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ABSTRACT

The cluster hypothesis states: closely related documents
tend to be relevant to the same request. We exploit this
hypothesis directly by adjusting ad hoc retrieval scores from
an initial retrieval so that topically related documents re-
ceive similar scores. We refer to this process as score regu-
larization. Score regularization can be presented as an op-
timization problem, allowing the use of results from semi-
supervised learning. We demonstrate that regularized scores
consistently and significantly rank documents better than
un-regularized scores, given a variety of initial retrieval al-
gorithms. We evaluate our method on two large corpora
across a substantial number of topics.

Categories and Subject Descriptors

H.3.3 [Information Systems]: Information Search and Re-
trieval—clustering, retrieval models

General Terms

Algorithms, Performance, Experimentation

Keywords

regularization, manifold learning, pseudo-relevance feedback,
clustering

1. INTRODUCTION
In ad hoc retrieval, the clustering hypothesis states: closely

related documents tend to be relevant to the same request

[7]. Many information retrieval techniques have adopted
the clustering hypothesis as a core assumption. A number
of methods explicitly attempt to partition the corpus into
clusters. Some examples of this approach include cluster-
based retrieval, latent semantic indexing, and aspect mod-
els. Other methods build clusters on the fly in response to
a query. These methods include pseudo-relevance feedback
and query-dependent clustering.
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In score-based retrieval, the clustering hypothesis implies
the following: closely related documents should have simi-

lar scores, given the same request. We propose expressing
this implication as an optimization problem of balancing the
score from some initial retrieval with the scores of related
documents. When viewed as a process of smoothing docu-
ment scores with those of related documents, this problem
can be solved with methodologies from machine learning.
We refer to this process as score regularization.

We will begin by describing the general regularization
framework in Section 2. This regularization framework relies
on having a data structure to encode document relatedness.
In Section 3, we present a method for computing related-
ness when explicit information is absent. The clustering
hypothesis underlies many important information retrieval
techniques. In Section 4, we reduce several well-known tech-
niques to score regularization. We present results for regu-
larizing ad hoc retrieval scores in Section 5. We conclude in
Section 6 by placing our work in context of previous results
in machine learning and information retrieval.

2. LOCAL SCORE REGULARIZATION
In previous work, regularization has been posed as an op-

timization problem [27]. We will review relevant results in
the context of information retrieval. More thorough deriva-
tions can be found in referenced publications.

Let n be the number of document scores to regularize. In
our case, this is always the top n documents of an initial re-
trieval. Given the initial scores in the length n vector, y, we
would like to compute a set of regularized scores, f , also a
length n vector. We have two contending objectives: score
consistency with related documents and score consistency
with the initial retrieval. Let S(f) be a cost function asso-
ciated with the inter-document consistency of the scores, f ;
if related documents have very inconsistent scores, then the
value of this function will be high. Let E(f) be a cost func-
tion measuring the consistency with the original scores; if
documents have scores very inconsistent with their original
scores, then the value of this function will be high. We use
a linear combination of these objectives for our composite
objective function,

Q(f) = S(f) + µE(f) (1)

where µ is a regularization parameter allowing us to control
how much weight to place on inter-document smoothing ver-
sus consistency with the original score.

2.1 Measuring Inter­Document Consistency



Inter-document relatedness is represented by an n × n
affinity matrix, W , where Wij represents the affinity be-
tween documents i and j and Wii = 0. At the moment,
we will leave the notion of affinity abstract, allowing any
number of possible measures; we will outline one way to
build this matrix in Section 3. A set of scores is considered
smooth if related documents tend to have similar scores. To
this end, we define the cost function, S(f), which penalizes
inconsistency between related documents,

S(f) =
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where D is a diagonal normalizing matrix such that Dii =
Pn

j=1 Wij . This matrix, D, allows us to normalize the affin-
ity between two documents; the diagonal elements of this
matrix represent how related a document is to all other
documents. We can then weight the affinity between some
document di and dj relative to its affinity with all other doc-
uments. Using such a normalization has been shown to have
superior convergence properties than unnormalized affinities
for tasks such as spectral clustering [23].

2.2 Measuring Consistency with the Initial Scores
Obviously, we would like to select our regularized scores,

f , such that S(f) is minimized. Unconstrained, however,
minimizing this objective function would yield a flat set of
scores. Therefore, we consider a second objective so that
the regularization does not stray from the initial scores,

E(f) =

n
X

i=1

(fi − yi)
2 (3)

The regularized scores, f , minimizing this function would be
completely consistent with the original scores, y; that is, if
we only minimize this objective, then the solution is f = y.

2.3 Computing the Optimal Scores
We would like to find the optimal set of regularized scores,

f∗, such that,

f∗ = arg min
f∈ℜn

Q(f) (4)

We can compute the solution to this problem by iteratively
smoothing the scores. This computation can be formulated
as,

f t+1 = (1 − α)y + αD−1/2WD−1/2f t (5)

where α = 1
1+µ

is a simple function of our regularization

parameter [27]. We can initialize the regularized scores such
that f0 = y. In the limit, the regularized scores, f t, con-
verge on the optimal scores, f∗. Notice here that, for a sin-
gle iteration, a candidate document score is smoothed with
the scores of its related neighbors weighted by the relative
affinity with individual neighbors.

Alternatively, the optimal regularized scores can be for-
mulated as the solution of matrix operations,

f∗ =
“

I − αD−1/2WD−1/2
”−1

y (6)

In our experiments, we will use the closed form solution in
Equation 6 to compute f∗.

3. COMPUTING THE AFFINITY MATRIX
The affinity matrix, W , defines the behavior of the regu-

larization. A poor affinity matrix will result in the smooth-
ing of scores between unrelated documents. Oftentimes, the
affinity is explicit and suitable for topical relationships. For
example, hyperlinks can provide evidence that two docu-
ments share a topic. When such information is not available,
affinity can be computed using any number of measures of
document similarity.

The majority of results presented here use language mod-
eling baseline systems. In order to maintain consistency be-
tween our affinity measure and our retrieval model, we will
focus on distributional affinity of document language mod-
els.1 One popular distributional affinity measure in the in-
formation retrieval community is the Kullback-Leibler diver-
gence. However, this measure is asymmetric and has demon-
strated mixed results when made symmetric. Therefore, we
use the multinomial diffusion kernel [12]. This affinity mea-
sure between two distributions, θi and θj , is motivated by
Fisher information metric and defined as,

K(θi, θj) = (4πt)−
|V |
2 exp

“

−t−1 arccos2
“√

θi ·
p

θj

””

(7)

where |V | is the size of the vocabulary and t is a parame-
ter controlling the decay of the affinity with respect to the
arc cosine of the component-wise square root of the distri-
butions. In information retrieval, |V | can be quite large.
Therefore, for practical reasons, we ignore the first term,

(4πt)−
|V |
2 . The diffusion kernel has been shown to be a

good affinity metric for tasks such as text classification.
Although we compute the complete n×n affinity matrix,

there are several reasons to consider a sparse affinity ma-
trix instead. For example, we may be more confident about
the affinity between very related documents than distant
documents. In this situation, the space is often better ap-
proximated by the geodesic distances between documents;
that is, using the piecewise affinity over local relationships
as a measure of non-neighboring affinity rather than ambient
affinity. Such a sparse representation can be reasoned about
as a weighted graph capturing potential lower-dimensional
structure in the data. For example, the matrix may only
include the affinities to the k-nearest documents and zero
otherwise. A growing body of work has demonstrated that
constructing these document affinity graphs accurately cap-
tures the lower-dimensional manifold [3]. Our preliminary
work confirmed that using the complete affinity matrix was
not as successful as sparser representations.

We should, at this point, list a few caveats about assum-
ing the presence of an underlying, lower-dimensional mani-
fold. First, there is no explicit evidence that the documents
from the initial retrieval lie on a lower-dimensional manifold.
However, the success of cluster-based retrieval methods sug-
gest that there probably exists some topical substructure
[14, 26]. Second, the use of these manifold methods nor-
mally assumes a uniform sampling on the manifold. We
know, though, that topics are neither similarly sized nor
uniformly sampled in the initial retrieval. We therefore note

1We should note that there is no reason why we could not
use cosine similarity in computing W . Preliminary experi-
ments have shown that the retrieval power of language mod-
els combined with the well-studied cosine similarity measure
leverage the strengths of both.



1. compute n × n affinity matrix
2. add the k nearest neighbors for each document to W
3. Dii =

P

i6=j Wij

4. f∗ =
“

I − αD−1/2WD−1/2
”−1

y

n number of document scores to regularize
y top n initial retrieval scores
k number of neighbors to consider
α parameter favoring inter-document consistency
f∗ regularized scores

Figure 1: Local Score Regularization Algorithm. In-
puts are n, y, k, and α. The output is the a length
n vector of regularized scores, f∗.

that our performance can be further improved by addressing
some of these issues in future work.

Our final score regularization algorithm is presented in
Figure 1. Note that the affinity matrix computed in Step
1 is used for adding elements to W in Step 2 and does not
define W itself unless k = n.

4. RELATIONSHIP TO OTHER MODELS
Several classic retrieval models can be posed as instances

of score regularization. In this section, we will be focus-
ing on the relationship between these models and a single
iteration of score regularization. To this end, we define a
general version of Equation 5. Given an initial score func-
tion, s0(d, Q), and affinity matrix, Adi,dj

, a regularized score
can be computed as,

s1(d, Q) = αEs0(d, Q) + αS

X

δ

s0(δ, Q)Aδ,d (8)

where the bolded d is our candidate document and αE and
αS are our regularization weights. The index δ is some
item with which we are comparing the candidate document.
These could be other documents or—in some cases—clusters.
We will also see circumstances where s0 behaves one way for
d and another way for δ.

Given this definition, Equation 5 can be writtern as,

s1(d, Q) = (1 − α)yd + α

n
X

i=1

yi[D
−1/2WD−1/2]d,i (9)

4.1 Pseudo­Relevance Feedback
Pseudo-relevance feedback refers to the technique of build-

ing a model out of the top n documents retrieved by the
original query. The system then performs a second retrieval
using combination of this model and the original query.

4.1.1 Rocchio

The classic Rocchio pseudo-relevance feedback algorithm
assumes some number of the top documents from an initial
retrieval to be relevant. Let this set be R. We then linearly
combine these document vectors with the original query vec-
tor [20]. Using normalized document and query vectors, the
modified query can be computed by,

Q′ = Q +
αR

|R|
X

d∈R

d (10)

where αR is the weight placed on the pseudo-relevant doc-
uments. We can then use this new representation to score

documents by their cosine similarity to Q′. This allows us
to derive the regularization version of Rocchio,

cos(d, Q′) = cos
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d∈R

cos(d, d) (11)

Notice here that the first factor in the sum is merely the
original cosine similarity between the document and query.
The second factor in the sum represents the similarity to the
pseudo-relevant documents. In terms of Equation 8, the δ
indexes over only the pseudo-relevant documents.

We can also look at a version of Rocchio where we as-
sume a pseudo-non-relevant document set, N , usually sam-
pled from the tail of an initial ranking. A similar derivation
results in,

cos(d, Q) = cos(d, Q) +
αR

R

|R|
X

d∈R

cos(d, d) − αN
R

|N |
X

d∈N

cos(d, d)

where we now consider two weight parameters. Notice that
s(δ, Q) = {−1, 1} behaves very differently than s(d, Q) =
cos(d, Q). Effectively, the regularization only propagates
scores of documents in R ∪ N ; and for these documents,
the scores are 1 or −1.

4.1.2 Relevance Models

A far more interesting case arises with the language model
version of pseudo-relevance feedback [13]. In this case, the
original scores are used as weights for the estimated rele-
vance model. This relevance model, P (w|θR), is formally
constructed by interpolating the maximum likelihood query
model, P (w|θQ), and document models, P (w|θd),

P (w|θR) = λP (w|θQ) + (1 − λ)

 

X

d∈R

P (Q|θd)

Z P (w|θd)

!

(12)

where Z =
P

D∈R P (Q|θd). Theoretically, the summation
goes over the entire collection so that R includes every doc-
ument.

We can use the cross entropy between language models as
a scoring measure. Defined as the dot product of language
model vectors, the cross entropy is,

θR · log θd =
X

w∈V

P (w|θR) log P (w|θd) (13)

where θ is a vector of term probabilities. After some alge-
braic manipulation,2 we can rewrite the ranking based on

2Credit is due to Victor Lavrenko for suggesting this deriva-
tion.



δ s0(d, Q) s0(δ, Q) Aδ,d αE αS

Rocchio top |R| cos(d, Q) 1 cos(d, d) 1 a
|R|

Relevance Model top |R| θQ · log θd

θQ·log θd

Z/|Q|
θd · log θd 1 − λ λ

Cluster-based Retrieval C θQ · log θd θQ · log θc P (d|c) (1 − λ)αc λ

Local Score Regularization top |R| P (Q|θd) P (Q|θd) (D−1/2WD−1/2)d,d α 1 − α

Table 1: Generalized Regularization: many classic algorithms in information retrieval can be re-interpreted
as instances of a single iteration of our regularization algorithm. The general regularization form is presented
in Equation 8.

Equation 12 as,

θR · log θd = λ (θQ · log θd)

+ (1 − λ)
X

d∈R

„

θQ · log θd

Z/|Q|

«

(θd · log θd)

(14)

using the fact that P (Q|θd) = |Q|(θQ · log θd). Whereas the
Rocchio method assume the top n to have score 1.0, this

method uses the normalized document score
θQ·log θd

Z/|Q|
.

4.2 Cluster­based Retrieval
As mentioned earlier, several techniques attempt to ex-

plicitly cluster documents and use this information in re-
trieval. We will investigate a recently proposed language
model version of cluster-based retrieval [9]. We can extend
derivations from this work to demonstrate that cluster-based
retrieval is an instance of regularization,

P (Q|d) =
X

c∈C

P (Q|d, c)P (c|d)

=
X

c∈C

(λP (Q|θd) + (1 − λ)P (Q|θc))P (c|d)

= λP (Q|θd) + (1 − λ)αc

X

c∈C

P (Q|θc)P (d|c)

∝ λ(θQ · log θd)

+ (1 − λ)αc

X

c∈C

(θQ · log θc)P (d|c) (15)

where C is the set of clusters and αc = P (c)
P (d)

is constant for

all documents. Notice the similarity of Equations 14 and 15.
The first factor in the sum is the same in both. The sec-
ond factor corresponds to our smoothing process. Instead
of smoothing against the scores of all documents in the col-
lection, we weight against the scores of clusters. The value
of P (d|c) can be computed in various ways. Previous work
has used an exponential function of the negative Kullback-
Leibler divergence [9]. This results in a non-symmetric mea-
sure whose behavior is very similar to our diffusion kernel.

We present the results of these reductions in Table 1. It is
worthwhile to make some observations. First, only Rocchio
and local score regularization use symmetric affinity mea-
sures. Symmetry lets us make certain assumptions about
the affinity matrix, allowing us to use the results presented
in Section 2. Second, some algorithms handle the normal-
ization of s0(d, Q) and s0(δ, Q) differently. Normalization
presumably puts scores on similar scales. Both relevance
models and cluster-based retrieval use unnormalized scores
for the s0(d, Q); only relevance models normalizes s0(δ, Q).
In our experiments, we normalize both s0(d, Q) and s0(δ, Q)

in a consistent manner. Third, only local score regulariza-
tion normalizes the affinity. As mentioned earlier, normal-
izing the affinity has nice theoretical properties. In our ex-
periments, we found affinity normalization to be critical for
good performance.

5. REGULARIZING AD HOC RETRIEVAL

SCORES

5.1 Evaluation

5.1.1 Topics

We performed all experiments on two data sets. The first
data set, trec12, consists of the 150 TREC ad hoc topics
51-200. We used all collections on Tipster disks 1 and 2
[6]. The second data set, robust, consists of the 250 TREC
2004 Robust topics [24]. These topics are considered to be
difficult and have been constructed to focus on topics which
systems usually perform poorly on. For both data sets, we
use only the topic title field. We indexed collections using
the Lemur toolkit, the Rainbow stop word list, and Krovetz
stemming [1, 16, 8].

5.1.2 Training

We performed exhaustive grid search to train our two
free parameters: α and t. The regularization parameter
was swept over values α = [0.1, 0.9] with a step size of
0.1. The kernel spread parameter was swept over values
t−1 = [0.1, 0.9] with a step size of 0.1. We considered 10
nearest neighbors in accordance with previous document
classification results.

We selected parameters to optimize mean average preci-
sion. We present mean average precision results as well as
interpolated precision at the standard 11 recall points.

5.1.3 Cross Validation

We performed 10-fold cross-validation by randomly parti-
tioning the topics described in Section 5.1.1. For each par-
tition, i, the algorithm is trained on all but that partition
and is evaluated using that partition, i. For example, if the
training phase considers the topics and judgments in parti-
tions 1-9, then the testing phase uses the optimal parame-
ters for partitions 1-9 to perform retrieval using the topics
in partition 10. Performing this procedure for each of the
ten partitions results in 150 ranked lists for trec12 or 250 for
robust. Evaluation was performed using the concatenation
of these ranked lists.

5.1.4 Pool Size

We believe that the top of the initial retrieval tends to
be more topically consistent than the full ranked list. This
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Figure 2: Distribution of log-cosine scores between relevant documents (RR), non-relevant and relevant
documents (NR), and non-revelant documents (NN) in an initial retrieval of 1000 documents (left: trec12,
right: robust). Relevant documents tend to be closer to each other than non-relevant documents. This
suggests that the relevant document exist in some core of the initial retrieval. On the other hand, non-
relevant documents are spread farther apart indicating more of a diffuse, topic-less behavior.

belief follows from an investigation of the distances between
known relevant and known non-relevant documents in the
initial retrieval. Figure 2 displays the distribution of log-
cosine similarities between relevant documents and non-relevant
documents; a similar graph is presented in the original clus-
tering hypothesis work. As can be seen, relevant documents—
those near the top of the ranked list—tend to be more sim-
ilar than non-relevant documents. This indicates that the
relevant documents exist in some small core of the initial
retrieval and the non-relevant documents spread out from
this core without relationship to each other. We therefore
present results for regularizing the top 100, 250, 500, and
1000 results. This presentation also lets us note the im-
provement we can achieve if we do not have the resources to
compute the full 1000 × 1000 affinity matrix.

5.2 Baseline Scores
Our experiments considered two retrieval systems: lan-

guage models and Okapi.

5.2.1 Language Modeling Scores

As baselines we use query-likelihood retrieval [4] and rel-
evance models [13]. Both of these algorithms are imple-
mented in the Lemur language modeling toolkit [1]. The
query-likelihood is a standard language model scoring tech-
nique and ranks documents according to the probability of
the document having generated the query,

P (Q|θd) =
Y

q∈Q

P (q|θd)#(q,Q) (16)

where θd is the document language model. We use the log
of this score in our experiments. As mentioned earlier, rele-
vance models are the language model equivalent of pseudo-
relevance feedback and use an initial ranking generated by
Equation 16. Using the classic formulation, we first estimate
a relevance model,

P (w|θR) =
X

d∈R

P (w|D)
P (Q|θd)

P

d′∈R P (Q|θd′)
(17)

where R is the set of top 50 documents. We then rank
the documents according to the Kullback-Leibler divergence
between documents and the relevance model,

DKL(P (·|θR)||P (·|θd)) =
X

w∈V

P (w|θR) log
P (w|θR)

P (w|θd)

(18)

where the summation is taken over the top 50 terms in the
relevance model. We used Dirichlet smoothing of document
models with λ = 1000 for all experiments. These param-
eters demonstrate expected behavior and performance on
our collection. Results using query-likelihood and relevance
models will be indicated as QL and RM, respectively.

5.2.2 Okapi Scores

Although the majority of our experiments focus on reg-
ularizing language modeling scores, this framework can be
applied to regularize scores from arbitrary retrieval meth-
ods, given some affinity matrix. We therefore conducted ex-
periments studying the regularization of Okapi BM25 scores



[19]. We use the implementation in the Lemur toolkit with
default parameter settings.

We use the simple cosine similarity between documents
to define our affinity matrix. We could further improve per-
formance by applying a dampening function on top of the
cosine measure; adapting the cosine measure in this way
has been demonstrated to improve results by acting as a
soft nearest-neighbor threshold [28, pages 9-19].

This constitutes a total of six regularization experiments:
trec12/QL, trec12/RM, trec12/okapi, robust/QL, robust/RM,
robust/okapi. For each of these experiments, we will eval-
uate various regularization pool sizes. We normalized all
scores using a shift-and-scale process.

5.3 Results and Discussion

5.3.1 Regularizing Language Model Scores

Table 2 presents the results for trec12 and Table 3 presents
the results for robust.

We first note that regularizing all 1000 documents in the
initial retrieval in all cases but one results in a significant im-
provement in mean average precision. At 1000 documents,
these improvements occur at most recall points for QL. The
one data set (robust/RM) for which regularizing 1000 doc-
uments does not improve mean average precision only sees
improvements at larger recall points. This result may be ex-
plained by the difficulty of these queries. Notice that base-
line RM for the robust data set under-performs regularized
QL scores for low recall levels. We believe that if we regular-
ized QL scores over a larger pool, this improvement would
become more pronounced.

In general regularizing RM scores only affects higher recall
points, indicating that predicted non-relevant documents are
being boosted up by related predicted relevant documents.
At the same time, these predicted relevant documents are
only slightly affected by the process.

We found that α was stable between partitions in our
cross-validation but sensitive to retrieval algorithm. For ex-
ample, the runs using trec12/QL usually had α = 0.60 while
trec12/RM tended toward α = 0.30. The other collection
demonstrated similar behavior. A higher α value indicates
a more aggressive regularization. The reason for lower val-
ues with RM may be in redundancy with pseudo-relevance
feedback.

As expected, varying pool size affects only the perfor-
mance of the subset being regularized. This result implies
that there is a tradeoff between the amount of improvement
in mean average precision and the computation required for
the regularization. We stopped at 1000 documents for prac-
tical reasons but believe that performance will improve fur-
ther when considering more documents.

5.3.2 Regularizing Okapi Scores

In Table 4, we demonstrate the regularization of Okapi
retrieval scores. The trends observed for regularization of
language models generalize to Okapi scores. This is sur-
prising given that the system only tuned the regularization
parameter, α, in training.

6. RELATED WORK
In the preparation of the final draft of this paper, we be-

came aware of unpublished work presenting many ideas re-
lated to our algorithm [15]. Although the algorithms are

similar, our experiments cover a wider range of topics and
collections. We have also placed regularization in the con-
text of well-known information retrieval algorithms.

The majority of techniques in this document are related to
work in graph-based methods for semi-supervised learning
[3]. Most of these methods are applied to classification tasks
where the starting vector y is composed of values in {-1,1,0}
for negative, positive, or unlabeled documents, respectively.
While there have been methods proposed for incorporating
external classifications [28] and strictly positive labels [27],
our experiments demonstrate the use of regularization in a
true retrieval scenario with highly skewed class distributions
and no training instances.

As mentioned earlier, our work is also closely related to
cluster-based information retrieval [9, 14]. These techniques
construct a lower-dimensional structure of the corpus or ini-
tial retrieval. These clusters are then scored according to the
query. The original document score and the cluster score are
usually interpolated to get a new score. These techniques
assume the existence of a very specific lower-dimensional
spaces when computing the new score. Our technique re-
laxes the impact of this assumption by focusing on the local
structure; the global behavior is a product of this local anal-
ysis.

When viewed as a graph algorithm, our work is also re-
lated to the many spreading activation [2, 11, 21, 25, 5] and
inference network [22, 17] retrieval methods. In these sys-
tems, terms and documents are handled in the same graph
framework and usually only direct relationships such as au-
thors or sources allow inter-document links. By focusing
on the document manifold, we pay attention to accurately
modeling the data rather than on the scoring documents; the
score regularization is a product of the document modeling.

A growing body of work focuses on the exploitation of
corpus structure for re-ranking documents [9, 10, 18]. These
algorithms usually can be interpreted in the generalized reg-
ularization framework presented in Section 4. Although re-
lated, this work does not explicitly use solutions presented in
Section 2. Furthermore, many of these algorithms, inspired
by PageRank, operate on directed graphs while our affinity
measure is symmetric. The study of graph directedness on
such algorithms remains an open research area.

7. CONCLUSION AND FUTURE WORK
We have presented a framework for improving document

retrieval scores under a regularization framework. We are
considering several extensions. Our experiments exclusively
deal with regularizing scores of some relatively small set of
retrieved documents. We believe that the improvement in
mean average precision with growing regularization pools
indicates that doing regularization of even larger—perhaps
corpus-level—pools will provide even greater improvements.
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trec12/QL

0 100 250 500 1000
0.00 0.7532 0.7639 0.7670 0.7493 0.7241
0.10 0.4825 0.5033 0.5059 0.5073 0.5094
0.20 0.3997 0.4124 0.4264 0.4333 0.4349
0.30 0.3346 0.3413 0.3559 0.3635 0.3706
0.40 0.2763 0.2786 0.2882 0.2998 0.3123
0.50 0.2314 0.2312 0.2433 0.2491 0.2660
0.60 0.1816 0.1818 0.1891 0.1927 0.2037
0.70 0.1240 0.1246 0.1277 0.1346 0.1414
0.80 0.0779 0.0782 0.0799 0.0864 0.0931
0.90 0.0345 0.0345 0.0364 0.0390 0.0439
1.00 0.0054 0.0054 0.0054 0.0051 0.0047
map 0.2413 0.2467 0.2526 0.2576 0.2635

trec12/RM

0 100 250 500 1000
0.00 0.7561 0.7550 0.7548 0.7555 0.7492
0.10 0.5347 0.5342 0.5337 0.5314 0.5313
0.20 0.4559 0.4552 0.4551 0.4575 0.4585
0.30 0.3889 0.3884 0.3900 0.3921 0.3931
0.40 0.3350 0.3357 0.3371 0.3378 0.3414
0.50 0.2793 0.2791 0.2805 0.2824 0.2862
0.60 0.2286 0.2286 0.2293 0.2315 0.2362
0.70 0.1664 0.1665 0.1664 0.1679 0.1726
0.80 0.1048 0.1051 0.1053 0.1061 0.1085
0.90 0.0517 0.0517 0.0520 0.0528 0.0543
1.00 0.0019 0.0019 0.0021 0.0023 0.0021
map 0.2836 0.2835 0.2836 0.2845 0.2866

Table 2: Improvement in QL (left) and RM (right) scores as a function of the number of regularized documents
(trec12). Bold numbers indicate statistically significant improvements in performance using the Wilcoxon
test (p < 0.05).

robust/QL

0 100 250 500 1000
0.00 0.7401 0.7291 0.7295 0.7321 0.7188
0.10 0.5174 0.5261 0.5242 0.5263 0.5239
0.20 0.4097 0.4190 0.4230 0.4242 0.4226
0.30 0.3258 0.3331 0.3347 0.3344 0.3402
0.40 0.2563 0.2652 0.2688 0.2709 0.2790
0.50 0.2168 0.2232 0.2264 0.2273 0.2320
0.60 0.1632 0.1667 0.1703 0.1722 0.1773
0.70 0.1311 0.1359 0.1405 0.1419 0.1454
0.80 0.0912 0.0919 0.0922 0.0945 0.0979
0.90 0.0620 0.0636 0.0650 0.0677 0.0707
1.00 0.0323 0.0334 0.0335 0.0342 0.0349
map 0.2444 0.2492 0.2513 0.2531 0.2548

robust/RM

0 100 250 500 1000
0.00 0.6877 0.6844 0.6845 0.6882 0.6903
0.10 0.5189 0.5182 0.5167 0.5156 0.5144

0.20 0.4223 0.4213 0.4207 0.4221 0.4199
0.30 0.3512 0.3500 0.3493 0.3473 0.3481
0.40 0.2974 0.2959 0.2942 0.2965 0.2974
0.50 0.2547 0.2541 0.2544 0.2554 0.2569
0.60 0.2032 0.2034 0.2040 0.2048 0.2068
0.70 0.1612 0.1612 0.1612 0.1622 0.1635
0.80 0.1112 0.1118 0.1122 0.1124 0.1136
0.90 0.0644 0.0641 0.0646 0.0651 0.0657
1.00 0.0237 0.0238 0.0238 0.0238 0.0239
map 0.2626 0.2619 0.2620 0.2623 0.2625

Table 3: Improvement in QL (left) and RM (right) scores as a function of the number of regularized documents
(robust). Bold (italic) numbers indicate statistically significant improvements (degradations) in performance
using the Wilcoxon test (p < 0.05).

trec12/okapi

0 100 250 500 1000
0.00 0.7137 0.7323 0.7342 0.7073 0.6936
0.10 0.4733 0.5062 0.5095 0.5092 0.5142
0.20 0.3935 0.4144 0.4296 0.4399 0.4484
0.30 0.3327 0.3434 0.3577 0.3720 0.3851
0.40 0.2722 0.2764 0.2891 0.3054 0.3230
0.50 0.2231 0.2254 0.2319 0.2446 0.2644
0.60 0.1612 0.1619 0.1669 0.1782 0.1904
0.70 0.1089 0.1102 0.1159 0.1237 0.1329
0.80 0.0662 0.0662 0.0673 0.0749 0.0862
0.90 0.0179 0.0179 0.0180 0.0190 0.0215
1.00 0.0011 0.0011 0.0011 0.0011 0.0014
map 0.2304 0.2389 0.2452 0.2527 0.2615

robust/okapi

0 100 250 500 1000
0.00 0.7167 0.7351 0.7249 0.7173 0.7042
0.10 0.5056 0.5245 0.5271 0.5242 0.5250
0.20 0.4027 0.4290 0.4302 0.4295 0.4330
0.30 0.3234 0.3453 0.3512 0.3544 0.3574
0.40 0.2483 0.2646 0.2797 0.2834 0.2867
0.50 0.2084 0.2161 0.2274 0.2300 0.2345
0.60 0.1641 0.1690 0.1718 0.1743 0.1824
0.70 0.1191 0.1235 0.1285 0.1307 0.1360
0.80 0.0741 0.0747 0.0779 0.0811 0.0861
0.90 0.0425 0.0441 0.0459 0.0478 0.0512
1.00 0.0221 0.0234 0.0236 0.0242 0.0249
map 0.2333 0.2462 0.2496 0.2506 0.2532

Table 4: Improvement in Okapi scores with cosine affinity for trec12 (left) and robust (right) collections as
a function of the number of regularized documents. Bold numbers indicate statistically significant improve-
ments in performance using the Wilcoxon test (p < 0.05).
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