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Abstract

For many large undirected models that arise

in real-world applications, exact maximum-

likelihood training is intractable, because it re-

quires computing marginal distributions of the

model. Conditional training is even more diffi-

cult, because the partition function depends not

only on the parameters, but also on the ob-

served input, requiring repeated inference over

each training example. An appealing idea for

such models is to independently train a local

undirected classifier over each clique, afterwards

combining the learned weights into a single

global model. In this paper, we show that this

piecewise method can be justified as minimizing

a new family of upper bounds on the log partition

function. On three natural-language data sets,

piecewise training is more accurate than pseu-

dolikelihood, and often performs comparably to

global training using belief propagation.

1 INTRODUCTION

Large graphical models are becoming increasingly com-

mon in applications including computer vision, relational

learning [14], and natural language processing [16, 3]. Of-

ten the cheapest way to build such models is to estimate

their parameters from labeled training data. But exact

maximum-likelihood estimation requires repeatedly com-

puting marginals of the model distribution, which is in-

tractable in general.

This problem is especially severe for conditional training.

If our final task is predict certain variables y given ob-

served data x, then it is appropriate to optimize the con-

ditional likelihood p(y|x) instead of the generative likeli-

hood p(y,x). This allows inclusion of rich, overlapping

features of x without needing to model their distribution,

which can greatly improve performance [8]. Conditional

training can be expensive, however, because the partition

function Z(x) depends not only on the model parameters

but also on the input data. This means that parameter es-

timation requires computing (or approximating) Z(x) for

each training instance for each iteration of a numerical opti-

mization algorithm; this can be expensive even if the graph

is a tree.

To train such large models efficiently, an appealing idea

is to divide the full model into pieces which are trained

independently, combining the learned weights from each

piece at test time. We call this piecewise training.

In this paper, we present a systematic evaluation of this

intuitively-appealing procedure. We justify piecewise

training as minimizes an upper bound on the exact log par-

tition function. Although this bound can be proved directly,

it can also be derived from the variational upper bounds

presented by Wainwright, Jaakkola, and Willsky [15], a

connection which motivates several generalizations of the

basic piecewise procedure.

The piecewise estimator is also closely related to pseudo-

likelihood [1, 2]. Both estimators are based on locally nor-

malizing small pieces of the full model. But pseudolike-

lihood conditions on the true value of neighboring nodes,

which has the effect of coupling parameters in neighboring

pieces (see Figure 3), while the piecewise estimator opti-

mizes each piece independently. So the piecewise estima-

tor is distinct from pseudolikelihood. Even though the dif-

ference may seem small, we show experimentally that the

piecewise estimator is more accurate.

On three real-world natural language tasks, we show that

the accuracy of piecewise training is often comparable to

exact training. We also show that piecewise training per-

forms better than pseudolikelihood, even if the pseudo-

likelihood objective is augmented to normalize over edges

rather than single nodes.

These results suggest that piecewise training is preferable

to pseudolikelihood as a method of choice for local train-

ing, allowing efficient training of massive real-world mod-

els where conditional training is currently impossible.



2 MARKOV RANDOM FIELDS

In this section, we briefly give background and notation

on Markov random fields (MRFs) and conditional random

fields (CRFs). A Markov random field is a probability dis-

tribution over a vector y that has been specified in terms of

local factors ψ as:

p(y) =
1

Z

∏

st

ψ(ys, yt), (1)

where the partition function Z =
∑

y′

∏

st ψ(y′s, y
′
t) nor-

malizes the distribution. The distribution p(y) can also be

described as an undirected graphical model G with edge set

E = {(s, t)}.

We assume that each of the local functions ψ can be written

in terms of weights θ and functions φ as

ψ(ys, yt) = exp

{

∑

α

θst;αφst;α(ys, yt)

}

. (2)

The functions φst;α are the sufficient statistics of the model.

For example, if the sufficient statistics are indicator func-

tions of the form

φst;α(ys, yt) = 1{ys=y′

s
}1{yt=y′

t
}, (3)

then ψ(ys, yt) is a lookup table where each value is

ψ(ys, yt) = exp{θst;ys,yt
}.

This choice of parameterization for the local factors en-

sures that the set {p(y;θ)} is an exponential family. Let-

ting α index over the exponential parameters over all edges

st:

p(y) = exp

{

∑

α

θαφα(ys, yt) −A(θ)

}

, (4)

where A(θ) = logZ normalizes the distribution.

Parameter estimation for MRFs can be done by maximum

likelihood, but this requires computing A(θ), which is in-

tractable. It is for this reason that approximations and

bounds of A are of great interest.

To simplify the exposition, we have assumed that the local

functions are over pairs of variables. All of the discussion

in this paper can easily be generalized to factors of higher

arity.

A conditional random field is a Markov random field used

to model the conditional distribution p(y|x) of target vari-

ables y given input variables x. As above, let G be an undi-

rected graph over y with edges E = {(s, t)}. Then a CRF

models the conditional distribution as

p(y|x) = exp

{

∑

st

∑

k

λkfk(ys, yt,x) −A(Λ;x).

}

,

(5)

where fk are feature functions that can depend both on

an edge in y and (potentially) the entire input x, and

Λ = {λk} are the real-valued model parameters. Because

the distribution over x is not modeled, the feature functions

fk are free to include rich, overlapping features of the in-

put without sacrificing tractability. Indeed, this is the chief

benefit of using a conditional model.

For any fixed input x, the distribution p(y|x) is an MRF

with parameters

θst;ys,yt
=
∑

k

λkfk(ys, yt,x), (6)

and the indicator functions as sufficient statistics. We call

this MRF the unrolled graph of the CRF for the input x.

Parameter estimation in CRFs is performed by maximiz-

ing the log likelihood of fully-observed training data D =
{(x(i),y(i))}, which is given by

ℓ(Λ) =
∑

i

∑

st

∑

k

λkfk(y(i)
s , y

(i)
t ,x(i))−

∑

i

A
(

x
(i); Λ

)

.

This is a convex function that can be maximized numer-

ically by standard techniques, including preconditioned

conjugate gradient and limited-memory BFGS. Quadratic

regularization (i.e., a Gaussian prior on parameters) is of-

ten used to reduce overfitting.

Although inference for CRFs is thus exactly as in MRFs,

training is more expensive. This is because the CRF log

partition function A(Λ;x) depends not only on the param-

eters but also on the input. Thus maximum-likelihood pa-

rameter estimation involves computing or approximating

A(Λ;x) once for each training instance for each iteration

of a gradient ascent procedure. This can be expensive even

when the unrolled graph is a tree.

3 PIECEWISE TRAINING

In this section, we present the piecewise estimator, justify-

ing it as minimizing an upper bound on the log partition

function. First, we present an example of a particularly in-

tuitive case of piecewise estimation. Suppose we want to

train a loopy pairwise MRF. In piecewise estimation, we

simply train the parameters of each edge independently, as

if each edge were a separate two-node MRF of its own. We

take the learned parameters from this local training as the

piecewise-trained edge parameters in the global model.

Now we define the piecewise estimator in more generality.

We assume that the sufficient statistics of the distribution

are partitioned into a set P of disjoint pieces; each piece

R ∈ P is a set of integers indexing the sufficient statis-

tics contained in piece R. For example, in a discrete pair-

wise MRF with tabular factors, we might choose each piece

to correspond to the parameters and sufficient statistics for

one edge factor in the MRF.



Then we define the piecewise objective function as

ℓPW(θ) =
∑

R∈P

∑

α∈R

θαφα(xα) −
∑

R∈P

AR(θ), (7)

where AR(θ) is the local log partition function for the

piece, that is, AR(θ) = log
∑

xR
exp{

∑

α∈R θαφα(xα)},
where xR is the vector of variables used anywhere in piece

R. Finally, the piecewise estimator is defined as θ̂PW =
maxθ ℓPW.

Consider the special case of per-edge pieces in a pair-

wise MRF. Then, for an edge (s, t), we have Ast(θ) =
log
∑

xs,xt
ψ(xs, xt), so that the piecewise estimator cor-

responds exactly to training independent probabilistic clas-

sifiers on each edge.

Now we make a few general remarks about this estimator.

First, observe that the first summation in Equation 7 con-

tains exactly the same terms the first summation in the ex-

act likelihood in Equation 4. The only difference between

the piecewise objective and the exact likelihood is in the

second summation of Equation 7, which can be viewed as

local approximation of the log partition function.

Finally, as an aside, the choice of pieces need not corre-

spond to the graphical structure of the model. For ex-

ample, in a linear chain MRF, which can be viewed as a

weighted finite-state machine, we might choose to parti-

tion the state-transition diagram into pieces, and train each

of these pieces separately. It is unclear if such training

regimes are of practical interest, however.

Apart from its intuitive plausibility, another rationale for

the piecewise estimator is provided by the following propo-

sition:

Proposition 1. For any set P of pieces, the piecewise ap-

proximation maximizes a lower bound on the likelihood,

that is,

A(θ) ≤
∑

R∈P

AR(θ). (8)

Proof. The bound is immediate upon expansion of A(θ).

A(θ) = log
∑

x

exp

{

∑

α

θαφα(xα)

}

(9)

= log
∑

x

∏

R∈P

exp

{

∑

α∈R

θαφα(xα)

}

(10)

≤ log
∏

R∈P

∑

xR

exp

{

∑

α∈R

θαφα(xα)

}

(11)

=
∑

R∈P

AR(θ). (12)

The bound from Equation 10 to Equation 11 is justified by

considering the expansion of the product in equation Equa-

tion 11. The expansion contains every term of the summa-

tion in Equation 10, and all terms are nonnegative.

3.1 APPLICATION TO CONDITIONAL RANDOM

FIELDS

Piecewise estimation is especially well-suited for con-

ditional random fields. As mentioned earlier, standard

maximum-likelihood training for CRFs can require evalu-

ating the instance-specific partition function Z(x) for each

training instance for each iteration of an optimization algo-

rithm, which can be expensive even for linear chains. By

using piecewise training, we need to compute only local

normalization over small cliques, which for loopy graphs

is potentially much more efficient.

If the training data is D = {(x(i),y(i))}, then the piecewise

CRF objective function is

ℓPW(Λ) =
∑

i

∑

st

∑

k

λkfk(y(i)
s , y

(i)
t ,x(i))

−
∑

i

∑

st

A
(

x
(i); Λ

)

, (13)

where the local normalization factors are

A
(

x
(i); Λ

)

= log
∑

ys,yt

exp

{

∑

k

λkfk(ys, yt,x
(i))

}

.

4 GENERALIZATIONS OF PIECEWISE

TRAINING

In this section, we sketch another proof of Proposition 1,

deriving it from the tree-reweighted bounds of Wainwright,

Jaakkola, and Willsky [15], a connection which suggests

generalizations of the simple piecewise training procedure.

To simplify the exposition, in this section we assume that

the pieces correspond to edges in a graphical model, but the

ideas extend readily to more general pieces.

4.1 TREE-REWEIGHTED UPPER BOUNDS

Wainwright, Jaakkola, and Willsky [15] introduce a class

of upper bounds on A(θ) that arise immediately from its

convexity. The basic idea is to write the parameter vector θ

as a mixture of parameter vectors of tractable distributions,

and then apply Jensen’s inequality.

Let T = {TR} be a set of tractable subgraphs of G. For

concreteness, think of T as the set of all spanning trees

of G; this is in fact the special case to which Wainwright,

Jaakkola, and Willsky devote their attention. For each

tractable graph TR, let θ(TR) be an exponential parameter

vector that has the same dimensionality as θ, but respects

the structure of TR. More formally, this means that the en-

tries of θ(TR) must be zero for edges that do not appear in

TR. Except for this, θ(TR) is arbitrary; there is no require-

ment that on its own, it matches θ in any way.



Suppose we also have a distribution µ = {µR|TR ∈ T }
over the tractable subgraphs, such that the original parame-

ter vector θ can be written as a combination of the per-tree

parameter vectors:

θ =
∑

TR∈T

µRθ(TR). (14)

In other words, we have written the original parameters θ

as a mixture of parameters on tractable subgraphs.

Then the upper bound on the log partition function A(θ)
arises directly from Jensen’s inequality:

A(θ) = A

(

∑

TR∈T

µRθ(TR)

)

≤
∑

TR∈T

µRA(θ(TR)).

(15)

Because we have required that each graph T be tractable,

each term on the right-hand side of Equation 15 can be

computed efficiently. If the size of T is large, however,

then computing the sum is still intractable. We deal with

this issue next.

A natural question about this bound is how to select θ so

as to get the tightest upper bound possible. For fixed µ, the

optimization over θ can be cast as a convex optimization

problem:

min
θ

∑

TR∈T

µRA(θ(TR)) (16)

s.t. θ =
∑

TR∈T

µRθ(TR). (17)

But this optimization problem can have astronomically

many parameters, especially if T is the set of all span-

ning trees. The number of constraints, however, is much

smaller, because the constraints are just one equality con-

straint for each element of θ. To collapse the dimension-

ality of the optimization problem, therefore, Wainwright,

Jaakkola, and Willsky use the Lagrange dual of Equa-

tion 16, which can then be optimized using either standard

optimization techniques, or a message passing algorithm

similar to to BP. For our present purposes, however, it suf-

fices to consider only the primal problem in Equation 16,

which we use in the next section as a alternative derivation

of piecewise bounds.

4.2 APPLICATION TO PIECEWISE UPPER

BOUNDS

Now we discuss how the tree-reweighted upper bounds can

be applied to piecewise training. As in the previous sec-

tion, we will obtain an upper bound by writing the original

parameters θ as a mixture of tractable parameter vectors

θ(T ). Consider the set T of tractable subgraphs induced by

single edges of G. Precisely, for each edge ER = (uR, vR)
in G, we add a (non-spanning) tree TR which contains all

the original vertices but only the edge ER. With each tree

TR we associate an exponential parameter vector θ(TR).

Let µ be a strictly positive probability distribution over

edges. To use Jensen’s inequality, we will need to have

the constraint

θ =
∑

R

µRθ(TR). (18)

Now, each parameter θi corresponds to exactly one edge of

G, which appears in only one of the TR. Therefore, only

one choice of subgraph parameter vectors {θ(TR)} meets

the constraint (18), namely:

θ(TR) =
θ|r
µR

, (19)

where θ|R is the restriction of θ to R; that is, θ|R has the

same entries and dimensionality as θ, but with zeros in all

entries that are not included in the piece R.

Therefore, using Jensen’s inequality, we immediately have

the bound

A(θ) ≤
∑

R

µRA

(

θ|R
µR

)

. (20)

This reweighted piecewise bound is clearly related to the

basic piecewise bound in Equation 8, because A(θ|R) dif-

fers from AR(θ) only by an additive constant which is in-

dependent of θ. In fact, a version of Proposition 1 can be

derived by considering the limit of Equation 20 as µ ap-

proaches a point mass on an arbitrary single piece R∗, but

we do not present the details here.

The connection to the Wainwright et al. work suggests at

least two generalizations of the basic piecewise method.

The first is that the reweighted piecewise bound in Equa-

tion 20 can itself be minimized as an approximation to

A(θ), yielding a variation of the basic piecewise method.

The second is that this line of analysis can naturally handle

the case when pieces overlap. For example, in an MRF with

both node and edge factors, we might choose each piece to

be an edge factor with its corresponding node factors, hop-

ing that this overlap will allow limited communication be-

tween the pieces which could improve the approximation.

As long as there is a value of µ for which the constraint in

Equation 19 holds, then Equation 20 provides a bound we

can minimize in an overlapping piecewise approximation.

In the experiments below, we evaluate weighting the pieces

by a distribution µ. We leave the exploration of overlapping

pieces to future work.

5 EXPERIMENTS

The bound in Equation 8 is not tight. Because the bound

does not necessarily touch the true likelihood at any point,



Method Overall F1

Piecewise 91.2

Pseudolikelihood 84.7

Per-edge PL 89.7

Exact 89.9

Table 1: Comparison of piecewise training to exact and

pseudolikehood training on a linear-chain CRF for named-

entity recognition. On this tractable model, piecewise

methods are more accurate than pseudolikelihood, and just

as accurate as exact training.

Method Noun-phrase F1

Piecewise 88.1

Pseudolikelihood 84.9

Per-edge PL 86.5

BP 86.0

Table 2: Comparison of piecewise training to other meth-

ods on a two-level factorial CRF for joint part-of-speech

tagging and noun-phrase segmentation.

Method Token F1

location speaker

Piecewise 87.7 75.4

Pseudolikelihood 67.1 25.5

Per-edge PL 76.9 69.3

BP 86.6 78.2

Table 3: Comparison of piecewise training to other meth-

ods on a skip-chain CRF for seminar announcements.

maximizing it is not guaranteed to maximize the true like-

lihood. We turn to experiments to compare the accuracy

of piecewise training both to exact estimation, and to other

approximate estimators. A particularly interesting compar-

ison is to pseudolikelihood, because it is a related local es-

timation method.

On three real-world natural language tasks, we compare

piecewise training to exact ML training, approximate ML

training using belief propagation, and pseudolikelihood

training. To be as fair as possible, we compare to two vari-

ations of pseudolikelihood, one based on nodes and a struc-

tured version based on edges. Pseudolikelihood is normally

defined as [1]:

PL(θ) =
∏

s

p(xs|N (xs)). (21)

This objective function does not work well for sequence

labeling, because it does not take into account strong inter-

actions between neighboring sequence positions. In order

to have a stronger baseline, we also compare to a per-edge

version of pseudolikelihood:

PLe(θ) =
∏

st

p(xs, xt|N (xs, xt)), (22)

that is, instead of using the conditional distribution of each

node, we use each edge, hoping to take more of the sequen-

tial interactions into account.

We evaluate piecewise training on three models used in pre-

vious work: a linear-chain CRF [8], a factorial CRF [13],

and a skip-chain CRF [12]. All of these models use input

features such as word identity, part-of-speech tags, capital-

ization, and membership in domain-specific lexicons; these

are described fully in the original papers.

In all the experiments below, we optimize ℓPW using

limited-memory BFGS. We use a Gaussian prior on

weights to avoid overfitting. In previous work, the prior

parameter had been tuned on each data set for belief prop-

agation, and for the local models we used the same prior

parameter without change. At test time, decoding is always

performed using max-product belief propagation.

5.1 LINEAR-CHAIN CRF

First, we evaluate the accuracy of piecewise training on a

tractable model, so that we can compare the accuracy to ex-

act maximum-likelihood training. The task is named-entity

recognition, that is, to find proper nouns in text. We use the

CoNLL 2003 data set, consisting of 14,987 newswire sen-

tences annotated with names of people, organizations, lo-

cations, and miscellaneous entities. We test on the standard

development set of 3,466 sentences. Evaluation is done us-

ing precision and recall on the extracted chunks, and we

report F1 = 2PR/P + R. We use a linear-chain CRF,

whose features are described elsewhere [10].



t ✁ 1

t ✁ 1 t + 1t
t t + 1t ✁ 1

t t + 1

Figure 1: Graphical model for two-level FCRF for joint

part-of-speech tagging and noun-phrase segmentation.

Piecewise training performs better than either of the pseu-

dolikelihood methods. Even though it is a completely local

training methods, piecewise training performs comparably

to exact CRF training.

Now, in a linear-chain model, piecewise training has the

same asymptotic complexity as exact CRF training, so

we do not mean this experiment to advocate using the

piecewise approximation for linear-chain graphs. Rather,

that the piecewise approximation loses no accuracy on the

linear-chain model is encouraging when we turn to loopy

models, which we do next.

5.2 FACTORIAL CRF

The first loopy model we consider is the factorial CRF in-

troduced by Sutton, Rohanimanesh, and McCallum [13].

Factorial CRFs are the conditionally-trained analogue of

factorial HMMs [6]; it consists of a series of undirected

linear chains with connections between cotemporal labels.

This is a natural model for jointly performing multiple de-

pendent sequence labeling tasks.

We consider here the task of jointly predicting part-of-

speech tags and segmenting noun phrases in newswire text.

Thus, the FCRF we use has a two-level grid structure,

shown in Figure 1.

Our data comes from the CoNLL 2000 shared task [11],

and consists of sentences from the Wall Street Journal an-

notated by the Penn Treebank project [9]. We consider each

sentence to be a training instance, with single words as to-

kens. We report results here on subsets of 223 training sen-

tences, and the standard test set of 2012 sentences. Results

are averaged over 5 different random subsets. There are 45

different POS labels, and the three NP labels. We report F1

on noun-phrase chunks.

In previous work, this model was optimized by approxi-

mating the partition function using belief optimization, but

this was quite expensive. Training on the full data set of

8936 sentences required about 12 days of CPU time.

Results on this loopy data set are presented in Table 2.

Again, the piecewise estimator performs better than either

version of pseudolikelihood and maximum-likelihood esti-

x
t

x
t+1

x
t-1

y
t

y
t+1

y
t-1

John SmithSpeaker:

x
t+101

y
t+101

x
t+100

y
t+100

...

...

SmithProfessor

x
t+101

y
t+101

will

...

...

Figure 2: Graphical model for skip-chain CRF.

mation using belief propagation.

5.3 SKIP-CHAIN CRF

Finally, we consider a model with many irregular loops,

which is the skip chain model introduced by Sutton and

McCallum [12]. This model incorporates certain long-

distance dependencies between word labels into a linear-

chain model for information extraction.

The task is to extract information about seminars from

email announcements. Our data set is a collection of 485

e-mail messages announcing seminars at Carnegie Mellon

University. The messages are annotated with the seminar’s

starting time, ending time, location, and speaker. This data

set is due to Dayne Freitag [5], and has been used in much

previous work.

Often the speaker is listed multiple times in the same mes-

sage. For example, the speaker’s name might be included

both near the beginning and later on, in a sentence like “If

you would like to meet with Professor Smith. . . ” It can be

useful to find both such mentions, because different infor-

mation can be in the surrounding context of each mention:

for example, the first mention might be near an institution

affiliation, while the second mentions that Smith is a pro-

fessor.

To increase recall of person names, we wish to exploit that

when the same word appears multiple times in the same

message, it tends to have the same label. In a CRF, we

can represent this by adding edges between output nodes

(yi, yj) when the words xi and xj are identical and capi-

talized. An example of this is shown in Figure 2. Thus,

the conditional distribution p(y|x) has different graphical

structure for different input configurations x.

Consistently with the previous work on this data set, we

use 10-fold cross validation with a 50/50 training/test split.

We report per-token F1 on the speaker and location fields,

the most difficult of the four fields. Most documents con-

tain many crossing skip-edges, so that exact maximum-

likelihood training using junction tree is completely infea-

sible, so instead we compare to approximate training using

loopy belief propagation.

Results on this model are given in Table 3. Pseudolikeli-

hood performs particularly poorly on this model. Piecewise





Many properties of piecewise training remain to be ex-

plored. Our results indicate that in some situations piece-

wise training should replace pseudolikelihood as the local

training method of choice. Characterizing the situations in

which piecewise is preferable to pseudolikelihood, and vice

versa, is an important avenue of future work. In particular,

the experiments here all used conditional training, which

make local training easier because of the large amount of

information in the conditioning variables. In generative

training, there may be much less local information, mak-

ing piecewise training much less effective.
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