f | 0.1819 [ 0.1995 |

Table 3: Mean average precision results for various ad hoc retrieval data sets and training
methods. The 1 and } denotes significant improvement over language modeling and the
SVM model, respectively. Tests done using a one tailed paired t-test at the 0.05 level.

shown that the parameter space of these scoring functions lies on a multinomial manifold.
Not only does this provide a theoretically elegant representation of the parameter space, but
it also significantly reduces the number of local extrema is guaranteed to bracket a global
extrema. A simple optimization technique that makes no assumption about the underlying
objective function was presented. Finally, we applied the methods developed to the task
of ad hoc information retrieval. It was shown that our parameter estimation paradigm sig-
nificantly outperforms other models, including those based on SVMs, in terms of retrieval
effectiveness.

Potential areas of future work include applying the model using other evaluation metrics
and to other application domains. In particular, collaborative filtering is an area that other
ranking algorithms have been applied to in the past. Another area that needs explored is
how well the simple coordinate ascent algorithm scales to large numbers of parameters and
how easy or difficult different classes of features/evaluation metrics are to optimize.
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