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Abstract

Given a sequence of DNA nucleotide bases, the task of gene prediction is

to find subsequences of bases that encode proteins. Reasonable performance

on this task has been achieved using generatively trained sequence models,

such as hidden Markov models. We propose instead the use of a discrimini-

tively trained sequence model, the conditional random field (CRF). CRFs can

naturally incorporate arbitrary, non-independent features of the input without

making conditional independence assumptions among the features. This can

be particularly important for gene finding, where including evidence from

protein databases, EST data, or tiling arrays may improve accuracy. We eval-

uate our model on human genomic data, and show that CRFs perform better

than HMM-based models at incorporating homology evidence from protein

databases, achieving a 10% reduction in base-level errors.

1 Introduction

A common goal in bioinformatics is to infer the underlying systems that transform

biological elements (e.g. DNA) into phenotypic expression (e.g. blue eyes). A

central belief is that the structure of a biological element contributes to its function,

and so a natural way to proceed is to collect elements with a common function and

deduce the structural similarities responsible for this function.

For example, DNA is a sequence of nucleotide molecules (bases) which encode

instructions for the generation of proteins. However, because not all of these bases

contribute to protein manufacturing, it is difficult to determine which proteins will

be generated from an arbitrary DNA sequence. Here, we can use sequential struc-

ture to determine which proteins, if any, a subsequence of bases will encode. We

refer to these protein coding regions as genes; hence the task of gene prediction is

to infer which subsequences of DNA correspond to genes.

A popular probabilistic sequence model is the hidden Markov model (HMM)

[16], which has widespread use in natural language processing tasks such as speech

recognition, part-of-speech tagging, and information extraction [4]. Noting the sur-

prising similarities between DNA sequences and human language, bioinformatics

researchers have successfully adapted HMMs to the task of gene prediction [6, 9].
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HMMs are appealing models because it is relatively straightforward for a ma-

chine to learn their parameters and for a human to interpret them. However, one

drawback of HMMs is that it is cumbersome to model arbitrary, dependent features

of the input sequence.

This drawback of HMMs can be particularly troublesome for gene prediction,

since there are many potentially valuable external sources of evidence (e.g. ge-

nomic databases, EST data, and tiling arrays). HMMs assume that each feature is

generated independently by some hidden process; however, this is in general not

the case. One way to address this problem is to explicitly model these dependen-

cies by complicating the HMM structure, but this grows intractable as the number

of features increases.

To overcome this, we propose the use of another sequence model that has be-

come popular in language processing and vision tasks, the conditional random field

(CRF) [10]. As opposed to the generatively trained HMM, the discriminatively

trained CRF is designed to handle non-independent input features, which can be

beneficial in complex domains. CRFs have out-performed HMMs on language

processing tasks such as information extraction [15] and shallow parsing [21], and

we show that similar performance gains can be obtained for gene prediction.

In addition to features computed over the given DNA sequence, we also incor-

porate homology features from the online genomic database BLAST [13]. We use

the similarity between the given DNA sequence and sequences in protein databases

as additional evidence for gene prediction.

We incorporate these features in both a CRF model and an HMM-based model,

and find that CRFs achieve a 10% reduction in base-level errors.

2 Gene Prediction

2.1 Biological Background

In this section, we formalize the gene prediction task, beginning with a brief de-

scription of the biological phenomenon of protein synthesis.

Each chromosome in an organism contains a double-helix of nucleotide bases

called deoxyribonucleic acid (DNA). Each nucleotide can be one of four molecules:

adenine (a), cytosine (c), guanine (g), and thymine (t). Through the transcrip-

tion process, the DNA helix is unwound and a contiguous subsequence of bases is

copied to a new element called pre-mRNA. In eukaryotes, this pre-mRNA contains

superflous sequences called introns that are not needed in subseqeunt processing.

These introns are removed in the splicing stage, and the remaining bases (exons)

are reassembled into mRNA.
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The mRNA contains a contiguous subsequence of bases called the coding se-

quence (CDS) that are deterministically translated into amino acids. Translation

maps base triples (codons) into amino acids, which combine to form a protein.

In gene prediction, we are given the original strand of DNA, and we must

predict the CDS. Note that while protein synthesis is a multi-stage process, most

gene prediction models (including the one presented here) model it as a one-stage

process.

2.2 Notation

Let x = {x1 . . . xn} be an input sequence of DNA bases, where xi ∈ {a, c, t, g}.

Each sequence x has an associated sequence of labels y = {y1 . . . yn}, where

yi ∈ {C,C ′} corresponds to coding or non-coding regions, respectively. The task

of gene prediction is to find a mapping function such that f(x) = y.

3 Probabilistic Sequence Models

Probabilistic sequence models assume x and y are random variables and attempt

to learn the statistical dependence between them.

3.1 HMMs

Hidden Markov Models (HMMs) are directed graphical models that define a fac-

tored probability distribution p(x,y), which, in a first-order model, decomposes

as

p(x,y) =
∏

i

p(xi|yi)p(yi|yi−1) (1)

This is often referred to as a generative model, because the term p(xi|yi) can

be thought of as the probability that a label variable yi “generates” the observation

variable xi. The second term, p(yi|yi−1), reflects the first-order Markov assump-

tion that the probability of a label variable yi is independent of all other labels given

yi−1 (i.e. I(yi,y \ yi−1|yi−1)).
Given a corpus D of labeled (x,y) pairs, maximum-likelihood training in an

HMM consists of computing the values of p(xi|yi) and p(yi|yi−1) that maximize

the summed joint probability
∑

(x,y)∈D p(x,y). In practice, this amounts to simply

counting the frequency of each event and normalizing.

To infer the most likely y for an unlabeled sequence x, the model chooses se-

quence y that maximizes p(x,y). This can be calculated efficiently with a dynamic

program.
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One limitiation of this model is that the observed variable xi depends only on

the label variable yi. This means that when the model is predicting the value for

label yi, it cannot directly consider knowledge from observations x \ xi. To in-

corporate this knowledge in an HMM, we must expand the observation probability

term, e.g. p(x1 . . . xn|yi).
There are at least two problems with this modification. First, introducing a

long-range dependence between, say, yi and xi−5 implicitly adds dependence be-

tween label variables yi and yi−5 (because now both yi and yi−5 influence xi−5).

This precludes the nice factorization in Equation 1 and can make training and infer-

ence intractable. Second, estimating p(x1 . . . xn|yi) from training data will likely

suffer from data sparsity problems for all but the smallest values of n. This esti-

mate requires a conditional probability table of size Ln, where L is the number of

possible values each xi can take.

Both of these problems are usually addressed by making conditional indepen-

dence assumptions, e.g. I(yi, yi−5|xi, xi−5) for the first problem, and I(xi,x \
xi|yi) (i.e. the “naive Bayes” assumption) for the second problem. However, these

assumptions are often unrealistic and can lead to poor estimates of the observation

probabilities.

3.2 CRFs

An alternative solution to this problem can be motivated from the following argu-

ment. HMMs model the joint distribution p(x,y). However, when predicting the

labels of a new sequence x, the only distribution needed is the conditional p(y|x).

In other words, because x is always known at testing time, there is no need to

model the uncertainty of x to perform prediction.

This solution can be captured by an undirected graphical model (also known

as a Markov random field) [2]. In undirected graphical models, edges between

nodes are no longer required to bear probabilistic semantics; rather, an edge simply

represents some “compatibility function” between the values of random variables.

These compatibility functions (or potential functions) are then globally normalized

to assign a probability to each graph configuration. Because of this shift in seman-

tics, we can add edges between label yi and any set of observed nodes in x without

creating additional dependencies among nodes in y. Also, when x is observed, we

can model p(yi|x) without considering the dependencies among x.

A particular instance of an undirected graphical model in which a set of unob-

served variables are conditioned on a set of observed variables is called a condi-

tional random field (CRF) [10]. Figure 1 shows a CRF which makes a first-order

Markov assumption among label variables y, resulting in a linear-chain. Note that

each label element of y has access to any of the observation variables in x.
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y1           y2            y3                       yn

x = {x1, … xn}

Figure 1: A first-order CRF with label variables y and observed variables x

More formally, let G be an undirected model for x and y, the fully connected

subgraphs of which define a set of cliques C = {{xc,yc}}. A CRF defines the

conditional probability of label sequence y given observation sequence x as

pΛ(y|x) =
1

Z(x)

∏

c∈C

Φ(yc,xc; Λ) (2)

where Φ is a real-valued potential function parameterized by Λ, and normalization

factor Z(x) =
∑

y

∏

c∈C Φ(yc,xc).
The potential function can be parameterized by an arbitrary set of feature func-

tions {fi} over each clique, a common form of which is

Φ(yc,xc; Λ) = exp
(

∑

i

λifi(yc,xc)
)

(3)

The model is parameterized by a set of weights Λ = {λi}, where each λi

weights the output of feature function fi. Note that in a first-order CRF, cliques

contain labels yi, yi−1 and an arbitrary subset of observations from x. Thus, the

prediction for label yi is a function of the previous prediction yi−1 as well as any

number of features over the entire input sequence x.

Given a training corpus D, maximum-likelihood training seeks to choose Λ
such that the log-likelihood of the data is maximized, where the log-likelihood is

given as

L(Λ) =
∑

(x,y)∈D

log pΛ(y|x) (4)

This maximum can be found using gradient ascent methods, such as conjugate

gradient or limited-memory BFGS [14].
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It is important to note that CRF training maximizes the conditional likelihood

(discriminitive training), whereas HMM training maximizes the joint likelihood

(generative training). This is the source of the intuition that discriminitive training

optimizes testing accuracy.

4 CRF Gene Model

We now describe the model topology and the features used to construct a CRF gene

finder.

4.1 Finite-State Structure

A finite-state machine representation of a CRF provides restrictions on the possible

transitions in the label sequence. These can be hand-crafted or inferred from a

training corpus. Here, we use knowledge from the mechanics of protein synthesis

to determine the finite-state structure.

We have previously described the set of possible labels as yi ∈ {C,C ′}, for

coding and non-coding bases. To better reflect the underlying biological process,

we expand this set to yi ∈ {C, I, N}, where I is an intron, and N is either inter-

genic (a region not transcribed into pre-mRNA) or a non-coding exon.

Additionally, using the fact that proteins are encoded by base triples (codons),

we must constrain our model to output coding regions whose length is a multiple

of three. Thus, we expand label C to C0, C1, C2, representing each frame in the

codon, and also expand I to I0, I1, I2 to store frame information across introns.

We also leverage regularities in the borders of coding regions (e.g. “splice

sites”). Specifically, coding regions always begin with the start codon “atg” (in

humans) and end in one of three stop codons: “taa”, “tga”, “tag.” Furthermore,

99% of transitions from labels C to I begin with introns “gt”, and transitions from

I to C end with introns “ag” (the 5’ and 3’ splice sites, respectively). These are

called consensus dinucleotides. These restrictions can be represented in the finite-

state model by adding degenerate states that output a restricted set of bases (e.g.

states InitialExon0, InitialExon1, InitialExon2 that only emit observations “a”, “t”,

“g”, respectively).

It is also known that the start codon cannot occur “in frame” anywhere within

a coding region except at the beginning. To enforce this in a CRF, we construct

a feature that is true if the current label is C2, the previous label is C1, and the

previous three bases are the start codon “atg”. To make this configuration impossi-

ble, we fix the weight for this feature to −∞. (Note that this does not prevent the

true start codon, since this is represented by the degenerate states described above.
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Figure 2: Finite-state machine for gene prediction. Edge labels represent base

observations required for a transition. C represents coding states, I intronic states,

and N intergenic and non-coding exon states.
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Feature Type SubTypes

BASE bi−5, bi−4, bi−3, bi−2, bi−1, bi

bi−4, bi−3, bi−2, bi−1, bi

bi+4, bi+3, bi+2, bi+1, bi

bi−2, bi−1, bi

bi+2, bi+1, bi

bi−1, bi

bi+1, bi

bi−2, bi−1, bi, bi+1, bi+2

bi−1

bi+1

bi

HISTOGRAM frequency of base singletons, pairs, and triples

WINDOWSIZE=5, HISTORYSIZE=40, frequency of disjunctions of size 2 (e.g. G or T)

FUTURESIZE=10

BLASTX number of hits, maximum score, sum of scores

conjunctions at i − 1 ∧ i and i + 1 ∧ i

conjunctions with EXTERNAL features

Table 1: List of CRF features to predict label yi, where bi represents the identity of

the base at position i.

Splice site boundary conditions are handled similarly.)

Figure 2 shows the finite state diagram for the CRF. For clarity, the degenerate

states have been replaced with labeled edges indicating necessary conditions for

transitions.

4.2 Feature functions

We construct a first-order CRF, using features of the input to capture the local and

long-range dependencies among bases, as well as homology features obtained from

a database of known proteins.

Since the coding regions consist of base triples that will be translated into

amino acids, a useful feature is to examine the statistics of certain sequences of

amino acids. This could be done with a hierarchical model that contains explicit

states for types of amino acids, or by using a higher-order Markov model; however,

similar information can also be captured by considering as a feature the identity of

the previous five bases. Combined with the predicted label, this tells us the com-

patibility of pairs of amino acids. To capture local dependencies, we also include

conjunctions of previous one, two, and three bases, as well as analagous features

for the subsequent bases. We refer to this set of features as CONJ.

It has also been observed [24] that splice sites have discriminitive signals de-
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pendent on approximately 40 prior bases and 20 subsequent bases. (e.g. the

“branch site”). To capture these signals, we include histogram features which count

frequencies of base conjunctions and disjunctions in sliding windows over bases

upstream and downstream. For example, one feature is the number of times the

base pair “g” or “c” occurred in a sliding window of size 5 in the previous 40 bases.

We refer to these features as HISTOGRAM, the number of previous bases examined

as HISTORYSIZE, the number of subsequent bases examined as FUTURESIZE, and

the size of the sliding window as WINDOWSIZE.

Additionally, we include homology features by searching for similar DNA se-

quences in a database of proteins. Specifically, we issue BLAST queries over the

“non-redundant” (NR) protein database to find similar DNA sequences that are al-

ready known to code proteins [13]. Since our test data may have exact matches

in the BLAST database, we restrict hits to those with less than 70% identity to

simulate performance on novel sequences.

These features capture weak homology of novel sequences to already sequenced

genomes. Note that these features could be augmented to reflect a richer homology

using the identity of the organisms with homologous sequences.

We calculate summary statistics for each base that quantify how often it appears

in the BLASTX data and with what level of confidence.

A summary of all features is presented in Table 1.

5 Experiments

We test our model on a set of 450 human genes (over 5 million bases) from Gen-

bank, release 105, 1998. The data is restricted to genes that (1) contain at least

one intron, (2) begin with the start codon “atg”, (3) end with one of the three stop

codons, (4) have splice sites that conform to consensus dinucleotides, and (5) have

no in-frame stop codons.We randomly split the data into 70% training and 30%

testing.

Initially, CRF training proved difficult due to the large training set size and label

imbalance problems (i.e. less then 10% of bases encode proteins). To alleviate this,

we pruned the training dataset by limiting the length of contiguous sequences of I

and N labels to 200. This was done by removing bases from the middle of these

long sequences, preserving the input signals near splice sites.

We evaluate three CRF variants created by training with different feature sets.

CRF + CONJ only uses the CONJ features; CRF + CONJ + BLASTX additionally

uses BLAST homology features; and CRF + CONJ + HISTOGRAM + BLASTX

additionally uses HISTOGRAM features.

We compare against two variants of the Genie system, [9], a fifth-order hid-
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Model Base Sp Base Sn F1

CRF + CONJ + HISTOGRAM + BLASTX 84.16 88.1 86.09

CRF + CONJ + BLASTX 79.61 86.63 82.97

CRF + CONJ 72.04 86.5 78.61

GENIE + BLASTX 85.43 83.68 84.55

GENIE 85.48 81.21 83.29

Table 2: Comparison of gene predictors. Note that CRFs better utilize the homol-

ogy evidence given by BLASTX features

den semi-Markov model which has a finite-state structure similar to the CRF gene

finder’s.

The first variant (GENIE) trains the parameters of Genie using the same train-

ing DNA the CRF uses. The second variant (GENIE + BLASTX) constrains the

output of Genie to agree with the coding regions predicted by a conservative use

of Blastx data (i.e., regions with an “e-value” less than 10−30). Note that both Ge-

nie variants incorporate the HISTOGRAM features into its prediction by generating

profiles from labeled data.

We evaluate base-level performance of coding regions. Specificity (or preci-

sion) (Sp) is the percentage of predicted coding bases that are true coding bases.

Sensitivity (or recall) (Sn) is the percentage of true coding bases that were pre-

dicted as such. F1 is the harmonic mean of these two measures (2∗Sn∗Sp
Sn+Sp

). Results

are displayed in Table 2.

The important comparison is between (CRF + CONJ + HISTOGRAM + BLASTX)

and (GENIE + BLASTX). Here, we see that the CRF achieves a 10% reduction in

F1 error over Genie, using the same data sources. This is indicative of the model-

ing power afforded by CRFs, which makes better use of the Blast data than does

Genie.

GENIE and CRF + CONJ are similar models, since the 5th-order features of

GENIE are captured by the CONJ features of the CRF. The difference in perfor-

mance is likely due to the semi-Markov property of Genie, an issue discussed in

Section 8, as well as the fact that GENIE incorporates the histogram features that

CRF + CONJ does not. In Section 8, we discuss possible ways to improve CRF

performance.

For all models, including BLASTX features improves performance, although

more dramatically so for the CRF gene finder.
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6 Related Work

There is a large amount of commercial and research software for gene prediction.

For a more thorough treatment, see [17].

Generative methods based on hidden Markov model variants include Genie [9],

GeneMark.HMM [11], and Glimmer [18].

More linguistically-motivated approaches include using context-free grammars

(CFGs) to parse DNA sequences [20, 5]. While CFGs model the hierarchical prop-

erties of protein synthesis, our model flattens this representation from a CFG to a

finite-state automaton.

Other methods are based on matching an unlabeled sequence against a database

of known sequences. For example, a simple gene finder can be constructed by con-

sidering a number of possible protein coding sequences, translating the codons

into protein sequences, then comparing them against a protein sequence database

using, for example, BLASTX [13]. While this method will given reasonable ap-

proximations for highly conserved regions, it will perform poorly on more unusual

sequences. In this paper, we have demonstrated a way to simply add these database

to a CRF as external evidence.

A number of discriminatively trained methods have been used to predict local

label configurations, which are then combined in a dynamic program to choose an

optimal labeling for the entire sequence. For example, artificial neural networks

have been used to predict splice sites [25, 22]. Also, linear [23] and quadratic [27]

discriminant analysis has been performed on subsequences of bases. Similarly,

maximum entropy classifiers have been used to classify splice sites [26], as well as

in the related task of modeling amino acid sequences [3].

Note that these “local discriminative” methods share the CRF’s capability of

incorporating arbitrary features of the input sequence. Some of these methods,

however, model adjacent label predictions independently; that is, they do not di-

rectly model p(yi|yi−1).
All of these local discriminative methods differ from CRFs in the method

by which their parameters are learned. In a CRF, maximum likelihood training

chooses weights to maximize the conditional probability of the entire sequence

of labels given each training sequence. The global normalization term Z(x) in

Equation 2 allows interaction between weights from disparate locations in each

sequence. Local discriminative methods, by contrast, decompose the conditional

distribution into a product of local predictions, reducing this interaction. In general,

this reduces training complexity as well as model capacity.

The works most relevant to ours are HMMgene and Hidden Neural Networks

(HNNs) [7, 8]. HMMgene is an HMM model which is trained discriminatively.

However, HMMgene still factors the joint distribution according to the seman-
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tics of a directed graphical model, and therefore cannot easily incorporate non-

independent features. HNNs remedy this by constructing an undirected graphical

model where the potential functions are multi-layer neural networks. If the poten-

tial functions instead were single-layer networks, HNNs would be equivalent to

CRFs. To the best of our knowledge, results have not been reported using HNNs

for gene prediction.

7 Conclusion

We have demonstrated that using external sources of information, such as BLAST

protein databases, can improve results on gene prediction tasks. We have also

shown that CRFs can incorporate this external evidence more effectively than tra-

ditional HMM models. The higher accuracy of CRFs is likely due to their weaker

assumptions about the data and their discriminative training method.

These results suggest the promise both of incoporating disparate information

sources for bioinformatics problems and of using undirected models like CRFs to

leverage this evidence in a probabilistically coherent model.

8 Future Work

Two changes to the CRF model that will likely improve performance are (1) mod-

eling the length distribution of coding regions and (2) incorporating richer features.

First, it has been shown that the length of exons tends to be similar within a

species [9]. Furthermore, this length distribution is generally a right-skewed bino-

mial. However, there is no guarantee that the CRF will produce such a distribution.

To model this directly, we can use a semi-Markov CRF [19], where each state can

now emit subsequences of observations, rather than single observations. By adding

an extra dimension to the dynamic program, the semi-Markov CRF considers the

length of predicted exons when choosing an optimal path.

Second, a major motivation for switching to discrimitively trained sequence

models is to easily incorporate (1) long-distance features of the input and (2) ex-

ternally generated evidence. Here, we have included long-distance features over

the DNA sequence, but only limited external evidence. In addition to the BLAST

features, other external features which may prove beneficial include examining

databases of expressed sequence tags (ESTs) [1] or tiling array data. With CRFs,

these external sources of evidence can be included without any knowledge of their

dependency structure. Once these rich features are included, we could further em-

ploy automatic feature induction techniques to find non-obvious conjunctions of

features that may improve performance [12].

12



9 Acknowledgements

This work was supported in part by the Center for Intelligent Information Retrieval,

in part by The Central Intelligence Agency, the National Security Agency and Na-

tional Science Foundation under NSF grant #IIS-0326249, and in part by The Cen-

tral Intelligence Agency, the National Security Agency and National Science Foun-

dation under NSF grant #IIS-0427594. Any opinions, findings and conclusions or

recommendations expressed in this material are the author(s) and do not necessar-

ily reflect those of the sponsor.

References

[1] M.D. Adams, J.M. Kelley, J.D. Gocayne, M. Dubnick, M.H. Polymeropoulos,

H. Xiao, C.R. Merril, A. Wu, B. Olde, and R.F. Moreno. Complementary

DNA sequencing: Expressed sequence tags and human genome project. Science,

252(5013):1651–6, 1991.

[2] J. Besag. Spatial interaction and the statistical analysis of lattice systems. Journal of

the Royal Statistical Society, B36:192–236, 1974.

[3] Eugen C. Buehler and Lyle H. Ungar. Maximum entropy methods for biological

sequence modeling. In Workshop on Data Mining in Bioinformatics, 2001.

[4] Doug Cutting, Julian Kupiec, Jan Pedersen, and Penelope Sibun. A practical part-of-

speech tagger. In Proceedings of the Third Conference on Applied Natural Language

Processing, 1992.

[5] S. Dong and D. B. Searls. Gene structure prediction by linguistic methods. Genomics,

23(3):540–551, 1994.

[6] J. Henderson, S. Salzberg, and K.H. Fasman. Finding genes in DNA with a hidden

Markov model. Journal of Computational Biology, 4(2):127–41, 1997.

[7] Anders Krogh. Two methods for improving performance of a HMM and their ap-

plication for gene finding. In Proceedings of the Fifth International Conference on

Intelligent Systems for Molecular Biology, pages 179–186, 1997.

[8] Anders Krogh and S.K. Riis. Hidden neural networks. Neural Computation,

11(2):541–563, 1999.

[9] David Kulp. Protein-coding gene structure prediction using generalized hidden

Markov models. PhD thesis, University of California, Santa Cruz, 2003.

[10] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In Proc. 18th In-

ternational Conf. on Machine Learning, pages 282–289. Morgan Kaufmann, San

Francisco, CA, 2001.

13



[11] A.V. Lukashin and M. Borodovsky. GeneMark.hmm: New solutions for gene finding.

Nucleic Acids Research, 26:1107–1115, 1998.

[12] Andrew McCallum. Efficiently inducing features of conditional random fields. In

Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI03), 2003.

[13] S. McGinnis and T.L. Madden. BLAST: at the core of a powerful and diverse set of

sequence analysis tools. Nucleic Acids Research, 32:W20–W25, 2004.

[14] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 1999.

[15] Fuchun Peng and Andrew McCallum. Accurate information extraction from research

papers using conditional random fields. In Proceedings of Human Language Technol-

ogy Conference and North American Chapter of the Association for Computational

Linguistics (HLT-NAACL), 2004.

[16] L.R. Rabiner. A tutorial on hidden Markov models. In IEEE, volume 77, pages

257–286, 1989.

[17] M.G. Reese, G. Hartzell, N.I. Harris, U. Ohler, J.F. Abril, and S.E. Lewis. Genome

annotation assessment in drosophilia melanogaster. Genome Research, 10:391–93,

2002.

[18] S. Salzberg, A. Delcher, S. Kasif, and O. White. Microbial gene identification using

interpolated Markov models. Nucleic acids research, 26:544–548, 1998.

[19] Sunita Sarawagi and William W. Cohen. Semi-markov conditional random fields

for information extraction. In Advances in Neural Information Processing (NIPS17),

2004.

[20] D. B. Searls. The linguistics of DNA. American Scientist, 80:579–591, 1992.

[21] Fei Sha and Fernando Pereira. Shallow parsing with conditional random fields. In

Marti Hearst and Mari Ostendorf, editors, HLT-NAACL: Main Proceedings, pages

213–220, Edmonton, Alberta, Canada, 2003.

[22] E.E. Snyder and G.D. Stormo. Identification of protein coding regions in genomic

DNA. Journal of Molecular Biology, 248:1–18, 1995.

[23] V.V. Solovyev. Identification of human gene structure using linear discriminant func-

tions and dynamic programming. ISMB, 3:367–375, 1995.

[24] G. D. Stormo. Consensus patterns in DNA. Methods Enzymol, 183:211–21, 1990.

[25] E.C. Uberbacher, U. Xu, and R. J. Mural. Discovering and understanding genes in

human DNA sequence using GRAIL. Methods Enzymol, 266:259–281, 1996.

[26] Gene Yeo and Christopher B. Burge. Maximum entropy modeling of short sequence

motifs with applications to RNA splicing signals. In Proceedings of the seventh

annual international conference on Computational molecular biology, pages 322–

331. ACM Press, 2003.

[27] M.Q. Zhang. Identification of protein coding regions in the human genome based on

quadratic discriminant analysis. In Proceedings of the National Academy of Science,

volume 94, pages 565–68, 1997.

14


